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Abstract

The application of cloud computing brings many secu-
rity challenges to the power Internet of things, such as
DoS attacks, location-based attacks, man-in-the-middle
attacks, and sniffing. Aiming at the cloud-edge security
of power Internet of things, we propose SD-PIoT, a frame-
work based on the software-defined perimeter (SDP) and
software-defined network (SDN). In the framework, SDP
and SDN jointly enhance the security of the cloud edge in
a complementary way. SDP protects the security of the
cloud and the inner layer of SDN by rejecting all unau-
thorized edge traffic. SDN deploys SDP applications to
the SDN application plane to realize SDP’s flexible de-
ployment and management. In addition, SDN improves
the reliability of network communication by controlling
the topology. The security, communication reliability,
and performance are analyzed through simulation exper-
iments. The results show that the scheme can effectively
resist network attacks, improve communication reliability
and performance, and improve the cloud-edge protection
ability of power Internet of things.

Keywords: Cloud-Edge Environment; Power IoT;
Software-defined Network; Software-defined Perimeter

1 Introduction

With the advent of the information age, tens of billions
of power equipment are connected to the Internet, and a
large amount of data on the network is transmitted be-
tween terminal devices [19]. In 2006, the cloud was pro-
posed as a remote server for power companies, providing
additional storage and data processing services. After the
birth of cloud computing, paradigms such as edge com-
puting and fog computing emerged, acting as the interme-
diary between edge devices and the cloud to improve the
performance of the IoT. Gartner predicts that by 2025,

more than 90% of enterprises will adopt cloud infrastruc-
ture and platform strategy [8], which greatly reduces the
burden on power companies. Although cloud computing
and other paradigms derived from it provide many ad-
vantages to the power IoT, some security challenges will
inevitably arise in the cloud-edge environment. Refer-
ence [12]concludes by analyzing different types of cloud
that although cloud computing itself has advantages, it
also faces the danger of information leakage brought by
insecure visitors. Reference [9]summarizes the security
issues of cloud computing into four types of threats, in-
cluding data level, privacy level, user level and provider
level. It indicates that these threats come from attacks.
Reference [10] analyzes the insecurity of traditional net-
work boundaries to cloud computing servers and uses
SDN technology to manage and control the network to
alleviate cloud security problems. Reference [11] found
that, due to many edge devices in the power IoT, the
probability of attackers discovering terminal devices with
defective network protocols increases, which will lead to
these defective devices being used by hackers to launch
DoS attacks on the cloud.

On the one hand, internal enterprise data is stored
in the enterprise cloud, and the vast majority of enter-
prise employees need to have access and processing rights
to these data. This expansion of access scope increases
the probability of malicious ”internal employees”. On the
other hand, edge/fog computing leverages several differ-
ent techniques to build networks, introducing the possibil-
ity of multiple attacks, such as man-in-the-middle attacks,
wireless jamming, and DoS attacks [18]. For the former,
malicious ”internal employees” and man-in-the-middle at-
tacks threaten the confidentiality and integrity of infor-
mation, and wireless jamming consumes bandwidth, spec-
trum, and computing resources at the edge. But in con-
trast, DoS attacks can occur in many ways, such as flood-
ing, redirection, jamming, and spoofing, which are simple
and effective. They can quickly lead to network confiden-
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tiality, integrity, and availability loss.
The power IoT cloud-edge environment requires a new

framework to address the above security issues. Ap-
plying SDP technology in networks requiring remote in-
teraction is a new and active area of research. Refer-
ences [14, 15, 19–21] all demonstrate the security advan-
tages of SDP technology applied in environments such
as the Internet of Things, which can resist various at-
tacks, including DoS, and alleviate the security challenges
caused by traditional boundary blurring. However, these
studies did not address the flexible deployment and scal-
ability of SDP applications, such as how to react when
new devices are added to the network, nor did they con-
sider the enterprise’s network configuration. In addition,
the literature [14] discussed that the challenges faced by
SDP had not been solved, such as network interruption
and configuration update. SDN separates the data plane
and the control plane in a software-defined way, provid-
ing new ideas. SDN controls a global view of the network
at the control plane in a software-defined way. The pro-
grammability of the SDN application layer brings more
possibilities to improve the network in the power IoT.

Therefore, this paper proposes a software-defined
power Internet of Things security protection framework
SD-PIoT, which aims to help the power Internet of Things
defend against cloud-side network attacks, simplify net-
work management, and additionally improve the reliabil-
ity of cloud-side communication under SDN’s advantages.
The main contributions of this paper are summarized as
follows:

1) Aiming at the above security issues, we propose an
SD-PIoT security framework, which uses SDP to pro-
tect the cloud-side security and introduces SDN to
manage the network to alleviate the limitations of
SDP.

2) The framework integrates the two by placing the SDP
controller at the SDN application plane to provide
the required security protection technology.

3) The solution has been tested for attack and net-
work performance. The results show that the frame-
work can protect the cloud-edge environment from
attacks, improve communication reliability, and neg-
ligible network delay.

The rest of the paper is structured as follows. In the
second section, some related works mentioned in the ar-
ticle are expounded. In Section 3, We described the SDP
and SDN architectures. And a security framework SD-
PIoT based on SDP and SDN is proposed and described.
In Section 4, test implementation and result evaluation
are presented. Finally, we summarize the proposed solu-
tion in Section 5.

2 Related work

Even applications in leading cloud service providers are
not guaranteed to be 100% free from attacks [7, 16] .

Due to a large number of terminal devices at the edge
of the power IoT, the security of the cloud faces greater
threats, such as privacy theft, resource fraud, and DoS
attacks [13, 26]. Traditional network tools are inefficient
for the massive power data collection, storage, processing,
and forwarding necessary in power IoT networks. Inher-
ent uncertainties such as packet loss and communication
outages hidden at the edge of the network greatly degrade
the quality of service (QoS). Therefore, the power Internet
of Things needs a more advantageous security framework
to improve the security of the cloud edge environment.

SDP has been explored in IoT security protection as
a relatively novel security architecture in recent years.
Reference [15] applies SDP to IoT applications in Mes-
sage Queuing Telemetry Transport (MQTT) to provide
an additional layer of security by exploiting the network
stealth properties of SDP. In Ref. [19], SDP addresses the
security challenges of edge computing in IoT, insuring the
cloud from edge traffic. Reference [21] applies the logical
boundaries of SDP to narrow the scope of network access
and connectivity of network virtual functions (VNFs) to
trusted identities. Reference [20] discusses the security is-
sues cloud infrastructure-as-a-service faces and proposes
an SDP-based solution that allows only authorized clients
to access protected services. The existing literature has
used the SDP controller’s authentication, dynamic autho-
rization and other programs to achieve corresponding se-
curity protection. But they have not specifically discussed
the deployment and management of these programs in the
network and have not considered the program expansion
that enterprises need.

A lot of work has been done to study the network
management advantages of SDN. Reference [2] proposed a
new IoT security architecture based on SDN, which helps
to improve the security and communication reliability of
IoT. Reference [22] developed a powerful control and net-
work management platform using SDN in the smart grid
scenario. Reference [5] used the centralized control logic
of SDN to alleviate the edge uncertainty of the Internet of
Vehicles and used the edge offload delay as an indicator
to verify the scheme’s effectiveness. Rohit et al. [4] in-
troduced SDN into IoT to improve resource-constrained
IoT low-power devices’ network performance and evalu-
ated the scheme according to latency and packet loss rate.
SD-MIoT [23] is an SDN solution applied to the mobile
IoT environment, which uses SDN to alleviate the com-
munication problems caused by mobile nodes, and uses
the message passing success rate to measure the reliabil-
ity of the scheme.

However, there are still some security problems to be
solved in SDN. For example, the open programmability of
SDN brings a trust crisis. The global control of the SDN
controller makes the network more vulnerable to denial
of service (DoS) attacks. In addition, the internal SDN
faces the security risk of the controller being invaded. The
separation of control plane and data plane brings security
challenges to the outer and inner layers of Sdn. The outer
security challenge means that the server or switch is vul-
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Figure 1: SDP client-gateway architecture

nerable to flood attacks, which may lead to the collapse of
the entire security system. Inner security challenge refers
to that intruders attack SDN controllers, generate false
network data, and launch different attacks on the whole
network. Reference [17] introduces the SDP framework to
improve the outer layer security of SDN-based networks
and discusses the interesting integration points between
the two. It demonstrates the integrability of SDP and
SDN, which lays the foundation for this paper, but the
security issues within SDN are not addressed.

The difference between this paper and previous re-
search is that SDP and SDN are cleverly combined to
complement each other’s shortcomings, bringing huge se-
curity advantages to the cloud-edge environment of the
power Internet of things.

3 Method

3.1 Software-Defined Perimeter (SDP)

The Cloud Security Alliance (CSA) published the first
SDP specification in 2014 [1], and SDP has attracted
much attention in academia. SDP follows the idea of
zero trust ”continuous verification, never trust”, only au-
thenticated identities are allowed to access services, and
unauthenticated identities remain in a state of ”network
stealth” [3]. As shown in Figure 1, the SDP architecture
consists of three main components, the SDP controller,
the SDP initiating host (IH), and the SDP accepting host
(AH). The SDP controller is located in the control plane
and acts as the SDP brain, which determines any host’s
grant and access rights; the SDP IH is the host that ini-
tiates the service request; the SDP AH is the host that
accepts the service request connection. After the IH is au-
thenticated at the controller, it can connect and access the
AH. Therefore, the SDP structure can effectively mitigate
many network attacks that traditional boundary-based
isolation protection methods cannot be solved, including
server scanning, DoS and man-in-the-middle attacks [14].

Various deployment models for SDP include client-
gateway, client-server, client-server-client, etc [1]. For
the problem to be solved, this paper chooses the client-
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Figure 2: SDN architecture

gateway model. In this model, the edge device acts as the
client IH, the gateway acts as the AH, and the services
and resources in the cloud are hidden behind the gateway
to allow only connections from the gateway, which can
make the cloud achieve ”network stealth” effect.

3.2 Software-Defined Network (SDN)

With the development of network virtualization, SDN
is proposed as an implementation of network virtualiza-
tion [25]. As shown in Figure 2, the hierarchical structure
of SDN consists of three planes, namely the application
plane, control plane and data plane. The main compo-
nents of these three planes are SDN application, SDN
controller, and SDN network device, respectively.

In the control plane, the SDN controller has logical
centralization and programmability. And it maintains the
overall information of the global network, which is con-
venient for operators and researchers to implement dif-
ferent policy decisions through upper-layer programming.
On the data plane, an SDN network device with a data
forwarding function stores a flow table in which differ-
ent forwarding rules are stored for different types of data
packets. After receiving a data packet, the SDN device
will search the entire flow table in descending order of pri-
ority and process the data packet according to the match-
ing flow table entry rules [25]. The application plane con-
tains various SDN applications, which run on the SDN
controller. Events from the lower layers will trigger their
different responses to the SDN controller, allowing oper-
ators to program and deploy new applications without
caring about the details of the lower layers. Therefore,
SDN can significantly simplify network control and en-
able flexible and efficient management of SDP-introduced
power IoT networks.
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3.3 Proposed Software-Defined Frame-
work

This section will introduce the flexible combination and
complementation of SDP and SDN, and the protection
and control capabilities they provide for the cloud-edge
environment of the power IoT. Figure 3 depicts the over-
all design of our proposed framework SD-PIoT, which ex-
tends the SDN architecture. For the cloud-side security of
the power IoT, we add an edge device plane and a cloud
center plane to the original SDN architecture.

3.3.1 Framework description

The framework contains five main components: SDP
client (IH), SDP controller (CTRL), SDP gateway (AH),
SDN controller and SDN switch.

1) SDP client (IH): The edge device in the network that
needs to access the cloud is used as the IH in the SDP,
and the SDP client software is installed on it. After
the edge device goes online, it can communicate with
other components.

2) SDP controller (CTRL): In this solution, the SDP
controller runs on the SDN controller as an SDN ap-
plication. It monitors the SDN controller’s status, re-
sponds to the events, and determines whether every
IH can access the AH. For clarity, the SDP controller
is denoted by CTRL after this.

3) SDP gateway (AH): The gateway, as an AH, obeys
the arrangement of the SDP controller, initially con-
figures the firewall rule as ”deny all”, provides access
connections to cloud services for authorized identi-
ties, and monitors and records the entire connection
process.

4) SDN controller: The SDN controller holds a global
view of the entire network, controls the underlying
network consisting of switches, and provides an ab-
straction of the underlying network resources to SDN
applications such as CTRL to wake them up and
make them responsive.

5) SDN switch: A SDN device at the network data
plane. The SDN switch forwards the data (in packet
units) of other components. A flow table is stored in
the switch, and each item of the flow table consists of
matching fields and actions. The switch decides the
removal and retention of incoming packets according
to the flow table and the instructions of the SDN
controller.

Application Plane: There are SDN applications (such as
Graphical User Interface, routing procedures) required
by enterprises on the application plane. Different SDN
applications implement corresponding network functions.
SDN applications can execute the assigned functions by
manipulating the SDN controller when an event from
the control layer or an external input drive is detected.
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Figure 3: SD-PIoT model

Users/developers can manage and control the network
without touching the underlying network by program-
ming different SDN applications. In addition to basic
SDN applications, power companies can design different
SDN applications according to their needs to realize net-
work programmability. It is worth mentioning that CTRL
can be a program [6], so this paper places CTRL as an
SDN application in the application layer. After receiving
the access request from the IH, the CTRL verifies whether
the device completes the SPA authorization. If it passes
the verification, it instructs the SDN controller to forward
the request to the AH. Otherwise, instructs the SDN con-
troller to discard the packet. The authentication of CTRL
is shown in Algorithm 1.

Control plane: The control plane has a logically cen-
tralized SDN controller that maintains a global view of
the entire network, implements various policy decisions,
and facilitates efficient and reliable communication ser-
vices. In addition to the SDN controller, the control plane
also includes northbound interfaces and southbound in-
terfaces, which are respectively open to the application
plane and the data plane. As the brain of SDN, the SDN
controller realizes centralized logic control, provides the
application plane with an abstract model of the under-
lying network, including states and events through the
northbound interface, and wakes up SDN applications
to perform corresponding functions. In addition to the
above, the control plane embodies the application plane’s
request to configure, manage, and control the data plane
according to its logic.
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Figure 4: Case of the scheme

Data plane: As shown in Figure 3, this plane consists
of SDN network devices (switches are used in this paper)
with data forwarding and processing functions. All com-
ponents in the framework are connected through switches.
All switches in the network work under the control of the
SDN controller, and the data layer communicates with
the control layer through the southbound interface of the
control layer. A forwarding table resides in each switch.
When the switch receives a packet, it will search for the
forwarding table in priority order. If it finds a flow entry
that matches the packet, it will execute the configured
action. If no match is found, the packet is discarded or
forwarded to the controller (the latter is used in this pa-
per).

Edge device plane: The network edge devices of the
Power IoT all reside in this layer, such as sensors, de-
tectors, smart meters, mobile devices, etc. Edge devices
in this layer are mostly heterogeneous, come from differ-
ent networks and use different communication technolo-
gies such as cellular, WiFi, and RFID. These devices are
configured with IH and have the function of applying for
cloud access. When edge devices want to access cloud
services, they need to send SPA packets to CTRL for au-
thentication. An unauthenticated IH will not be granted
access. Algorithm 1 is an edge device authentication.

Cloud center plane: Many services and resources need
to be protected in the cloud. These service resources are
hidden behind the gateway. For IHs without CTRL au-
thentication, the services in the cloud are inaccessible.
Therefore, the cloud has remained ”Network stealth” to
potential attackers.

3.3.2 Scheme Process

Figure 4 shows the specific use case of the scheme.

1) Initialization: A default flow f0 with priority 0 is set
on all switches. The task of flow f0 is to forward all
traffic from the edge to the SDN controller. Traffic
is forwarded between switches in two paths, optimal
and redundant, as determined by the SDN controller.

Algorithm 1 Edge Device Authentication

The network has been deployed;
The basic format of the flow entry is
(priority, source, action, duration);
Add default flow f0(0, all − edge −
devices, forwarded − to − SDN − controller, all −
time) to SDN switch;
AH is online and authorized by CTRL;
IH (device id is u0) goes online and sends an authen-
tication request Req to CTRL;

1: if Req is a valid SPA package then
2: CTRL verifies u0 certificate and key;
3: if certificate and key are verified then
4: CTRL determines the accessible cloud service list

l0 of u0;
5: CTRL instructs the SDN switch to add flow

f1(10, u0, forwarded− to−AH, k)
and the k value is adjusted by the power com-

pany according to the situation;
6: CTRL makes l0 as a message and sends it to the

IH, informing it of the list of
cloud services it can access;

7: CTRL sends l0 to AH, informing it to update
firewall rules and allow IH to

access services in the list;
8: AH updates firewall rules after receiving l0, and

allows IH to communicate with
services in l0 within time k;

9: else
10: CTRL commands the SDN controller to drop

Req;
11: CTRL instructs the SDN switch to add a flow

f2(11, u0, drop, k/2) to punish u0

for not being able to authenticate within k/2
time;

12: end if
13: else
14: CTRL commands the SDN controller to drop Req;

15: CTRL instructs the SDN switch to add a flow
f2(11, u0, drop, k/2) to punish u0 for
not being able to authenticate within k/2 time;

16: end if

The firewall configuration of the SDP gateway is ini-
tialized to ”deny all”.

2) Authentication: The newly online IH(A) sends an au-
thentication request to CTRL. Since the switch sets
the default forwarding flow f0, the request packet fi-
nally reaches the SDN controller (B). CTRL on B
detects the authentication request packet, checks A’s
credentials and verifies its identity and determines its
access level:

a. If the verification is passed, CTRL instructs B
to send a message to the SDP gateway AH (C),
and instructs C to add a new firewall rule h1 to
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allow communication between A and C. At the
same time, a new flow entry f1 with a priority
greater than 0 is added to the switch. Within
the specified time T, the service request packet
from A is forwarded to C by default. After T
time, the flow entry f1 and the new firewall rule
h1 are automatically deleted.

b. If verification fails, CTRL instructs the SDN
controller to discard the packet.

3) Request for service: Authorized A requests C to ac-
cess services in the cloud. The switch forwards the
request to C according to the priority without going
through B, and C checks whether the request is a
SPA packet:

a. If the data packet is correct, C allows A to access
some cloud services according to its own firewall
rule h1.

b. If the data packet is incorrect, C reports the rel-
evant information to B and deletes the firewall
rule h1 related to A. After the CTRL on B de-
tects the message, it immediately instructs the
switch to delete the related flow entry f1, and A
will need to re-authenticate the CTRL.

During the A and C connection process, C monitors
and records A’s behavior through the tracking mecha-
nism.

3.3.3 Network Management and Control

In the cloud-edge interaction process of the power IoT net-
work, the SDN controller is located in the control plane
to monitor the global network and regularly collect infor-
mation to update the network. The SDN controller can
discover the newly added edge terminal equipment and
switch network equipment for the first time. After dis-
covering a new edge device, CTRL issues a certificate and
user key for the device, and the SDN controller records the
device’s communication protocol. After discovering net-
work devices such as switches, the SDN controller updates
network topology, sets default flows, and maintains and
tracks network status information. When the traffic from
the new edge device enters the network, the controller
determines the transmission technology and routing path
according to the statistical information and adds a flow ta-
ble entry suitable for the device in the switch to facilitate
subsequent traffic forwarding. The control plane monitors
the network in real-time and updates it regularly, which
greatly improves the scalability of the network.

In order to prevent communication interruption,
packet loss, and ensure real-time communication between
the cloud and the edge, this solution takes advantage of
the SDN controller to monitor the network topology in
real-time, and forwards legitimate traffic through the op-
timal path and another redundant path to improve com-
munication reliability. At the same time, SD-PIoT opens

up the application plane’s programmability to power en-
terprises. Enterprises can create their new applications
according to their internal needs without caring about the
differences between the underlying devices. Applications
can modify the underlying forwarding rules through the
northbound interface to achieve rapid network configura-
tion and deployment, simplifying network management.
For example, in zero trust, security protection includes
several basic processes: user identity management, dy-
namic authorization control, and access control [24]. Sup-
pose the device fails to authenticate many times during
the service request. In that case, the enterprise can pro-
gram an application to evaluate the trust degree of such
identities and then authorize its access level according to
the trust degree. The upper-layer pluggable application of
the SDN controller can be programmed according to the
internal requirements of the enterprise and the records of
CTRL and AH in the authentication and service request
phases, which realizes the application’s scalability.

In addition, all edge traffic reaching the SDN controller
in the network will first be verified by CTRL to decide
whether to retain the traffic. If the verification fails, the
corresponding packet will be directly discarded. This ef-
fectively prevents intruders from damaging the SDN con-
troller and ensures the inner layer security of the SDN.

The proposed framework, SD-IoT, protects cloud-side
security and achieves the flexibility, scalability, and pro-
grammability of the network. It ensures reliable com-
munication between heterogeneous devices and the inner
layer security of SDN, and simplifies network manage-
ment.

4 Experiment and Analysis

We evaluate the proposed framework from security, com-
munication, reliability, and performance aspects. The
main goal of this framework is to improve cloud-based
IoT security and communication reliability without com-
promising network performance.

4.1 Testbed Environment

The testbed consists of SDP and SDN. The SDP part
uses Waverley Labs’ Open SDP project, and the SDN
part uses public OpenFlow components. The simulation
experiment uses six Linux Ubuntu16.04 virtual machines
representing two edge devices, an SDN controller running
the CTRL application, an SDP gateway, a cloud server,
and an SDN switch. Table 1 presents the details of the
components of the testbed.

First, the components of the SDN network are deployed
and run. The SDP gateway and the CTRL module run-
ning on the SDN controller begin to work, and finally,
the cloud server and edge devices are connected to the
network.
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Table 1: Testbed configuration

machine softwaree detailed description

Edge device A +IH
-Linux Ubuntu16.04
-Fwknop module (IH)offered
by Waverley Labs

Simulate the edge device in the wired
network environment and run the SDP client
IH model; directly connect to the SDN switch.

Edge device B +IH
-Linux Ubuntu16.04
-Fwknop module (IH) offered
by Waverley Labs

Simulate the edge device in the wired
network environment and run the SDP client
IH model; directly connect to the SDN switch.

SDN controller +CTRL

-Linux Ubuntu16.04
-SDP controller module offered
by Waverley Labs
-OpenDaylight Boron

Simulate an SDN controller running the CTRL
application to control the global view of the
network; all edge devices must authenticate with
CTRL before they can access cloud services.

SDP gateway +AH
-Linux Ubuntu16.04
-Fwknop module (AH) offered
by Waverley Labs

Simulate the SDP gateway, run the SDP client
AH model; configure the firewall rule to ”deny all”.

Cloud server -Linux Ubuntu16.04
Simulate a cloud service hidden behind a gateway,
and can perform basic SSH connection services.

SDN switch
-Linux Ubuntu16.04
-Open vSwitch 2.6

Simulate multiple SDN switches with data
forwarding and processing capabilities, and
establish topological relationships.

(a) With SDP

(b) Without SDP

Figure 5: Port scanning attack

4.2 Security Test

In the security test, we launched two types of attacks:
1) using the free nmap utility to launch a port scanning
attack on the cloud server; 2) using the hping3 tool to
launch a DoS attack on the cloud server, and using Wire-
shark to capture the traffic.

CTRL in SDP distributes the keys and certificates of
edge devices. To simplify the operation during simulation,
we randomly distribute keys and certificates for trusted
edge devices manually. So for the port scanning part of
the experiment, device A as an attacker, is not distributed
keys and certificates. Device A performs port scanning at-
tacks on cloud servers with and without SDP protection,
respectively, and the results are shown in Figure 5(a)(b).
The results show that when attacker A launches the at-

tack without SDP protection, nmap scan shows that the
TCP connection of the server is open. But under SDP
protection, the device will not be granted access because
the attacker is not CTRL authenticated. The result is as
expected, and all ports are filtered.

In addition, from the 20s of capture, an SYN flood
attack was launched against the network-protected service
for 40 seconds. Wireshark was used to trace the captured
traffic for the 80s, and the results are shown in Figure 6.
The red curve is recorded as the traffic of attack packets,
and the green curve represents the protected service traffic
capture. CTRL instructs the SDN controller and the SDN
switch to drop attack packets during the attack, and the
server is not affected.

The results confirm that our proposed solution has
”network stealth” properties, which can protect the server
from unknown users.

4.3 Communication Reliability Test

For the cloud-edge environment of the power Internet of
Things, ensuring real-time data transmission between the
cloud and edge devices is the key for enterprises to effi-
ciently provide services to users, such as remote control of
smart homes and drone inspections of power equipment.
Therefore, this paper uses the message delivery success
rate (MDR) indicator to evaluate the communication re-
liability,

MDR =

∑
R∑
S
. (1)

where R is the number of messages received, and S is the
number of messages sent. MDR is designed to calculate
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Figure 6: DoS attack capture using Wireshark.

the ratio of the number of messages sent to the received in
the network over some time. The closer the MDR value
is to 1, the more reliable the communication.

In the simulation, trusted device A and device B send
packets of 128 bits to the cloud server at regular intervals
using wired and wireless connections. The cloud server
responded immediately after receiving the data and re-
turned the packet. And this process lasted for 20 minutes.
To test the flexibility of this solution, we set the message
sending interval of device A to 0.025s and device B to
0.05s, resulting in a relatively congested link between de-
vice A and the cloud server. Comparing the scheme with
the SDN module and the scheme without the SDN module
in this paper, the message delivery success rate is shown
in Figure 7. It can be seen from Figure 7 that at the end
of the simulation (20 minutes), the MDR of the proposed
SD-PIoT framework achieves a success rate of 97.76%,
while the performance of the scheme removing the SDN
module drops by 8.5%. This is because the network con-
gestion will increase the probability of packet loss. In this
solution, the SDN controller is introduced to control the
network topology accurately. The packet is forwarded in
the optimal path and another redundant path under the
condition of trusted identity. This can effectively avoid
packet loss and improve MDR. The experimental results
strongly confirm the effectiveness of this scheme for the
network communication reliability of the massive terminal
network in the power IoT.

4.4 Performance Test

To more objectively evaluate the performance of SD-
PIoT, we compare the theoretical latency with the actual
latency in the experiments. Ideally, ignoring processing

Figure 7: Comparison of MDRs

and queuing delays, the total delay can be expressed as:

TD =
M

V
+

L

R
. (2)

where M is the link length, V is the signal propagation
speed, L is the packet length, R is the link bandwidth,
and TD is designed to calculate the sum of transmission
delay and propagation delay.

We monitored delays ten times using the Wireshark
tool, analyzed packet exchanges between components,
and averaged them to determine CTRL, switch, and gate-
way overhead. The statistical results are shown in Ta-
ble 2. The latency of this scheme is higher than that
of SDP-only and SDN-only. This is because edge de-
vices must pass CTRL authentication and wait for the
SDP gateway to update the firewall before accessing the
server. In addition, during this period, the SDN con-
troller will issue commands to instruct the SDN switch
to add new flow entries. The SDN switch will search for
matching flow entries when receiving packets from edge
devices, inevitably increasing the delay. But from the
results in the table, compared with the advantages of se-
curity, communication and network management brought
by this framework, these time overheads are completely
tolerable. In addition, the calculated theoretical value is
not much different from the actual measured value, which
verifies the correctness of our test.

4.5 Comparison of Security Features

To highlight our work’s contribution, we summarize our
project’s features in this section. We have compared our
scheme with other state-of-the-art schemes in terms of
these characteristics. The results are shown in Table 3.
This scheme improves the cloud-side security and com-
munication reliability of the power IoT, ensures SDN se-
curity, and simplifies network management, which other
schemes cannot achieve.
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Table 2: Latency Analysis

Delay
Theoretical

(secs)
Actual Measured

(Sec)
End-to-End latency with SD-IoT 0.56184562 0.58145238
End-to-End latency without SDP 0.44853264 0.51365214
End-to-End latency without SDN 0.50124563 0.55856241

CTRL overhead - 0.04512114
Switch overhead - 0.02132412
Gateway overhead - 0.04823564

Table 3: Features comparison

Features SD-PIoT SDP-SDN [17] Solution [20] MEC-SDP [19]
Service stealth Y N Y Y

communication reliability Y Y Y N

Network
Scalability Y Y N N

Programmability Y Y N N
SDN inner layer security Y N - -

5 Conclusions

The in-depth integration of power IoT and cloud comput-
ing has led to various security challenges in the cloud-side
environment. This paper proposes the SD-PIoT compo-
sition framework and illustrates its effectiveness in ad-
dressing these challenges. First, we discussed the secu-
rity issues of the power IoT cloud-side environment and
the difficulty of network management. We then describe
how SDN and SDP can be cleverly combined to allevi-
ate these challenges. Furthermore, we implement and
test the proposed solution, demonstrating the superiority
of the framework in security and network management.
Tests and evaluations prove that the SD-PIoT framework
can effectively resist DoS attacks and achieve ”network
stealth” of services. And the framework leverages the
centralized programmability and scalability provided by
SDN technology to control the network, allowing power
IoT devices from heterogeneous networks to communi-
cate securely and reliably while maintaining performance.
In comparison with other schemes, the contribution of
this paper can be reflected intuitively. Next, we will ex-
plore the implementation of this scheme in a more realistic
power IoT scenario.
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