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Abstract

Nowadays, machine learning is widely used in various ap-
plications. However, machine learning models are vul-
nerable to various membership inference attacks (MIAs)
that leak information on the individual records trained
by these models. Although many studies focus on find-
ing new attack methods or improving attack performance,
how to characterize MIAs is not well studied. This pa-
per focuses on MIAs and the defense mechanisms against
them by analyzing a framework that allows the general
decomposition of existing MIAs against machine learn-
ing systems. We investigate MIAs by multiple key ele-
ments related to the victim model, including the adver-
sary’s observation, the prior knowledge of attacks, the
classification of the target model, and the learning frame
of the target model. Then, we classify the adversary’s
prior knowledge into seven sub-classes to further analyze
the existing attacks. After that, we survey defense mecha-
nisms employed by existing models. Our work contributes
to understanding: 1) What is the working mechanism of
MIAs; 2) Which components should be considered during
the design of an MIA.

Keywords: Analysis Framework; Defense; Membership
Inference Attack; Machine Learning

1 Introduction

In recent years, machine learning has been widely used
in privacy-sensitive applications, e.g., image recogni-
tion [16,25,33,59], speech recognition [21], healthcare data
management [6, 14].

In such applications, privacy threats should be con-
sidered when devising machine learning techniques, es-
pecially that the training data should be protected from
leakage because the training data contains sensitive infor-
mation such as patients’ healthcare information, personal

preference, personal photos. Recently, academic work
has revealed a variety of privacy threats against machine
learning.

Privacy issues [8,29–31,64,65] of machine learning tech-
niques include model inversion [15, 24, 49, 54], model ex-
traction [47,60], and membership inference [7,22,32,38,45,
46,52,53,57,62]. A model inversion attack tries to recon-
struct the model’s input from output information [15]. e.g.
Fredrikson et al. [15] introduce a model inversion attack
that infers sensitive features used as inputs to decision
tree models. In a model extraction attack, an adver-
sary obtains black-box access to one target model and
attempts to learn a model that closely approximates to,
or even matches the target model [60]. The malicious
user can leverage a model extraction attack to avoid query
charge from the machine learning service company. The
membership inference attacker aims to infer whether a
specific data record is in the training data set of the tar-
get model or not [57]. Such attack can leak the privacy
of the training dataset. In this paper, we focus on the
overvoew of membership inference attack (MIA) against
machine learning.

MIA has been extensively studied in other research
fields, such as genomics privacy [28,54] and mobility pri-
vacy [49]. Shokri et al.’s [57] was the first work to ap-
ply MIA against machine learning. Since then, many
MIAs were proposed [7,22,53]. ML-Leaks [53] proposed a
generic attack by relaxing some assumptions to show that
such attacks are very broadly applicable at LOGAN [22]
and GAN-Leaks [7] propose MIAs towards the generative
machine learning model.

Although many works aimed at analyzing privacy
threats and defense in machine learning systems, there
lacks studies about systematical analysis of MIA and
comprehensive comparisons among various attacking ap-
proaches. Such an empirical study can help researchers
to understand how these attacks happen, what constraint
conditions these attacks face, and what capabilities the
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attackers possess. With these motivations, we provide
a general survey of MIA against machine learning. Our
work contributes to understanding why MIA chooses the
existing designs, what are the causal factors of MIA, and
how is the researching progress of defensive methods.

In this work,firstly, we construct a comprehensive
framework to analyze existing MIAs against machine
learning systems, which concludes four aspects: The at-
tack observations, the prior knowledge, the target model
type, and the target frame. Then we conduct a deep anal-
ysis of the prior knowledge of existing MIA and classify
them into three categories and seven sub-classes. In addi-
tion, we summarize the factors that cause MIA, and clas-
sify existing defense mechanisms preventing MIA against
machine learning into three categories. We also discuss
their applicability to different MIA approaches and their
effectiveness at mitigating these attacks. Finally, we envi-
sion three notable trends in the research on MIA methods
and mitigation, which are worthy of in-depth studies in
future.

The remainder of this paper is organized as follows.
We discuss the attack model and state-of-the-art attack of
membership inference attack against machine learning in
Section 2. Then we propose the analytical aspects of this
attack in Section 3.In Section 4, we summarize the factors
influencing the attack and retrospect the exist defending
mechanisms. This paper concludes in Section 6.

2 Terms and Prior Works Related
to MIA

(data record, class label) Target Model

Attack Model

Prediction(data)

label

prediction

Data  Training set?

Figure 1: The working principle of MIA against machine
learning

In this section, firstly, we introduce some terms that
related to membership inference attack; Secondly, we give
a brief review of prior works related to MIA by year-wise
road map. The purpose of this section is to make us have
a basic knowledge about MIA.

2.1 Terms

Membership inference attack (MIA). It shows in
Figure 1 that Membership inference attacks aim to
determine whether a given data point was present in
the training data used to build a model [66]. Mem-
bership inference violates the privacy of both the in-

dividual participants involved in the model training
and the owner of the training dataset [62]. This type
of attack has been extensively studied in the adja-
cent area of genomics, and recently this attack is
introduced in the context of machine learning [57].
In an MIA, the adversary attempts to infer whether
a candidate data record is included in the training
dataset of a target model. The adversary maybe
given a candidate data record, or they can input
some data point to target model and get out the
query result. What’s more, they might know some
other background knowledge about the target model
and training dataset. This attack then becomes a
binary classification problem [57]. For each candi-
date record, there are two possible classes: The class
“member” means that the candidate data is a mem-
ber of the target model’s training dataset, and the
class “non-member” means otherwise. Thus, the ad-
versary tries to establish a binary classifier to solve
this problem.

Target model. In the MIA, the trained machine learn-
ing model will be treated as the adversary’s target
model.

Candidate data record. In the MIA, the candidate
data records denote that a set of data sample which
may belong to the target model’s training dataset.

Shadow model. The shadow model is used to imitate
the behavior of the target model, which is used in the
black-box attack to obtain more information about
the target model. During the attack, the adversary
generates a shadow model by crafted shadow model
training samples. Shadow models are models with
the same architecture as the target model [45].

Attack model. Attack model is a binary classifier model
used to infer the candidate data records whether are
the member of the target model’s training data. In
other words, the adversary’s attack process is the
process of building an accurate attack model.

Machine Learning as a Service (MLaaS). MLaaS
is an array of services that provide machine learning
tools as part of cloud computing services. MLaaS
helps clients benefit from machine learning without
the cognate cost, time, and risk of establishing
an in house internal machine learning team. In-
frastructural concerns such as data pre-processing,
model training, model evaluation, and ultimately,
predictions, can be mitigated through MLaaS.

2.2 Prior Works Related to MIA

Figure 2 shows that the year-wise road map of MIAs
against machine learning system. We describe the prior
works ralated MIA by the timeline of this research direc-
tion.
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Figure 2: The year-wise road map of MIA against machine learning

Before 2017. Membership inference originated from ge-
nomics privacy related research [3, 28, 54], and then
with the development of machine learning privacy
research some related notions of privacy had ap-
peared. Fredrikson et al. [15] demonstrated how the
confidence information returned by many machine
learning ML classifiers enables new model inversion
attacks that could lead to unexpected privacy is-
sues. Tramer et al. [60] explore model extraction at-
tacks that could subvert model monetization, violate
training-data privacy, and facilitate model evasion.

Year of 2017. 2017 should be the first year of MIA
against machine learning.Because Shokri et al. [57]
proposed the first MIA against machine learning, and
they invented the shadow model technique to con-
struct the attack models. as machine learning model
includes discriminator and generator, Shokri et al.s’
work only focused on MIA against discrimination
model,but had not studied MIA in generation model.
In LOGAN [22] the first MIA against generative
models was presented. In this paper, Hayes et
al. putted forward MIA against several state-of-
the-art generative models, e.g., Deep Convolutional
GAN (DCGAN), Boundary Equilibrium GAN (BE-
GAN), and the combination of DCGAN with a
Variational Autoencoder (DCGAN+VAE). The LO-
GAN introduces a full black-box attack model and a
discriminator-accessible attack model against GANs.

But the assumption of discriminator-accessible is the
most knowledgeable but unrealistic setting because
the discriminator in GAN is not always accessible in
practice.

Year of 2018. Many researchers focused on understand-
ing the cause of MIAs. Long et al.’s work [37]investi-
gate and analyze membership attacks to understand
why and how they succeed. And based on those
understanding, they proposed Differential Training
Privacy to estimate the privacy risk. In paper [38]
reported a study that discover overfitting to be a
sufficient but not a necessary condition for MIA to
succeed, more specifically, they demonstrated that
even a well-generalized model contains vulnerable in-
stances subject. Yeom et al.’s [66] examined the ef-
fect that outfitting and influence have on the ability
of an attacker to learn information about the training
data from machine learning models, either through
training set membership inference or attribute infer-
ence attacks. the cause factors will be discuss in Sec-
tion 4.1. ML-Leaks [53] investigate the assumptions
what a MIA requires. And they relaxes some as-
sumptions of Shokri et al.’s work [57], such as the
number of shadow models, the knowledge of the tar-
get model structure, and the target model’s dataset
information. This work reveals that attacks with re-
laxed assumptions are very broadly applicable at low
cost and thereby pose a more severe risk than previ-
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ously thought.

Year of 2019. In 2019, there were four main research
advances in this direction. First of all, more MIAs
against generative models were proposed. Hilper-
cht et al. [26] proposed a MIA based on Monte
Carlo integration that applicable to all generative
models. Chen et al. [7] explored the MIA against
GANs and present the first taxonomy of MIAs in
four classes, which included full black-box genera-
tor, partial black-box generator, withe-box genera-
tor and accessible discriminator. Secondly, MIAs
against collaborative learning were raised. Melis et
al. [41] proposed inference attacks against collabo-
rative machine learning system. Nasr et al. [45]
designed inference algorithms for both centralized
and federated learning. thirdly, more white-box and
black-box MIAs were put forward. Sablayrolles et
al. [51] proposed a optimal inference strategy, the
result showed that black-box attacks will perform
as well as withe-box attacks in this optimal asym-
potic setting. Next, some MIAs defenses were ap-
peared. Jia et al. [32] proposed MenGuard which
adds noise to each confidence score vector by the tar-
get classifier to guarantees against black-box MIA.
Rahimian et al. [50] studied the effect of Differen-
tial Privacy-Stochastic Gradient Descent(DP-SGD)
to defense the MIAs. The systematic investigation
of defenses against MIAs will be introduced in Sec-
tion 4.

Year of 2020. A large number of MIA against different
machine learning scenario or different data classes
were presented. He et al. [23] show structural outputs
of segmentation have severe risks of leaking member-
ship, and present the first work on MIAs against se-
mantic segmentation models while the prior works
focus on classification models. As machine learning
algorithms are used to process wireless signals, Shi et
al. [55] presents how to leak privacy information from
a wireless signal classifier by launching an over-the air
MIA. Li et al. [36] investigate a MIA when the tar-
get model only provides the predicted label. Zhang et
al. [68] propose LocMIA which allows adversaries to
launch MIAs against aggregated LOCation data by
train a binary classifier to infer whether a specific vic-
tim’s location data involved in the aggregation group.

All of above, existing methods mainly study on finding
out new attack approaches, improving the attack’s perfor-
mance, or proposing efficient mitigation methods against
MIAs. But, none of the existing studies focus on the com-
prehensive analysis of MIA. Along with the development
of machine learning privacy issues, more and more re-
searchers pay attention to this field and the requirement
of further research in this area increased. It is necessary
to analyze the MIA from various angles to understand
MIA better.

training dataset

test data

adversary

Prediction result

Figure 3: The elements considered by attacker to launch
a MIA against machine learning

3 Analytical Framework of Mem-
bership Inference

3.1 Factors Considered in our Framework

As the processes of machine learning related to the gen-
eral keywords include training dataset, model training,
machine learning model, and prediction result. From the
MIAs attackers view, their adversarial capability refers to
the control-ability of these elements. In general, the ad-
versary can condider several aspects for designing a MIA
against machine learning system.

1) From the adversary’s view, whether the adversary
has knowledge about the training dataset, and what
the training dataset background knowledge the at-
tacker knows is the consideration elements.

2) During the model training, whether the model is
a stand-alone or collaborative learning style, and
whether the attacker is a bystander or one of the
participants should be taken into consideration.

3) The adversary requires to think clearly about that
the attacker can use what observation with the tar-
get model, the target model is a generative model or
a discriminative model, and what detail prior infor-
mation about dose the model the attacker has.

4) Considering with the prediction result, whether the
adversary has the querying capability to get corre-
spond prediction result with input data is one of the
most important assumptions.

Understanding these aspects and developing an anal-
ysis structure serves a twofold purpose. First, it pro-
vides greater insight into previous researches, facilitat-
ing common ground comparison between different ap-
proaches. Second, it provides insights into the detailed
design choices for MIA approaches which can contribute
to the future research of membership inference attack
against machine learning and the defense against the at-
tack.
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Figure 4: Analytical aspects of detail information

3.2 Analytical Framework

With all considerations mentioned above, we propose
an analytical framework which includes adversary’s prior
knowledge, learning frame of target model, adversary’s
observation, classification of the target model, as shown
in Figure 4. Then, we make definitions of these aspects
and then study them in detail at the rest of this section.
Lastly, we summary MIAs with our analytical framework
in Section 3.7.

Adversary’s prior knowledge. In an MIA, the more
prior knowledge the adversary has, the stronger the
adversary’s capabilities are. On the contrary, the
less prior knowledge the adversary has, the weaker
the attacker’s capabilities are. Several characteris-
tics related to the adversary’s capabilities. He et
al.’s work [24] propose that the prior knowledge in-
cluding three aspects: Knowledge of target model,
knowledge of the training dataset, and the capability
of the model querying. The prior knowledge will be
comprehensive analyzed in Section 3.3.

Learning frame of the target model. The learning
frame of the target model has two types, stand-alone
learning frame, and federated learning frame. The
adversary can different attack approaches with dif-
ferent learning frame.The collaborative learning will
be discuss in Section 3.4 comparing with the stand-
alone one.

Adversary’s observation. In paper [45], they define
that the adversary’s observations of machine learn-
ing algorithms are what constitute the inputs for the
MIA. The attack observation can be classified into
the black-box and the white-box which will be dis-
cussed in Section 3.5.

Classification of the target model. There are two
types of target model: Discriminative target model
and the generative target model. Both of them suf-
fer from MIA. The MIA against discriminative model
and the generative model will be analyze in Sec-
tion 3.6.

3.3 Adversary’s Prior Knowledge

In this part, we consider the attacker’s prior knowledge
with completion coverage aspects, and then introduce a
classification method of adversary’s prior knowledge. In
an MIA, the prior knowledge means the adversary’s ca-
pabilities which have an impact on the attack results.

Previous works introduce several characteristics related
to the adversary’s capabilities. Salem et al. [53] studied
three attacks with different prior knowledge consists of
target model structure, training data distribution. He at
el.’s work [24] classify the prior knowledge in three cate-
gories, e.g. target model, training dataset, the capability
of model querying. This method covers all aspects related
to MIA. Thus, we survey the previous works, by consid-
ering the prior knowledge into three aspects proposed by
He et al. [24], i.e., knowledge of target model, knowledge
about the training dataset, the capability of model query.
For clarity, we summarize the notations in Table 1.

Knowledge of Target Model (M). In this aspect, the
adversary may obtain information about the target
model, including the parameters, the structure, the
type, machine learning as a service (MLaaS), and
mode type, termed by M1, M2, M3 and M4 respec-
tively.

M1: Model parameters. Some researches [7, 22, 45] as-
sumed that attacker knows some model parameters.
The adversary can download the description of the
model through MLaaS cloud systems [20, 42]. The
method in [1] shows that an honest-but-curious server
can partially recover participants’ data points from
the shared gradient updates. Paper [7] proposed an
attack by which the attacker has access to the pa-
rameters of the generator.

M2: Model structure. In paper [22,45,56], the adversary
obtained knowledge of model structure.

M3: MLaas platform. Several works [7,38,53,57,62] con-
sidered that the adversary can use the same MLaaS
platform with target model.

M4: Model type. Shokri et al. [57] and Hayes et al. [22]
set the type of target model as one of the prior knowl-
edge.
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Table 1: Definition of prior knowledge’s sub-classes

Knowledge Types Symbol Definition 

Model 

1M The parameters of the target model 

2M Can access or know the structure of the target model 

3M Use the same MLaaS platform with target mode 

4M The type of target model 

Training Dataset 
1D

Know some properties about the target model’s training 

dataset, such as the distribution, the size, or the value 

2D A dataset which includes model’s training dataset 

Query Ability Q Can query the machine learning model 

Knowledge about the Training Dataset (D).
Training data set is a set of examples used to
initially fit the parameters (e.g. weights of con-
nections) of the machine learning model. Each
training example is represented by an array or
vector, consists of pairs of an input vector and the
corresponding output vector. There are many public
dataset commonly used for machine learning model
training, such as CIFAR-10,CIFAR-100, MNIST,
Texas, Purchase-10, Purchase-100, Hospital, Loca-
tion, News, and so on. The Knowledge about the
training dataset means that the adversary has some
information about the training dataset. the training
dataset info includes the following two classes.

D1: The attacker knows some property information
about the target training dataset, such as the distri-
bution, size or value. Long et al. [38] exploit datasets,
which sampled from the same space as the terget
training set but not containing the target record, to
build the shadow model. Shokri et al. [57] say that
they have some background knowledge about the tar-
get model’s training dataset, but disjoint from the
tarining dataset. Salem et al. [53] assume that the
adversary has a dataset which comes from the same
underlying distribution as the training data for the
target model or perform model extraction to approx-
imate the target model. Hayes et al. [22] give an
assumption that the adversary knows the size of the
training set, but not know how data-points are split
into training and test sets.

D2: The adversary obtains a dataset which includes
model’s training dataset.Nasr et al. [46] reveal that
in a realistic setting, the probability distribution of
data points and the probability distribution over the
member of the training set are not directly and ac-
curately available to the adversary. They assume a
dataset known by the attacker which is the subset
of the target training set. Hayes et al. [22] intro-
duce a white-box attack in which the attacker has a
dataset containing data-points used to train the tar-

get model.

The capability of Model Query (Q). This kind of
prior knowledge means that the adversary whether
can query the target model or not. In papers [7, 15,
22, 24, 37, 38, 52, 53, 57], the authors study that the
adversary can query the learning model (Q).

3.4 The Frame of Target Model: Stand-
Alone vs. Federated Learning

The learning frame of the target model has two ma-
jor types, stand-alone learning one and federated learn-
ing one. It depends on whether all the training data is
available in one place, or the training data is distributed
among multiple parties [45]. The adversary has different
attack approaches with different learning frames.

Stand-alone learning frame. In this setting, the tar-
get model is trained in one place, it means central-
ized training wherein all the training data is available
in one place. Under the stand-alone learning frame,
the adversary has two points of view to launch the
MIA. First, the attacker can observe the process of
the model updating. Second, an adversary can at-
tack a final trained model. The latter method has
been studied more than the former one, in previous
works.

Federated learning frame. Comparing with the
stand-alone learning frame, the federated learning
frame has a distributed structure. The federated
learning aims at training a machine learning algo-
rithm on multiple local datasets contained in local
participants. We illustrate the federated learning
frame in Figure 5. In the federated learning frame,
the central server orchestrates the different steps
of the algorithm. First of all, the central server
transmits the initial model to several distributed
participants. Then, the participant uses local
training datasets and optimizers (such as stochas-
tic gradient descent optimizer) to train the local
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Figure 5: Federated learning frame

model. After that, participants upload their local
parameters to the central server. The central server
uses a specific method (such as computing average
value) to transform these parameters into the global
parameters. Finally, the central server generates
a global model with global parameters. Federated
learning constructs a global model using multiple
rounds. In one round, it begins with downloading
the global parameters from the central server and
ends with uploading the local parameters to the
central server. Collaborative training continues until
the global model converges [45].

In papers [24,41,45], they propose an attack against fed-
erated learning, wherein the attacker is one of the partic-
ipates who can observe the global parameters and craft
his adversarial parameter updates to gain more informa-
tion about the information of other participants’ training
dataset.

3.5 Observation: Black-Box vs. White-
Box

White-box. A white box attack means that the attacker
has access to the full model, notably its architecture
and parameters. With such information, the adver-
sary can reconstruct the target model and even the
training dataset. Hayes et al.’s work [22] propose a
white-box attack against the generative model. In
their white-box scenario, the attacker relies on in-
ternal access to the target model instead of training

an attack model. In paper [45], they introduce an
extension of existing black-box membership to the
white-box setting which uses the same attack on all
of the activation functions of the model.

Black-box. In this setting, the adversary only has the
capability of model querying but can neither access
the model’s parameters, nor the model structure. It
means that the attacker can only query the target
model by inputting data points to obtain output re-
sults. LOGAN [22] proposes a black-box attack with
no auxiliary knowledge and a black-box attack with
limited auxiliary knowledge. In ML-Leak [53], the
authors present an attack whose adversary has black-
box access to the target model, but the attacker not
able to extract the membership status from the target
model. Thus, the adversary trains a shadow model to
mimic the behavior of the target model and relies on
the shadow model to obtain the ground-truth mem-
bership to train the attack model. In paper [47], they
introduce a black-box attack against the deep neural
network (DNN) classifiers by crafting adversarial ex-
amples without knowledge of the classifier training
data or model. In paper [57], the author defined a
black-box attack in which the attacker used the given
data record to query the target model in the black-
box observation.

Among the two observations discussed above, the adver-
sary under white-box setting is the most knowledgeable
setting and the black-box observation has the least back-
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ground knowledge. Therefore, white-box attacks are more
powerful than black-box attacks. However, black-box at-
tacks cannot be substituted by white-box attacks because
the former is easier to apply in practice. For example, in
a machine learning as a service (MLaaS) system, the at-
tacker always has no knowledge about the target model’s
internal information, they do not know the model algo-
rithm, have no knowledge about the model structure or
the model parameter, but just has the capability to query
the target model, so comparing with white-box MIAs, the
black-box attacks are the most reasonable observation.

3.6 Classification of Target Model: Dis-
criminative Model vs. Generative
Model

Generally, machine learning models include discrimina-
tive models and Discriminative models. Both of them
suffer from MIA and there are many previous works re-
lated to this aspect. In this section, we introduce the
membership inference attack against discriminative mod-
els and generative models.

Discriminative models. Given the feature (x) of a
data point and the corresponding label, discrimina-
tive models attempt to predict feature x by learning
a discriminative function (x, y); The function takes in
input x and outputs the most likely label y. It means
that the discriminative models discriminate between
different kinds of data points. However, discrimina-
tive models are not able to explain how the data-
points might have been generated [22]. Membership
inference against discriminative deep learning models
has attracted many studies [1, 3, 4, 27, 38, 41, 57, 66].
This kind of target model can provide confidence
value about the data point which would help infer
out the membership of the training dataset.

Generative models. Generative models describe how
does the data generated by learning the joint prob-
ability distribution of p(X,Y ), which gives a score
to the configuration determined together by pairs
(x, y) [22]. Compared with the discriminative model,
the membership inference attack against generative
models has been less well-studied. As the genera-
tor cannot directly return the confidence value about
the overfitting of data records, it’s more challenging
for the adversary in this scenario. With the gener-
ator model widely used in many applications, such
as [2, 17, 18,35, 40, 63], membership inference attacks
against the generative model gained researchers’ in-
creasing attention. In the work [22], the authors use
generative models to learn information about the tar-
get generative model, thus created a local copy of
the target model for membership inference. In pa-
per [7], the author proposed a taxonomy of member-
ship inference attack against generative adversarial
networks (GANs).

3.7 Summary

The summary of MIAs with analytical factors, which
mentioned above, is provided by Table 2. In the existing
work, researchers do more research on black-box member-
ship inference attacks than white-box one. Among them,
in the research of white-box, it is not necessary to know
the conditions for query ability and information about
training dataset; The attacker even only needs to know
the M1 condition to successfully obtain the membership
information of the training dataset. For the MIA sce-
nario of the discriminator, the attacker needs information
related to the model and training dataset to assist in the
attack. When one kind of the model or training dataset
is missing, the query ability of the target model is needed
to supplement the information. The above conditions are
not necessary in the attack against the generator. The at-
tacker can realize the MIAs on the generator through one
kind of condition among the model attributes and train-
ing dataset properties. In the previous work, there are
more attacks on stand-alone machine learning than attack
against federated learning scenarios. The existing attacks
against federated learning scenarios are usually white-box
attacks, and at the same time, both information related
to the model and training dataset are required to com-
plete the MIAs. While the assumptions for stand-alone
attacks will be more flexible.

4 Defenses

In this section, we discuss factors which influence the
MIA. Then, we survey the defense mechanisms employed
by existing privacy-preserving achievements and IMA de-
fensive methods. Based on different implementation tech-
niques, we classify the defense strategies into three cate-
gories: Generalization techniques, cryptography methods,
adversarial method. In addition, we introduce prior work
with these categories.

4.1 Factors Influence MIA

The factors influence MIA means that have on the ad-
vantage of adversaries who attempt to infer specific facts
about the data used to train machine learning models [66].
Shokri et al. [57] show that overfitting is a sufficient con-
dition for MI attack. The result in [38, 45] reveals that
even well-generalized machine learning models might leak
much information about their training data. Thus, it
means that overfitting provides more information than
necessary for MIA [38,66]. Long et al.’s work [38] demon-
strates that some training instances have unique impacts
on the learning models, which will cause MI attacks.
Shokri et al.’s work [57] finds that besides overfitting,
the structure and type of the model also contribute to
the vulnerable to MIA. Nasr et al. [45] show that model
structure, gradients, and training size can also impact the
learning model.
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Table 2: Summary MIAs with our analytical aspects

Previous works AO
Prior Knowledge

TMT TF
Model TD QA

Long et al.’s [18] B M3 D1 Q D S
Shokri’s [19] B M3, M4 D1 Q D S
Nasr’s-1 [20] W M1, M2 D2 N D F
Nasr’s-2 [20] W M1, M2 D2 N D F

ML-Leaks-1 [22] B M3 D2 N D S
ML-Leaks-2 [22] B N N Q D S
ML-Leaks-3 [22] B N N Q D S
LOGAN-1 [23] W M1, M2, M4 N N G S
LOGAN-2 [23] B N D1, D2 Q G S
LOGAN-3 [23] B N D1, D2 Q G S
Gan-Leaks-1 [24] B M3 N Q G S
Gan-Leaks-2 [24] B N D1 N G S
Gan-Leaks-3 [24] W M1 N N G S
Nasr’s et al.’s [26] B N D2 Q D S
Truex et al.’s [27] B M3 N Q D S
Melis et al.’s[33] B M4 D1 N D F
Long et al.’s[31] B N D1, D2 Q D S
AO: attack observation, TD: training dataset, QA: query ability, TMT: target model type, TF: target frame; M1, M2,
M3, M4, D1, D2, Q are the 7 sub-classes of adversary’s prior knowledge, which defined in table I; N: not need; W:
white-box; B: black-box; D: discriminator; G: generator. S: stand-alone; F: federated learning.

Table II. summary different MIAs with our analytical aspects.

4.2 Generalization Techniques

As overfitting is an important reason why machine learn-
ing models leak information about their training datasets,
generalization techniques such as dropout [53, 56, 58] can
help degrade overfitting and strengthen privacy guaran-
tees in neural networks [28] by randomly dropping out
connections between neurons. While model stack [53]
suitable for all machine learning models, independent of
the classifier used to build them. The paper [57] uses stan-
dard regularization to overcome overfitting in machine
learning.

4.3 Cryptography Methods

Homomorphic encryption. He et al. [24] use homo-
morphic encryption to encrypt the input in the col-
laborative learning scenario, so the sensitive informa-
tion will not be leaked. A drawback of homomorphic
encryption is inefficiency [24].

Differential privacy. Differential privacy has been re-
garded as a strong privacy standard [9–13]. The pa-
per [61] presents a differentially private GANs model
which includes a Gaussian noise layer in the discrim-
inator if a generative adversarial network to make
the output and the gradients differentially private
with respect to the training data. The paper [4]
uses the differentially-private stochastic gradient de-
scent algorithm (DP-SGD) to prevent memorization.
Salem et al.’s work [52] adds noise to the posterior

for each queried sample and also adds noise sampled
from a uniform distribution to the posteriors. The re-
sult shows that the method drops the attack accuracy
to a certain degree. Especially, adding noise is hard
work against a multi-sample reconstruction attack.
In [67], the researcher introduces a data obfuscation
function and applies it to the training data before
feeding them to the model training task. By doing
so, sensitive information about both the properties
of individual samples and the statistical properties
of a group of samples will be hidden. Jia et al. [32]
propose to add noise to each confidence score vec-
tor predicted by the target model to turn the confi-
dence score vector into an adversarial example, which
can mislead the adversary’s classifier to make random
guessing at member and non-member.

4.4 Adversarial Method

In [46], Nasr et al. put forward a Min-Max Game which
designs an adversarial training algorithm that minimizes
the prediction loss of the model as well as the maxi-
mum gain of the inference attacks. This strategy, which
can guarantee membership privacy acts also helped to
generalize the target model. Jia et al. [32] proposes a
method based on adversarial examples to mislead the at-
tack model. There are many methods to find adversarial
examples [5,19,34,39,43,44,48]. These adversarial meth-
ods may be exploited as defense strategies in the future.
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5 Future Research Direction

The current MIA methods have the following problems:
On the one hand, building MIAs requires many precon-
ditions, such as: Information about data, model or query
ability, which is unreasonable in actual scenarios; On the
other hand, the current defense methods cannot have pro-
tective effects on various MIAs. Therefore, in the future,
we can study MIA in realistic scenarios, approach the real
world by reducing assumptions, and study effective gen-
eral protection frameworks for MIA to solve these prob-
lems. Considering the current challenges and existing so-
lutions, we expect that the research of MIA will be ad-
vanced in the following aspects.

Membership inference attack against federated learn-
ing frame would attract more attentions of researchers.
Along with the widely application of machine learning,
for obtaining better performance of model training, the
learning frame gradually changed from stand-alone learn-
ing to the collaborative learning. Thus, there are much
more sensitive data that would be used as the federated
training dataset, such as location data, personal medi-
cal records, personal characteristic data, healthcare data.
Such sensitive data would increase the adversary’s inter-
ests. To study the attack methods under this scenario,
and devise defensive strategies to mitigation these vul-
nerabilities has academic and application values.

Threats based on membership inference attack would
be raised. In paper [22], the author indicated that mem-
bership inference attacks often act as a gateway to further
attacks. The attacker can firstly infers whether the tar-
get data is a part of the training dataset, and then link
up with other attacks, (e.g. profiling, property inference,
which leak additional information about the victim, or
other further attacks. Hence, the subsequent attacks af-
ter the launching of MIA would be studied in the future.

Another valuable topic for research is to find out a fully
effective defensive methodology to cope with different at-
tack approaches. The application of MI methods in secu-
rity defense scenarios will draw more attention. Shokri et
al.’s work [56] uses the membership inference method as
defense mechanism.

6 Conclusions

The study of Membership Inference attack(MIA) against
machine learning is quite young field. This research di-
rection has attracted attention of scholars and offers a
number of opportunities for future exploration. For re-
searchers just entering MI attacks and defenses against
machine learning, we provided an in-depth introduction
to this research field in its current state. For active re-
searchers in the field, this paper not only provide a struc-
tured and comprehensive survey, but also as fundamental
knowledge for the future researches in this area.

In this artical, we summarize the year-wise road map of
MIAs against machine learning. and then, we construct a

comprehensive framework to analyze the existing MIAs
against machine learning systems, classifies the adver-
sary’s prior knowledge into seven sub-classes, overviews
the factors that influence the attacks; Next we analyze the
prior works with our framework, and give out a systematic
comparison in Section 3.7. Further More, we character-
izes existing defense mechanisms for MIA against machine
learning in to three categories. Lastly, we give out the fu-
ture research direction in this field.
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”The secret sharer: Measuring unintended neural
network memorization & extracting secrets,” Ma-
chine Learning, 2018. arXiv:1802.08232.

[5] N. Carlini and D. Wagner, ”Towards evaluating the
robustness of neural networks,” in IEEE Symposium
on Security and Privacy (SP’17), pp. 39–57, 2017.

[6] M. Chen, Y. Hao, K. Hwang, L. Wang, and L.
Wang, ”Disease prediction by machine learning over
big data from healthcare communities,” Ieee Access,
vol. 5, pp. 8869–8879, 2017.

[7] D. Chen, N. Yu, Y. Zhang, and M. Fritz,
”GAN-leaks: A taxonomy of membership infer-
ence attacks against gans,” Machine Learning, 2019.
arXiv:1909.03935.

[8] M. Y. Chen, C. C. Yang, and M. S. Hwang, ”Pri-
vacy protection data access control,” International
Journal Network Security, vol. 15, no. 6), pp. 411–
419, 2013.

[9] C. Dwork, ”Differential privacy: A survey of results,”
in International Conference on Theory and Applica-
tions of Models of Computation, pp. 1–19, 2008.



International Journal of Network Security, Vol.23, No.4, PP.685-697, July 2021 (DOI: 10.6633/IJNS.202107 23(4).14) 695

[10] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov,
and M. Naor, ”Our data, ourselves: Privacy via dis-
tributed noise generation,” in Annual International
Conference on the Theory and Applications of Cryp-
tographic Techniques, pp. 486–503, 2006.

[11] C. Dwork and J. Lei, ”Differential privacy and robust
statistics,” in Proceedings of the Forty-First Annual
ACM Symposium on Theory of Computing, pp. 371–
380, 2009.

[12] C. Dwork, A. Roth, et al., ”The algorithmic foun-
dations of differential privacy,” Foundations and
Trends R© in Theoretical Computer Science, vol. 9,
no. 3–4, pp. 211–407, 2014.

[13] C. Dwork, G. N. Rothblum, and S. Vadhan, ”Boost-
ing and differential privacy,” in IEEE 51st Annual
Symposium on Foundations of Computer Science,
pp. 51–60, 2010.

[14] A. Esteva, A. Robicquet, B. Ramsundar, V.
Kuleshov, M. DePristo, K. Chou, C. Cui, G. Cor-
rado, S. Thrun, and J. Dean, ”A guide to deep learn-
ing in healthcare,” Nature medicine, vol. 25, no. 1,
pp. 24–29, 2019.

[15] M. Fredrikson, S. Jha, and T. Ristenpart, ”Model
inversion attacks that exploit confidence informa-
tion and basic countermeasures,” in Proceedings of
the 22nd ACM SIGSAC Conference on Computer
and Communications Security, pp. 1322–1333, 2015.

[16] T. T. Gao, H. Li, and S. L. Yin, “Adaptive convo-
lutional neural network-based information fusion for
facial expression recognition,” International Journal
of Electronics and Information Engineering, vol. 13,
no. 1, pp. 17-23, 2021.

[17] L. A. Gatys, A. S. Ecker, and M. Bethge, ”Im-
age style transfer using convolutional neural net-
works,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2414–
2423, 2016.

[18] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Ben-
gio, ”Generative adversarial nets,” in Advances in
Neural Information Processing Systems, pp. 2672–
2680, 2014.

[19] I. J. Goodfellow, J. Shlens, and C. Szegedy, ”Explain-
ing and harnessing adversarial examples,” Machine
Learning, 2014. arXiv:1412.6572.

[20] Google, AI Platform, 2020. (https://cloud.
google.com/ai-platform)

[21] A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Di-
amos, E. Elsen, R. Prenger, S. Satheesh, S. Sengupta,
A. Coates, et al., ”Deep speech: Scaling up end-
to-end speech recognition,” Computation and Lan-
guage, 2014. arXiv:1412.5567.

[22] J. Hayes, L. Melis, G. Danezis, and E. D. Cristo-
faro, ”LOGAN: Evaluating information leakage of
generative models using generative adversarial net-
works,” Proceedings on Privacy Enhancing Technolo-
gies, vol. 2019, no. 1, 2017.

[23] Y. He, S. Rahimian, B. Schiele, and M. Fritz,
”Segmentations-leak: Membership inference attacks
and defenses in semantic image segmentation,”
Computer Vision and Pattern Recognition, 2019.
arXiv:1912.09685.

[24] Z. He, T. Zhang, and R. B. Lee, ”Model inversion at-
tacks against collaborative inference,” in Proceedings
of the 35th Annual Computer Security Applications
Conference, pp. 148–162, 2019.

[25] K. He, X. Zhang, S. Ren, and J. Sun, ”Deep residual
learning for image recognition,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition, pp. 770–778, 2016.

[26] B. Hilprecht, M. Härterich, and D. Bernau, ”Monte
carlo and reconstruction membership inference at-
tacks against generative models,” Proceedings on
Privacy Enhancing Technologies, vol. 2019, no. 4,
pp. 232–249, 2019.

[27] B. Hitaj, G. Ateniese, and F. Perez-Cruz, ”Deep
models under the gan: information leakage from col-
laborative deep learning,” in Proceedings of ACM
SIGSAC Conference on Computer and Communica-
tions Security, pp. 603–618, 2017.

[28] N. Homer, S. Szelinger, M. Redman, D. Duggan, W.
Tembe, J. Muehling, J. V. Pearson, D. A. Stephan,
S. F. Nelson, and D. W. Craig, ”Resolving individ-
uals contributing trace amounts of DNA to highly
complex mixtures using high-density snp genotyping
microarrays,” PLoS Genetics, vol. 4, no. 8, 2008.

[29] M. S. Hwang, E. F. Cahyadi, S. F. Chiou, and C. Y.
Yang, ”Reviews and analyses the privacy-protection
system for multi-server,” in Journal of Physics: Con-
ference Series, vol. 1237, pp. 022091, 2019.

[30] M. S. Hwang and I. C. Lin, ”Introduction to infor-
mation and network security (in chinese),” Mc Grew
Hill. In Taiwan, 4, 2011.

[31] M. S. Hwang, C. H. Wei, and C. Y. Lee, ”Privacy
and security requirements for RFID applications,”
Journal of Computers, vol. 20, no. 3, pp. 55–60, 2009.

[32] J. Jia, A. Salem, M. Backes, Y. Zhang, and N. Z.
Gong, ”Memguard: Defending against black-box
membership inference attacks via adversarial exam-
ples,” in Proceedings of ACM SIGSAC Conference on
Computer and Communications Security, pp. 259–
274, 2019.

[33] G. Koch, R. Zemel, and R. Salakhutdinov,
”Siamese neural networks for one-shot image
recognition,” in ICML Deep Learning Work-
shop, vol. 2, 2015. (https://www.cs.cmu.edu/

~rsalakhu/papers/oneshot1.pdf)

[34] A. Kurakin, I. Goodfellow, and S. Bengio, ”Adversar-
ial examples in the physical world,” Computer Vision
and Pattern Recognition, 2016. arXiv:1607.02533.

[35] C. Li and M. Wand, ”Precomputed real-time tex-
ture synthesis with markovian generative adversarial
networks,” in European Conference on Computer Vi-
sion, pp. 702–716, 2016.

https://cloud.google.com/ai-platform
https://cloud.google.com/ai-platform
https://www.cs.cmu.edu/~rsalakhu/papers/oneshot1.pdf
https://www.cs.cmu.edu/~rsalakhu/papers/oneshot1.pdf


International Journal of Network Security, Vol.23, No.4, PP.685-697, July 2021 (DOI: 10.6633/IJNS.202107 23(4).14) 696

[36] Z. Li and Y. Zhang, ”Label-leaks: Membership in-
ference attack with label,” Machine Learning, 2020.
arXiv:2007.15528.

[37] Y. Long, V. Bindschaedler, and C. A. Gunter, ”To-
wards measuring membership privacy,” Cryptogra-
phy and Security, 2017. arXiv:1712.09136.

[38] Y. Long, V. Bindschaedler, L. Wang, D. Bu,
X. Wang, H. Tang, C. A. Gunter, and K.
Chen, ”Understanding membership inferences on
well-generalized learning models,” Computer Sci-
ence, 2018. arXiv:1802.04889.

[39] A. Madry, A. Makelov, L. Schmidt, D. Tsipras,
and A. Vladu, ”Towards deep learning models resis-
tant to adversarial attacks,” Machine Learning, 2017.
arXiv:1706.06083.

[40] S. Mehri, K. Kumar, I. Gulrajani, R. Kumar, S. Jain,
J. Sotelo, A. Courville, and Y. Bengio, ”SampleRNN:
An unconditional end-to-end neural audio generation
model,” Sound, 2016. arXiv:1612.07837.

[41] L. Melis, C. Song, E. D. Cristofaro, and V.
Shmatikov, ”Exploiting unintended feature leakage
in collaborative learning,” in IEEE Symposium on
Security and Privacy (SP’19), pp. 691–706, 2019.

[42] Microsoft, Microsoft Azure Machine Learn-
ing, 2020. (https://azure.microsoft.com/
en-us/services/machine-learning/)

[43] S. M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and
P. Frossard, ”Universal adversarial perturbations,”
in Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 1765–
1773, 2017.

[44] S. M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard,
”Deepfool: A simple and accurate method to fool
deep neural networks,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recog-
nition, pp. 2574–2582, 2016.

[45] M. Nasr, R. Shokri, and A. Houmansadr, ”Compre-
hensive privacy analysis of deep learning: Passive
and active white-box inference attacks against cen-
tralized and federated learning,” in IEEE Symposium
on Security and Privacy (SP’19), pp. 739–753, 2019.

[46] M. Nasr, R. Shokri, and A. Houmansadr, ”Machine
learning with membership privacy using adversar-
ial regularization,” in Proceedings of ACM SIGSAC
Conference on Computer and Communications Se-
curity, pp. 634–646, 2018.

[47] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha,
Z. B. Celik, and A. Swami, ”Practical black-box at-
tacks against machine learning,” in Proceedings of
ACM on Asia Conference on Computer and Com-
munications Security, pp. 506–519, 2017.

[48] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson,
Z. B. Celik, and A. Swami, ”The limitations of deep
learning in adversarial settings,” in IEEE European
Symposium on Security and Privacy (EuroS&P’16),
pp. 372–387, 2016.

[49] A. Pyrgelis, C. Troncoso, and E. D. Cristofaro,
”Knock knock, who’s there? Membership inference

on aggregate location data,” Proceedings of the 25th
Network and Distributed System Security Sympo-
sium, 2017. arXiv:1708.06145.

[50] S. Rahimian, T. Orekondy, and M. Fritz, ”Differen-
tial privacy defenses and sampling attacks for mem-
bership inference,” in PriML Workshop (PriML’19),
vol. 13, 2019. (https://priml-workshop.github.
io/priml2019/papers/PriML2019_paper_47.pdf)

[51] A. Sablayrolles, M. Douze, Y. Ollivier, C. Schmid,
and H. Jégou, ”White-box vs black-box: Bayes op-
timal strategies for membership inference,” in Pro-
ceedings of the 36th International Conference on Ma-
chine Learning, vol. 97, pp. 5558-5567, 2019.

[52] A. Salem, A. Bhattacharya, M. Backes, M. Fritz, and
Y. Zhang, ”Updates-leak: Data set inference and re-
construction attacks in online learning,” Cryptogra-
phy and Security, 2019. arXiv:1904.01067.

[53] A. Salem, Y. Zhang, M. Humbert, P. Berrang, M.
Fritz, and M. Backes, ”ML-leaks: Model and data
independent membership inference attacks and de-
fenses on machine learning models,” Computer Sci-
ence, 2018. arXiv:1806.01246.

[54] S. Sankararaman, G. Obozinski, M. I. Jordan, and E.
Halperin, ”Genomic privacy and limits of individual
detection in a pool,” Nature Genetics, vol. 41, no. 9,
pp. 965, 2009.

[55] Y. Shi, K. Davaslioglu, and Y. E. Sagduyu, ”Over-
the-air membership inference attacks as privacy
threats for deep learning-based wireless signal clas-
sifiers,” in Proceedings of the 2nd ACM Workshop
on Wireless Security and Machine Learning, pp. 61–
66, 2020.

[56] R. Shokri and V. Shmatikov, ”Privacy-preserving
deep learning,” in Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communica-
tions Security, pp. 1310–1321, 2015.

[57] R. Shokri, M. Stronati, C. Song, and V. Shmatikov,
”Membership inference attacks against machine
learning models,” in IEEE Symposium on Security
and Privacy (SP’17), pp. 3–18, 2017.

[58] N. Srivastava, G. Hinton, A. Krizhevsky, I.
Sutskever, and R. Salakhutdinov, ”Dropout: A sim-
ple way to prevent neural networks from overfitting,”
The Journal of Machine Learning Research, vol. 15,
no. 1, pp. 1929–1958, 2014.

[59] J. X. Tong, H. Li, and S. L. Yin, “Research on face
recognition method based on deep neural network,”
International Journal of Electronics and Information
Engineering, vol. 12, no. 4, pp. 182–188, 2020.
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