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Abstract

Spectrum sensing can improve the spectrum’s utilization
using licensed spectrum in cognitive radio. However, var-
ious security issues, such as malicious user attacks and
shadow fading, affect network performance. This study
focuses on how energy and matched filter detection in cog-
nitive radio are affected by shadow fading. The formulas
for the probability of detection and false alarm are derived
for energy and matched filter detection, respectively. Ac-
cording to the simulation, matched filter detection is more
susceptible to shadow fading than energy detection in an
environment with a lower signal-to-noise ratio.
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1 Introduction

The Federal Communications Commission (FCC) is con-
sidering opening a portion of the authorized spectrum to
unauthorized users without interfering with authorized
primary users (PUs) because the allocation of fixed spec-
trum is no longer sufficient to meet the requirements of
an increasing number of users due to the rapid develop-
ment of wireless communication. With the development
of cognitive radio (CR), it is now possible to use the au-
thorized free frequency band without interfering with the
primary user. Therefore, the utilization of spectrum re-
sources is improved, and the spectrum requirements of a
more significant number of wireless users are met, which is
an important technology to address the problem of a lack
of resources in wireless spectrum resources [23]. Cogni-
tive radio networks are wireless communication networks
with cognitive characteristics. The network can observe
the surrounding wireless network environment, use envi-
ronmental cognition to get information about how spec-
trum is used, process and learn the information, make

intelligent decisions and analyses, dynamically access the
available spectrum, and finally adapt and reconfigure it-
self to adapt to the cognitive radio network environment,
which is constantly changing, to achieve optimal network
performance.

A cognitive radio user is a user in a cognitive radio net-
work, and the primary user is the cognitive radio user’s
counterpart. The CR user accesses to communicate when
the PU is not using the channel. Once the signal of the
PU returns, the CR user immediately withdraws from the
channel it is communicating on and looks for other avail-
able free channels to communicate. Therefore, the CR
user should first have the spectrum sensing function to
detect the signal from the wireless environment, then de-
termine the spectrum hole after analysis and adjustment,
and use the spectrum hole to communicate without affect-
ing the PU. Spectrum sensing technology, a prerequisite
for operating cognitive radio networks, means that CR
users collect spectrum usage information in wireless net-
works via various signal detection and processing methods
to find spectrum holes.

Cognitive radio technology aims to solve the spectrum
scarcity issue by implementing dynamic spectrum man-
agement. However, various security issues and vulnerabil-
ities experienced can influence network performance [22].
Authors in [6] have investigated robust spectrum sens-
ing schemes against malicious user attacks. In cognitive
networks, many denial-of-service attacks will cause sig-
nificant performance degradation and thus need to be de-
tected quickly [12,14,18]. An algorithm to reduce the de-
tection delay is presented in [21] so that a network man-
ager can respond to an event as quickly as possible to
minimize the impact of attacks.

Additionally, the structure of the cognitive radio net-
work introduced a spectrum sensing data falsification
(SSDF) attack. In such attacks, malicious users make in-
correct observations of the system’s fusion center, which
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may cause licensed users to experience the severe qual-
ity of service degradation and disruption. The authors
of [13] investigate the threat and the mitigation strategy
for SSDF attacks. The Byzantine attack is one of the key
issues preventing the success of cognitive radio sensor net-
works. The Byzantines can be avoided using the security
measures suggested in [2]. A reliable sensing method has
been developed to prevent the Byzantine attack. Addi-
tionally, CR users naturally face two significant security
threats: jamming and primary user emulation (PUE) at-
tacks. Machine learning has been applied to detect these
attacks in [15]. The proposed deep learning-assisted de-
tection method performs exceptionally well when spotting
these threats.

Shadowing also limits the effectiveness of spectrum-
sensing techniques in cognitive radio in [3, 20]. S.
Kavaiya in [10] examined how an improved energy detec-
tor performs over uniformly and exponentially correlated
Nakagami-m fading with imperfect channel state infor-
mation (CSI). Simulation results show that user mobil-
ity and correlated fading combined affect the detection
performance over imperfect CSI. In addition, H. Rasheed
in [16] quantifies energy detection for spectrum sensing
under shadowed conditions. A study in [5] examines per-
formance analysis of cooperative spectrum sensing over
shadowed fading. H. Huang in [9] discuss the unified per-
formance of energy detection of spectrum sensing over
generalized fading channels in cognitive radios. Fading
channels will undoubtedly impact the detection perfor-
mance of spectrum sensing. The results demonstrate that
fading channels will impact energy detection performance,
but that sensing performance can be enhanced using the
appropriate channel parameters. Aulakh in [1] shows the
solutions to shadow fading using two strong techniques:
optimal spectrum sensing and greedy spectrum sensing.
The authors of [8,19] also investigated the sensing perfor-
mance for cooperative spectrum sensing in fading chan-
nels.

The rest of the paper is organized as follows: Sections 2
and 3 looked at the spectrum sensing system model for en-
ergy and matched filter detection. Additionally, the effect
of shadow fading on detection performance is discussed.
Section 4 presented the simulation results and discussed
the influence on the detection performance. Finally, Sec-
tion 5 contains the conclusions.

2 Energy-Detection Based Spec-
trum Sensing Technology

Energy detection is the most commonly used method in
spectrum sensing due to its simplicity. An energy detector
can determine whether signals are present in a particular
frequency band by detecting received signals. The steps
involved in detecting energy are shown in Figure 1 as fol-
lows. After passing through an ideal Band Pass Filter
(BPF), the received signal calculates the energy of sig-
nals in the band in the detecting time T , which is then

 (!)"(!) () #
$

%
()BPF threshold

Figure 1: Block diagram of energy detection

compared to the threshold to determine if communica-
tions use the frequency band.

Two presumptions can be made for spectrum sensing.
H0 denotes no primary user signal in a certain spectrum
band as in Equation (1). H1 means that a primary user
signal exists in that band as in Equation (2).

H0 : y(t) = n(t) (1)

H1 : y(t) = h(t)s(t) + n(t) (2)

y(t) is the received signal by the CR user at time t. n(t)
is the Additive White Gaussian Noise (AWGN). We as-
sume that n(t) has a variance of 1 and an expectation of 0
under a standard normal distribution. s(t) is the primary
user’s transmitting signal. h is the channel coefficient.

In energy detection, the sampling time is T , the signal
bandwidth is W , and the number of sampling points is
N = 2TW . It is assumed that the decision threshold is
K, the signal-to-noise ratio is λ0 = Es

N0
. The detection

probability, false alarm probability, and missed detection
probability are shown as in Equation (3), in Equation (4)
and in Equation (5):

Pfa = Q(
K −N√

2N
) =

1

2
erfc(

K −N√
4N

) (3)

Pd = Q(
K −N −Nλ0√

2N +Nλ0

) =
1

2
erfc(

K −N −Nλ0√
4N + 2Nλ0

) (4)

Pmd = 1− Pd (5)

Shadow fading will impact the primary user’s signal
during transmission. The normal log component of the
shadow loss and the m power of the wave propagation
distance r is typically used to calculate shadow fading.
Here, we consider the impact of shadow loss. ζ is the log
loss (in dB) caused by shadow, which follows a lognormal
distribution with zero mean and variance of 1dB.

The probability of false alarm and the probability of
detection can be expressed by as in Equation (6) and in
Equation (7).

Pfa =
1

2
erfc(

K −N√
4N

) (6)

Pd =
1

2
erfc(

K −N −Nλ2√
4N + 2Nλ2

) (7)
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Figure 2: Block diagram of matched filter detection

3 Matched Filter Based Spectrum
Sensing Technology

Matching filter detection necessitates prior knowledge of
the primary user signal’s modulation method, pulse wave-
form, timing, and packet format, among other things [4,
7, 11, 17]. We presume that BPSK is being used as a
modulator in this case. The block diagram is displayed
in Figure 2. The noise signal n(t) satisfies the Gaussian
distribution, and θ = 1 indicates the primary user’s pres-
ence, while θ = 0 indicates its absence.

y(t) is the received signal by the CR user which can be
expressed by as in Equation (8)

y(t) =

∫ t

0

[θs(τ) + n(τ)]h(t− τ)dτ (8)

When t = t0, the CR user receives the signal. When
the primary user’s signal exists H1, s1 = s(t)+n(t), then

y(t0) =

∫ t0

0

[s(τ) + n(τ)]s(τ)dτ = E1 + Z (9)

The received signal’s probability distribution is given
as in Equation (10):

p(y|s1) =
1√

πN0E1

exp[− (y − E1)
2

N0E1
] (10)

When the primary user’s signal does not exist H0, s2 =
n(t), then

y(t0) =

∫ t0

0

n(τ)s(τ)dτ = Z (11)

The probability distribution of the received signal is
expressed as in Equation (12):

p(y|s2) =
1√

πN0E1

exp[− y2

N0E1
] (12)

Define the judgment threshold as V . The probabilities
of false alarm, detection, and missed detection can be
expressed as follows:

Pfa = p(y > V |H0) =
1

2
erfc(

V

E1

√
E1

N0
) (13)

Pd = p(y > V |H1) = 1− 1

2
erfc(

√
E1

N0
− V

E1

√
E1

N0
) (14)

Pmd = p(y < V |H1) =
1

2
erfc(

E1 − V√
N0E1

) (15)

The effect of shadowing loss ζ is also taken into ac-

count here. When E2 = E110
ζ
10 , the probabilities of

false alarm and detection for matched filter detection can
be expressed as in Equation (16) and Equation (17):

Pfa =
1

2
erfc(

V

E2

√
E2

N0
) (16)

Pd = 1− 1

2
erfc(

√
E2

N0
− V

E2

√
E2

N0
) (17)

4 Simulation and Discussion

The influence on the detection performance from the
probability of false alarm and shadow fading is simulated
and discussed in energy and matched filter detection, re-
spectively. The sampling point is N=1024.

4.1 Influence on Detection Performance
from the Probability of False Alarm

Figure 3 shows that when the number of sampling point
N is selected, the higher the probability a false alarm,
the higher the probability of detection, and the lower the
probability of missed detection.

In matched filter detection, the effect of the false alarm
probability on the detection performance is depicted in
Figure 4. It is evident that the higher the signal-to-noise
ratio, the greater the probability of detection, and the
lower the possibility of missed detection, the greater the
probability of a false alarm. This is because when the
false alarm probability is increased, equivalent to a lower
limit on the system, the probability of missed detection
will be reduced accordingly.

It can also be seen that the threshold has the same
increasing and decreasing properties for the probability
of detection and false alarm. The higher the probability
of a false alarm, the higher the probability of detection,
and the lower the probability of missed detection when the
signal-to-noise ratio is calculated. The higher the signal-
to-noise ratio, on the assumption that the probability of
a false alarm is calculated, the greater the probability of
detection.

4.2 Influence on Detection Performance
from Shadow Fading

The following simulations examine how shadow fading af-
fects the performance of energy detection and matched
filter detection, respectively, under the assumption that
the probability of false alarm is 0.01.

According to Figure 5, the probability of detection af-
fected by shadow fading is lower than the probability of
detection without shadow fading for the same probability
of a false alarm; The probability of missed detection when
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Figure 3: Influence on detection performance from different probability of false alarm in energy detection
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Figure 4: Influence on detection performance from false alarm probability in Matched Filter detection
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shadow fading is present is greater than the probability
of missed detection when shadow fading is not present.
Other approaches (like the multi-node cooperative detec-
tion algorithm) are required to reduce since shadow fading
impacts detection performance significantly.

According to Figure 6, the probability of detection af-
fected by shadow fading is lower than that of detection
without shadow fading for the same probability of a false
alarm. In comparison, the probability of missed detection
affected by shadow fading is higher than that of missed
detection without shadow fading. The impact of shadow
fading on detection performance is very large, so other
methods, such as the multi-node cooperative detection
method, are needed to overcome the impact of shadow
fading.

Table 1 displays the comparison study for the energy
and matched filter detection under various shadow fading
when the SNR=-10dB. As seen, matched filter detection’s
sensing performance is more susceptible to shadow fading
than energy detection.

5 Conclusions

Cognitive radio aims to solve the spectrum scarcity issue
by implementing spectrum sensing technology. In fact,
various security issues and vulnerabilities experienced can
influence network performance, such as malicious user at-
tacks and shadow fading. Shadow fading’s effects on en-
ergy detection and matching filter detection are examined
in this research. The formulas for detection probability
and false alarm probability are constructed for the en-
ergy detection and matching filter detection technologies.
The probability of detection and missed detection under
different false alarm probabilities and shadow fading is
simulated and discussed, respectively. Shadow fading has
a more significant impact on matched filter detection than
energy detection, as the simulation results show.
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Figure 5: Influence on detection performance from the different shadow fading in energy detection
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