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Abstract

Role-based access control (RBAC) is a popular secu-
rity mechanism used by many organizations because it
provides various constraint policies, such as cardinal-
ity constraints and separation-of-duty constraints. Role-
engineering technology is an effective method for con-
structing RBAC systems. However, the mining scales
are large, and the management burdens of systems
are weighty. Furthermore, conventional role-engineering
methods do not consider cardinality constraints. To ad-
dress these issues, this paper proposes a novel method,
called role-engineering optimization, with user-oriented
cardinality constraints on roles (REO UCCR). First, to
reduce the mining scales and alleviate the management
burdens of systems, we convert basic role mining into a
clustering problem using the Hamming distance technique
and four tuples of clusters. Then, we implement role min-
ing while constructing an unconstrained role engineering
system. Second, to verify whether the given cardinal-
ity constraints can be satisfied in the constructed system,
we present a role optimization algorithm to reconstruct a
constrained RBAC system. The experiments using syn-
thetic and real datasets demonstrate the effectiveness of
the proposed method and show encouraging results.

Keywords: Role Engineering; Role Mining; Role Opti-
mization; User-Oriented Cardinality Constraints

1 Introduction

With the rapid development and comprehensive applica-
tion of network information technology, a large amount of
information storage and exchanges are required in large-
scale and complex information-management systems [11,
22]. An increasing number of enterprises and organiza-
tions have adopted role-based access control (RBAC) as
their main access-control mechanism over the last three
decades, as it makes security administration more flexible

and manageable [2, 7, 16, 17]. With the successful imple-
mentation of RBAC systems, devising an accurate and ef-
fective set of roles and constructing a good RBAC system,
which can satisfy actual application requirements, have
become critical tasks. The bottom-up role-engineering
technology [1,6,14] aims to migrate from non-RBAC sys-
tems to RBAC systems. It starts from the original user-
permission assignments and aggregates them into roles
by applying data mining techniques, which is also known
as role mining and has gained considerable attention in
recent years.

In fact, role mining is the task of clustering users with
identical or similar permissions and constructing different
roles with these permissions [19]. Roles containing several
identical permissions are frequently assigned to users. Us-
able roles can frequently facilitate the management and
maintenance of the system and decompose the set of users
into clusters of users with different attribute properties.
To enhance the interpretability of role mining, it is indeed
necessary to cluster users with the same attribute proper-
ties. However, due to the diversity of the attribute prop-
erties of entities and the variability of accesses, the mining
scales are large, and the management burdens of systems
are very heavy using conventional role-mining methods.

A key characteristic of RBAC is that it allows for the
specification and enforcement of various types of secu-
rity policies [15,18], such as separation-of-duty constraints
and cardinality constraints, which reflect the security re-
quirements of organizations and can ensure the security
of RBAC systems. There are four different types of car-
dinality constraints among users, roles, and permissions,
and they limit the maximum number of roles related to
users or to permissions, the maximum number of permis-
sions a role can have, or the maximum number of users
to which a role can be assigned [12]. For example, the
general-manager role in a company must be assigned to
only one person, and ordinary users should not have too
many roles; otherwise, there is the possibility that users
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will abuse their privileges. In terms of the approaches to
the construction of role engineering, however, most of the
existing methods cannot determine whether the given car-
dinality constraints are satisfied in a constructed RBAC
system.

To address the abovementioned issues, this paper pro-
poses a novel method, called role-engineering optimiza-
tion, with user-oriented cardinality constraints on roles
(REO UCCR). In summary, the main contributions of
this work are as follows:

1) To reduce the mining scales and alleviate the man-
agement burdens of systems, we adopt the Hamming
distance technique to rearrange an original access
matrix, generate user clusters, and then implement
role mining, while constructing an unconstrained role
engineering system.

2) To verify whether the given cardinality constraints
can be satisfied in the constructed system, we first
present the definition of the role-engineering opti-
mization problem and then propose a role optimiza-
tion algorithm to reconstruct a constrained RBAC
system.

The rest of the paper is organized as follows. In Section
2, we discuss the related work and present some necessary
preliminaries. In Section 3, we propose a novel research
method and present several algorithms and running ex-
amples. We show the experimental evaluations in Section
4. Section 5 concludes the paper and discusses future
work.

2 Related Work and Preliminaries

2.1 Methods of Role Engineering

To discover interesting roles in existing permission assign-
ment relationships, two algorithms, called the Complete
Miner and Fast Miner, were proposed [19]. Both the two
algorithms use subset enumeration and allow for over-
lapping roles. While the first algorithm enumerates all
potential roles, its computational complexity is exponen-
tial. The second algorithm improves the mining process,
and its computational complexity is remarkably reduced.
Vaidya et al. [20] converted role mining into a matrix de-
composition problem and presented a definition of a ba-
sic role mining problem (basic RMP). The basic RMP
has been proven to be NP-complete, and several existing
studies have already been conducted to find efficient so-
lutions. To avoid an abuse of privileges, Blundo et al. [3]
proposed a heuristic capable of returning a complete set
of roles, which limited the number of permissions assigned
to a role. John et al. proposed two alternative approaches
for restricting the number of roles assigned to a user: The
role priority-based approach (RPA) and the coverage of
permissions-based approach (CPA). The RPA prioritizes
roles based on the number of permissions and assigns op-
timal roles to users, according to the priority order. The

CPA chooses roles by iteratively picking the role with the
largest number of permissions that are yet to be uncov-
ered and then ensures that no user is assigned more than
a given number of roles [9]. To simultaneously limit the
maximum number of roles assigned to a user and a related
permission, Harika et al. proposed two role-optimization
methods: Post processing and concurrent processing. In
the first method, roles are initially mined without tak-
ing the constraints into account. The user-role and role-
permission assignments are then checked for constraint
violation in the optimization process and appropriately
re-assigned, if necessary [8]. The concurrent processing
method implements optimization with double constraints
during the process of role mining. Wang et al. [21] pro-
posed two kinds of role mining algorithms in order to sat-
isfy the permission cardinality constraints. The first al-
gorithm discovered roles by decomposing a sorted access
control matrix, and the second intersected the permissions
of adjacent users in the access control matrix to generate
candidate roles. Blundo et al. [4] focused on cardinality
constraints, defined the constrained role mining problem
for each constraint type, and presented efficient heuris-
tics for these problems. In addition, to satisfy separation-
of-duty constraints and ensure authorization security, we
proposed a method, called role-mining optimization, with
separation-of-duty constraints and security detection for
authorizations [13].

Two main limitations are apparent in the existing stud-
ies. The first limitation is that the role-mining scales are
very large, and the management burdens of systems are
very heavy. The second limitation is that most conven-
tional role-mining methods do not consider whether or
not the number of roles related to a user is restricted.
If the number of roles assigned to a user exceeds a par-
ticular value, then there is the possibility of an abuse of
privileges, and the system is not secure. Hence, we pro-
pose a novel role-engineering optimization method in or-
der to alleviate the management burdens, while ensuring
the system security. We also evaluate the performance of
the proposed method on the synthetic and real datasets.

2.2 Preliminaries

2.2.1 Basic Components of Role Engineering

According to the NIST standard of RBAC, conventional
role engineering for RBAC consists of the following basic
components:

1) U , P , and R are the basic elements of RBAC, which
represent the sets of users, permissions, and roles,
respectively;

2) UPA ⫅ U × P represents a many-to-many mapping
relationship of user-permission assignments;

3) URA ⫅ U × R represents a many-to-many mapping
relationship of user-role assignments;

4) RPA ⫅ R × P represents a many-to-many mapping
relationship of role-permission assignments;
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5) user roles(u) = {r|∃r ∈ R : ((u, r) ∈ URA)}, which
represents a set of roles assigned to user u;

6) user perms(u) = {p|∃p ∈ P,∃r ∈ R : ((u, r) ∈
URA) ∧ ((r, p) ∈ RPA)}, which represents a set of
permissions assigned to user u.

2.2.2 The Basic RMP Problem and Fast Miner
Method

The basic RMP [20] can be formally represented as fol-
lows: {

min |R|
URA⊗RPA = UPA.

(1)

For convenience, the UPA, URA, and RPA are used
to represent their respective assignment relationships, as
well as the corresponding matrices. The Fast Miner
method [19] mainly consists of the following steps:

1) According to the hash mapping rule, a given access
control matrix is converted into the user-permission
assignment relationship;

2) To reduce the size of the original data set, different
users who have the same permissions in the permis-
sion assignments are grouped together, and an initial
set of roles is constructed;

3) All the potentially interesting roles are identified by
implementing intersections between any pair of the
initial roles. New roles are generated, and the num-
ber of users associated with any new role is counted.

2.2.3 Hamming Distance

Since the access control matrix, UPA, is a Boolean ma-
trix, each row (or each column) can be regarded as a bi-
nary vector of the same length. The well-known technique
of Hamming distance [5] is widely used to measure the
distance between two different equal-length vectors. It
states that given two equal-length Boolean vectors, x and
y, the distance between x and y, denoted as Dis(x, y), is
the number of positions, where the vectors take different
values for the same column position.

For instance, given two row vectors, x = ”100110” and
y = ”110011”, Dis(x, y) = 3. Clearly, the distance be-
tween any two rows in UPA increases as the number of
column positions taking different values increases.

2.2.4 User-Oriented Cardinality Constraints on
Roles (UCCR)

The UCCR [12] states that, given set U of users, set R
of roles, and threshold MRCuser, the number of roles
assigned to any user should not exceed MRCuser. This
can be formalized as follows:

∀u ∈ U : |user roles(u) ∩R| ≤ MRCuser (2)

In addition, there are another three cardinality con-
straints in RBAC, and they are not discussed in this work.

3 Proposed Method

In this section, we propose a novel research method,
named REO UCCR, which includes three aspects: 1)
The generation of user clusters, 2) construction of un-
constrained role engineering, and 3) role-engineering op-
timization with UCCR. Specifically, we adopt the Ham-
ming distance technique to rearrange an original access
matrix and generate user clusters in the preprocessing
stage. Subsequently, we construct an unconstrained role
engineering system in the role mining stage. Last, to ver-
ify whether the given cardinality constraints can be sat-
isfied in the constructed system, we present a role opti-
mization algorithm to reconstruct a constrained RBAC
system. An overall view of the proposed framework is
shown in Figure 1.

Figure 1: Overview of the proposed role-engineering op-
timization framework

3.1 Generation of User Clusters

To intuitively represent the matrix, UPA, we use the
Hamming distance to rearrange it, as defined below.

Definition 1. (Matrix rearrangement problem with Ham-
ming distance) Given an original matrix UPA, and a
Hamming distance list D between any two rows of UPA,
find a rearranged matrix UPA′, such that the sum of dis-
tances between the adjacent rows of UPA′ is minimal,
which can be formalized as follows:

min(
∑
i

Dis(UPA′[i], UPA′[i+ 1])),

∀Dis(UPA′[i], UPA′[i+ 1]) ∈ D. (3)

According to Definition 1, we present the process of
matrix rearrangement in Algorithm 1.
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It can be seen, from Algorithm 1, that different users
with the same permissions are grouped together, which
can be regarded as a user group. To reduce the mining
scale, we represent the groups as different user clusters
and adopt four tuples to store them, as well as other
properties. This is easy to implement, and we present
its definition as follows.

Definition 2. (Four tuples of user clusters) The users
with the same permissions, as well as their proper-
ties, are group, which is denoted as a four-tuple form
<c, user perms(c), count users(c), count unperms(c)>,
where c is a user cluster, C is a set of different clus-
ters, user perms(c) is the permission set associated with
c, count users(c) is the number of users included in c, and
count unperms(c) is the number of permissions uncovered
recently in c.

It is apparent that count unperms(c) is equal to the
value of |user perms(c)|, before role mining.

3.2 Construction of Unconstrained Role
Engineering

To alleviate the management burdens of RBAC systems,
it is necessary to make the cluster–permission assignments
relationship as sparse as possible. Based on Definition 2,
we choose the user cluster that involves the maximum
number of users and regard it and its whole permission
set as the candidate cluster and role, respectively. The
construction process is presented in Algorithm 2.

In Algorithm 2, we first create and initialize several
variables in Lines 1-4, including C ′, Cand Roles, CRA,
maxcount users, and cand cluster. For each cluster in C ′,
we calculate the number of users derived from the cluster
hierarchies and then identify the candidate cluster and
its maximum number of users in Lines 5-15. Lines 16-18
update the Cand Roles, CRA, and remove the candidate
cluster. Next, for each cluster, we remove the permissions
assigned to cand cluster, which are covered by other clus-
ters, and remove the clusters, when all of the permissions
of those clusters have been covered by C ′ (Lines 19-28).

3.3 Role-Engineering Optimization with
UCCR

To further satisfy the constraint requirements for user
clusters in RBAC systems, while enhancing the interpre-
tation of the mining results, the UCCR should be taken
into consideration in the role engineering. Specifically,
the unconstrained mining results are checked to identify
whether they violate the given cardinality constraints on
roles. If there are no constraint violations, they are re-
garded as efficient solutions. First, we define the role-
engineering optimization problem as follows.

Definition 3. (Role-engineering optimization problem)
Given a cluster-permission assignment matrix CPA, and

a particular constraint threshold MRCuser, find a set Op-
tim Roles of roles and the corresponding decomposed ma-
trices CRA and RPA, such that the CRA and RPA are
consistent with the CPA, the number of roles assigned to
any user is less than or equal to MRCuser, and the num-
ber of the optimal roles is minimized. This process can be
formalized as follows:
min |Optim Roles|
CRA⊗RPA = CPA

|user roles(c) ∩Optim Roles| ≤ MRCuser.∀c ∈ C.

(4)

According to the mining results from Algorithm 2, we
present the optimization process in Algorithm 3.

In Algorithm 3, the unconstrained mining results,
Cand Roles, CRA and C ′, are considered as inputs, and
we output the optimized results, including Optim Roles
and the updated CRA. We make some initializations in
the first lines. Next, Lines 5 and 6 indicate that, if the
number of roles in ci equals MRCuser–1, and there exist
other permissions that are uncovered in ci, then a new
role is generated. If another cluster, cj , includes role
temp, while satisfying the cardinality constraint, then Op-
tim Roles and CRA are updated in Lines 7-9; otherwise,
only the role, {user roles(ci) ∪ temp}, is assigned to ci
in Lines 10-12. In addition, we call Algorithm 2 again in
order to revise C ′ and the relationship of its assignments
in Line 15.
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3.4 Running Examples

In this subsection, we present an illustrative example to
demonstrate the effectiveness of the REO UCCR in the
following.

Example 1. Consider the matrix UPA of an original
assignment, which is comprised of 15 users and 4 permis-
sions, as shown in Table 1, and MRCuser = 2.

In the preprocessing stage, we first identify the dis-
tance matrix, Dr, for the original matrix, as shown in
Table 2, where both the rows and columns correspond to
the row vectors, and the values of the cells are the Ham-
ming distances between any two rows. It is seen that
Dr[2][4] == Dr[2][5] == Dr[2][13] == Dr[2][14] == 0,
Dr[3][8] == Dr[3][9] == 0, Dr[6][7] == Dr[6][15] == 0,
andDr[10][11] == 0. According to Algorithm 1, the same
(or similar) row vectors are clustered by choosing the min-
imal distances and swapping different rows. Similarly, we
can also cluster the same (or similar) column vectors in
order to further rearrange the matrix, and the result is
shown in Table 3. Subsequently, in the generation of
user clusters, we can identify the cluster-permission as-
signments, CPA, and cluster tuples, as shown in Tables 4
and 5, respectively. It is apparent that the compressed
CPA is easier to use than the original assignments UPA,
which can reduce the mining scale. Indeed, it is conve-
nient and feasible to analyze and handle the compressed
cluster set.

Then, we repeatedly call Algorithm 2 and Algorithm 3
in the role mining and optimization stages, and Table 6
presents the optimization process, which does not stop
until C ′ is empty. It is seen from the table that, after
the second step in the role mining, only user cluster c1 re-
mains in C ′, while the permissions, p1 and p2, which are
uncovered, are included. Obviously, the number of roles
in c1 is less than 2. However, if we regard {p1, p2} as a
candidate role, then it can be only assigned to c1 and is
not associated with any other cluster, which increases the

engineering cost. Thus, we remove the role {p4} that has
been assigned to c1 and assign a new role {p1, p2, p4} to c1
in order to reduce the management burden. In addition,
we load and implement our method in the regular mining
tool, RMiner [10], as shown in Figure 2, and compare its
performance with that of the existing mining methods, as
shown in Table 7. It is seen from the table that, how-
ever, the user clusters, c1 and c2, using the enumeration
method [19], violate the given constraint.

Figure 2: The mining tool, RMiner

Table 1: Original matrix UPA

p1 p2 p3 p4

u1 0 0 0 0
u2 1 1 0 1
u3 0 1 1 0
u4 1 1 0 1
u5 1 1 0 1
u6 0 1 1 1
u7 0 1 1 1
u8 0 1 1 0
u9 0 1 1 0
u10 0 0 0 1
u11 0 0 0 1
u12 0 0 0 0
u13 1 1 0 1
u14 1 1 0 1
u15 0 1 1 1

4 Experiments and Analyses

In this section, we perform two groups of experiments
with REO UCCR. The first group of experiments is used
to evaluate its performance with respect to different val-
ues of constraints. The second group is to compare its
performance with the existing methods. We consider four
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Table 2: Distance matrix Dr

UPA’ UPA’ UPA’ UPA’ UPA’ UPA’ UPA’ UPA’ UPA’ UPA’ UPA’ UPA’ UPA’
[2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [13] [14] [15]

UPA’[2] 0 3 0 0 2 2 3 3 2 2 0 0 2
UPA’[3] 3 0 3 3 1 1 0 0 3 3 3 3 1
UPA’[4] 0 3 0 0 2 2 3 3 2 2 0 0 2
UPA’[5] 0 3 0 0 2 2 3 3 2 2 0 0 2
UPA’[6] 2 1 2 2 0 0 1 1 2 2 2 2 0
UPA’[7] 2 1 2 2 0 0 1 1 2 2 2 2 0
UPA’[8] 3 0 3 3 1 1 0 0 3 3 3 3 1
UPA’[9] 3 0 3 3 1 1 0 0 3 3 3 3 1
UPA’[10] 2 3 2 2 1 2 3 3 0 0 2 2 2
UPA’[11] 2 3 2 2 2 2 3 3 0 0 2 2 2
UPA’[13] 0 3 0 0 2 2 3 3 2 2 0 0 2
UPA’[14] 0 3 0 0 2 2 3 3 2 2 0 0 2
UPA’[15] 2 1 2 2 0 0 1 1 2 2 2 2 0

Table 3: Rearranged matrix UPA′

p1 p2 p4 p3

u2 1 1 1 0
u4 1 1 1 0
u5 1 1 1 0
u13 1 1 1 0
u14 1 1 1 0
u6 0 1 1 1
u7 0 1 1 1
u15 0 1 1 1
u3 0 1 0 1
u8 0 1 0 1
u9 0 1 0 1
u10 0 0 1 0
u11 0 0 1 0

real datasets from the work in [12] and adopt the mining
tool, RMiner, to evaluate the performance of the uncon-
strained role mining. The original datasets also include
the density of each dataset, the number of the candidate
role sets, Cand Roles, and the execution time, as shown in
Table 8. All experiments are implemented on a standard
desktop PC, with an Intel i5–7400 CPU, 4 GB RAM, and
160 GB hard disks, running a 64-bit Windows 7 operating
system. All simulations are compiled and executed under
the Java environment.

Table 4: CPA

p1 p2 p4 p3

c1 1 1 1 0
c2 0 1 1 1
c3 0 1 0 1
c4 0 0 1 0

4.1 Performance Evaluations of the
REO UCCR

To evaluate the effectiveness of our method in the role
optimization process, we consider the number of the opti-
mized roles, Optim Roles, and the size of the assignments,
URA, as measures.

Taking the dataset, Firewall 1, as an example for im-
plementing the experiments, the value of the constraint,
MRCuser, varies from 2 to 8, with a step of 2. We im-
plement the experiments 5 times and take their average
values. The results are shown in Figures 3 and 4. In
Figure 3, the lateral axis represents MRCuser, and the
vertical axis represents the number of Optim Roles. In
Figure 4, the lateral axis represents MRCuser, and the
vertical axis represents the size of the URA.

Figure 3 shows that the number of roles tends to de-
crease slightly as the value of MRCuser increases. When
the number of roles is considered as a unique measure,
the value of MRCuser is greater, and the redundancies of
the mining results are fewer. Figure 4 shows that, how-
ever, the size of the URA tends to increase remarkably
as MRCuser increases, which is contrary to the varia-
tion tendency in Figure 3. This is because the greater
the value of MRCuser, the weaker the constraint, and
the greater the number of roles assigned to users. The
value of |URA| is up to 1516, particularly when MRCuser

equals 8, which increases the burdens of the system man-
agement. On the contrary, the smaller the MRCuser, the
stronger the constraint will be. Furthermore, the results
of the same experiments using the datasets, Firewall 2,
Domino, and Healthcare are shown in Figures 5 to 10.
It is observed from the tables that, for Firewall 2, the
number of roles decreases from 11 to 10 with the increas-
ing value of MRCuser, while the value of |URA| is up to
877 when MRCuser equals 8. For Domino, the number



International Journal of Network Security, Vol.23, No.5, PP.845-855, Sept. 2021 (DOI: 10.6633/IJNS.202109 23(5).11) 851

Table 5: Four tuples of clusters

User Cluster Original Permissions Original User Number Uncovered Permission Number
(c) (user permissions (c)) (count users (c)) (count unperms (c))

c1 = {u2, u4, u5, u13, u14} {p1, p2, p4} 5 3
c2 = {u6, u7, u15} {p2, p3, p4} 3 3
c3 = {u3, u8, u9} {p2, p3} 3 2
c4 = {u10, u11} {p4} 2 1

Table 6: The optimization process

Step Optim Roles CRA Updated C ′ count unperms(c)

1 {{p4}} {(c4, {p4}), (c1, {p4}), (c2, {p4})} {c1, c2, c3} {p1, p2, p3}
2 {{p4}, {p2, p3}} {(c4, {p4}), (c1, {p4}), (c2, {p4}), {c1} {p1, p2}

(c2, {p2, p3}), (c3, {p2, p3})}
3 {{p4}, {p2, p3}, {(c4, {p4}), (c2, {p4}), (c2, {p2, p3}), ϕ ϕ

(finish) {p1, p2, p4}} (c3, {p2, p3}), (c1, {p1, p2, p4})}

Table 7: Comparison of mining results

User Cluster Enumeration Method [19] Blundo [3] REO UCCR

c1 {p1, p2, p4}, {p2, p4}, {p2}, {p4} {p4}, {p1, p2} {p1, p2, p4}
c2 {p2, p3, p4}, {p2, p3}, {p2, p4}, {p2}, {p4} {p4}, {p2, p3} {p4}, {p2, p3}
c3 {p2, p3}, {p2} {p2, p3} {p2, p3}
c4 {p4} {p4} {p4}

of roles decreases from 23 to 22 as the value of MRCuser

increases, while the value of |URA| is up to 169. For
Healthcare, the number of roles decreases from 18 to 17
as the value of MRCuser increases, while the value of
|URA| is up to 143 when MRCuser equals 8.

According to the above analyses, we present the opti-
mized results for different datasets when MRCuser equals
2, as shown in Table 9. It can be seen that the value
of |URA| is less than that of the enumeration method.
Therefore, the optimized results using our method not
only satisfy the security requirements, but also alleviate
the burdens of the system management.

Figure 3: Results of the optimized roles using Firewall 1

Figure 4: Results of the user-role assignments using Fire-
wall 1

Figure 5: Results of the optimized roles using Firewall 2
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Table 8: Original datasets

Dataset |U| |P| |UPA| Density |Cand Roles| Execution Time(s)

Domino 79 231 730 4% 20 0.01
Healthcare 46 46 1,486 70% 15 0.01
Firewall 1 365 709 31,951 12.3% 69 0.11
Firewall 2 325 590 36,428 19% 10 0.15

Table 9: Comparison of the mining results

Enumeration Method [19] REO UCCR
Dataset |R| |URA| |Optim Roles| |URA|
Domino 20 110 23 79

Healthcare 15 106 18 46
Firewall 1 69 874 90 36
5 Firewall 2 10 434 11 325

Figure 6: Results of the user-role assignments using Fire-
wall 2

Figure 7: Results of the optimized roles using Domino

Figure 8: Results of the user-role assignments using
Domino

4.2 Performance Comparisons with the
Existing Methods

To evaluate the efficiency of the REO UCCR, we imple-
ment experiments with the datasets, Domino and Health-
care, as shown in Table 8, and compare its performance
with the results of the representative methods, RPA and
CPA [9], which are shown in Figures 11 and 12, respec-
tively, where the lateral axis represents MRCuser, and
the vertical axis represents the number of the optimized
roles.

It can be observed, from Figure 11, that the num-
ber of roles decreases as MRCuser increases for the
REO UCCR, which tends to be stable as MRCuser in-
creases to a certain value. Specifically, the number of
roles does not obviously vary and remains close to 20 when
the value of MRCuser exceeds 8. A further observation
is that the number of roles first varies slightly and then
increases significantly as MRCuser decreases. This is be-
cause the greater the value of MRCuser, the weaker the
constraint, and the more roles assigned to any user. In
other words, with a greater value of MRCuser, regular
roles are more applicable and can be utilized more fre-
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quently. Thus, fewer irregular roles need to be created,
and the number of roles does not vary considerably. For
the RPA and CPA, however, the number of roles tends
to increase as MRCuser increases from 1 to 4. This is
because the Domino dataset contains exclusive permis-
sions and produces exclusive roles in the presence of con-
straints. As shown in the figure, the maximum number
of roles is close to 30 when MRCuser equals 4, while the
minimum number of roles is 23 when MRCuser equals 1.
Therefore, our method outperforms the RPA and CPA
for the dataset, Domino. Similarly, it can be observed,
from Figure 12, that the number of roles also decreases
as MRCuser increases for the REO UCCR, which tends
to be stable and remains close to 15 when MRCuser in-
creases to a certain value. However, the variations of the
results of both the RPA and CPA are simple. The RPA
generates 15 roles that remain unchanged when MRCuser

exceeds 1, while the number of roles is 18 when MRCuser

equals 1; and the CPA generates 18 roles that remain un-
changed as MRCuser varies. Therefore, our method only
outperforms the CPA for the dataset, Healthcare.

4.3 Advantages and Shortcomings of the
REO UCCR

From the above analyses, we find the REO UCCR has the
following main advantages:

1) In the initial role-engineering construction, it can re-
duce the mining scales and alleviate the burdens of
system management by using the Hamming distance
technique and cluster tuples;

2) In the role-engineering optimization, it can restrict
the maximum number of roles assigned to any user
and ensure system security by reconstructing a con-
strained RBAC system, based on the previous mining
results.

Compared with the existing studies, the security char-
acteristics of the proposed method are shown in Table 10,
where a tick V indicates that the characteristic is avail-
able. It can be seen from table that our proposed method
still has shortcomings: It does not satisfy the other three
cardinality constraints or the separation of duty con-
straint.

5 Conclusions

A novel role-engineering method, called REO UCCR, was
proposed in this paper. We first converted the basic role
mining problem into a clustering problem based on the
Hamming distance technique and four tuples of clusters
and implemented role mining, while constructing an un-
constrained role engineering system. Then, we imple-
mented the role optimization algorithm to reconstruct a
constrained RBAC system in order to verify whether the
given cardinality constraints can be satisfied in the con-
structed system. The experiments demonstrated that the

Figure 9: Results of the optimized roles using Healthcare

Figure 10: Results of the user-role assignments using
Healthcare

Figure 11: Performance comparison using Domino

Figure 12: Performance comparison using Healthcare
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Table 10: Comparison of security characteristics

Blundo et al. John et al. Harika et al. Wang et al. Blundo et al. Sun et al. Proposed
Characteristic [3] [9] [8] [21] [4] [13] Method

UCCR V V V V
Other cardinality constraints V V V V
Separation of duty constraint V
Reducing the mining scales V V

proposed method not only alleviates management bur-
dens, but also ensures system security. However, a few
interesting issues remain to be solved. To further en-
hance the interpretability of mining results, one issue for
future work is how to implement the other cardinality
constraints for role-engineering optimization.
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