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Abstract

In the IoT era, people can control their homes with a
smartphone easily. To ensure the security of data trans-
mission, digital signature protocols have been applied to
the authentication of identity and messages. However,
in the traditional method, a user’s private key is directly
stored on a mobile phone. So that the private key may be
disclosed under various malicious attacks. A two-part sig-
nature on the Edwards curve is proposed in this paper to
improve the security of the private key. A valid signature
can be generated without reestablishing the whole private
key. The security analysis of the protocol with standard
assumptions is also presented. We implement this new
protocol on PC and Android smartphones. The evalu-
ation results demonstrate that our protocol runs faster
in the key generation phase and has a smaller signature
length. Therefore, this scheme can be effectively deployed
in practice to protect the private key.

Keywords: EdDSA; Mobile Devices; Mobile Network; Sig-
nature; Smart Home

1 Introduction

Due to the development of mobile network and IoT (In-
ternet of Things), living environment of people has been
greatly improved. However, owing to constant and fast-
paced cyber-attack evolution, The security of mobile net-
work and smart mobile device are raising important. Ac-
cording to [2], in 2020, cyber-attacks will have launched in
such a way that: Malicious attacks up to 1001 million, the
web attacks 2746 million, and virus and malicious attacks
1585. The business loss caused by network attack will ex-

ceed $ 2000 millions. These challenges threaten Iot system
security. For example, as a part of Internet of Things,
smart home-smartphone system also suffers these secu-
rity threats. In Smart home-Smartphone system, peo-
ple can control their smart homes with smartApps on a
smartphone through wireless network [4]. All kinds of
Smartapps provided by various manufacturers have been
able to connect and control smart home conveniently and
quickly [10]. As users download and install smart apps
from the mobile network, mobile network communication
risks may threaten the security of the system.

In this smart home-smartphone system, smart home
only executes instructions send by smart phone. In or-
der to prove that instructions really comes from the real
user rather than adversary, an effective method is to
use authentication technology,such as digital signature.
As shown Figure 1. Recently,some new authentication
schemes have been proposed [15, 24]. Using smartphones
to implement some existing authentication protocols is
an effective solution. However, a user’s private key al-
ways stored in mobile phone directly. There is a potential
risk that smartphones could be attacked directly by mali-
cious applications and user’s private key may be disclosed.
Or, the adversary may obtain the private key by analyz-
ing the memory information of the mobile operating sys-
tem [1, 17]. If the adversary obtains the key, then the
adversary obtains control of the everything of the house.

In order to reduce the risk of the secret key to be
stolen, a natural idea is dividing the private key into sev-
eral parts. A general solution is to use (t, n) threshold
secret sharing protocol [21, 26]. In (t, n) threshold secret
sharing protocol, the secret is divided into n parts, and
no participant less than t − 1 can recover the complete



International Journal of Network Security, Vol.23, No.4, PP.558-568, July 2021 (DOI: 10.6633/IJNS.202107 23(4).02) 559

secret. Based on the above idea, many threshold based
signature algorithms have been proposed [12, 22]. Even
though threshold-based signature is a possible solution,
there is still a potential risk here. Although the secret
key is divided into n parts, the whole private key will still
be re-established during the signature process. What’s
more, if the secret key is divided into too many parts, the
signature generation time will be greatly increased.

Figure 1: Traditional instructions transmission structure
of smart home

To avoid these limitations, one common approach is
dividing the private key into two parts, and storing them
in different places (i.e. smartphone and smart device
node). A valid signature generation negotiated by the
smartphone and smart server. As shown Figure 2. It re-
quires both parties to participate in the key generation
phase and signature phase. Either party cannot recover
the private key in the signature process.

Figure 2: Two-part instructions transmission structure of
smart home

To date, many two-party digital signatures have been
proposed. A two-part DSA algorithm proposed by
MacKenzie and Reiter [11] and the security of the algo-
rithm was proved with random oracle model. Zhang [28]
proposed a practical distributed two-party SM2 signature
algorithm. SM2 algorithm is issued by the Chinese Gov-
ernment’s State Cryptography Administration. A two-
part ECDSA protocol proposed by Lindell [18], which is
faster than previous protocols. But, many effective side-
channel attacks for general NIST elliptic curve on smart-
phone has been published in [5,23]. He [14] and Zhang [27]
proposed two-part identity-based signature protocol in
2018. However, identity based cryptography has a prob-
lem of key escrow.

For the sake of improving above deficiency, we present
a two-party Edwards-curve digital signature algorithm.
Edwards-curve digital signature algorithm developed by
Daniel J. Bernstein et al.in 2012 [7]. In 2017, this dig-
ital signature formally defined in RFC 8032 [16] named

EdDSA. EdDSA is more resilient to side-channel at-
tacks, especially the cache-timing attack [3, 6]. The Ed-
ward curve [6] and parameter Curve25519 [8] has bet-
ter efficiency and security than a general NIST elliptic
curve [9,25]. This algorithm is used widely in many soft-
wares such as SSH, TLS, Tor, I2P, etc. and blockchains
such as Monero, Naivecoin, Siacoinetc. [25].

1.1 Our Contribution

In this paper, a two-part siganture on edwards curve is
proposed. A valid signature can be generated without
reestablishing the whole private key. We implement our
protocol on personal computers and mobile device (An-
droid smartphone). Our scheme is more effective, practi-
cal and secure in mobile networks. We describe our con-
tribution in detail as follows:

1) A two-part signature on edwards curve is proposed
in this paper. According to our knowledge, this is
the first two-part cryptography scheme designed for
Edwards-curve digital signature algorithm without
sacrificing security. This protocol generates a valid
signature without reestablishing the whole private
key. That is, either party cannot recover the private
key in the signature process.

2) The security analysis of the protocol with standard
assumptions is also presented. At the same time, in
the signature generation phase, our protocol do not
use random number generator, which can avoid the
additional risks brought by random number genera-
tor.

3) This new protocol is implemented by us using
Java(11.0.3) on PC and Android smartphone. The
evaluation results demonstrate that our protocol has
a faster speed in the secret key generation phase and
smaller signature length compared with other proto-
cols. Therefore, this scheme can be effectively de-
ployed in practice to protect the private key security.

1.2 Organization of the Paper

This paper is organized as follows: Section 2, we review
Edwards-curve digital signature scheme, paillier cryp-
tosystem and zero-knowledge proof. Section 3, we present
the protocol for two-part edwards-curve digital signature
scheme. Section 4, we describe the security model of two-
part Edwards-curve digital signature scheme. Section 5,
we present the security analysis. Section 6, we imple-
ment our protocol using Java, and compared with other
schemes. Section 7 we concludes.

2 Preliminaries

2.1 Edwards-Curve Digital Signature

In this section, we describe the Edwards-curve digital sig-
nature. This algorithm has four phases which include set
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up, key generation, signature and verify.

2.1.1 EdDSA Setup

1) Construct a twisted Edwards curve over Fq as follows:

ax2 + y2 = 1 + dx2y2

Fq is a finite field where q is an odd prime. These
two numbers a and b are described in [8]. If a point
p satisfied this equation, then point p (x0, y0) on the
curve.

2) L is the number of points on the curve.

3) H is a hash function H : {0, 1}∗ → {0, 1}512.

4) B is a generator of the elliptic curve group.

5) An integer b which is length of EdDSA public key.

6) Two functions ENC(p) and DEC(i). ENC(p) can
compress a point p to a integer. DEC(i) can restore
a compressed point from integer i.

2.2 EdDSA Key Generation

In this phase, the public key and private key is generated.

1) Choose an EdDSA private key which is a b-bit string
k.

2) Calculate the hash H(k) = (h0, h1, ..., h2b−1).

3) Define a scalar s = 2b−2 +
∑

36i6b−3 2ihi, compute
A = s ·B.

4) Store the compressed value ENC(A) as the public
key.

5) The bits hb, ..., h2b−1 are used below during signing.

6) Output the key pair (s, ENC(A)).

2.2.1 EdDSA Signature

In this phase, signature (R,S) with message m is gener-
ated.

1) Define r = H(hb||...||h2b−1||M).

2) Compute R′ = r ·B.

3) Calculate S = (r + H(ENC(R′)||ENC(A)||H(M))
·s) mod L.

4) compute R = ENC(R′)

5) Output EdDSA signature (R,S).

2.2.2 EdDA Verifiy

If following equation is satisfied, it means the signature is
valid.

8S ·B = 8 ·R+ 8Hash (R||ENC(A)||Hash(M)) ·A

or,

S ·B = R+Hash(R||ENC(A)||Hash(M)) ·A

2.3 Zero-Knowledge Proof

In this paper, we mainly use a technology ideal zero-
knowledge functionality Fzk. The standard ideal zero
knowledge functionality is defined by ((x,w), λ) →
(λ, (x,R(x,w))). λ is defined as empty string.

The zero knowledge functionality FRzk for relation R:
Upon receiving (prove, sid, x, w) from party Pi(i ∈ 1, 2);
if (x,w) /∈ R or sid has been previously used then ig-
nore the message. Otherwise, send (proof, sid, x)to party
P3−i [18]. This zero-knowledge proof functionality can be
implemented in the random oracle model [13].

The committed non-interactive ideal zero knowledge
functionality FR−comzk for relation R. It works as fol-
lows: On receiving (com-prove, sid, x, w) from a party
Pi(i ∈ 1, 2), ignore this message if (x,w) /∈ R or sid has
been previously used. Store (sid, i, x) and send (proof -
receipt, sid) to P3−i. Upon receiving (decom-proof, sid)
from a party Pi(i ∈ 1, 2), if (sid, i, x) has been stored then
send (decom-proof, sid, x) to P3−i.

In our two-part EdDSA protocol, we use the following

ideal zero-knowledge functionalities: F
Rp

zk , FRDL

zk , FRPDL

zk ,

FR−comzk , which are defined in [18]. There are three rela-
tions here:

1) Rp is used to prove that a Paillier homomorphic en-
cryption public key is successfully generated. Rp =
{(N, (p1, p2))|N = p1 · p2 and p1, p2 are prime} It is a
vaild Paillier public key, its proof in the [19].

2) Define the relation RDL to prove knowledge of the
discrete log of an Elliptic-curve point. RDL =
{(G, G, q, P, w)|P = w ·G} In our two-part EdDSA
protocol, we use the Schnorr proof [20].

3) RPDL is used to prove that a discrete log is encrypted
by Paillier algorithm: RPDL = {(cPaillier, pk, Q1,
G, q), (s1, sk), s1 = Decsk(cPaillier), Q1 = s1 · G
and s1 ∈ Zq}. pk is a Paillier public key and sk is
associated private key.

2.4 Paillier Encryption

In our two-part EdDSA protocol, we use Paillier encryp-
tion [19]. The Paillier encryption is defined as the follow-
ing steps:

Key Generation.

1) Choose two random large prime numbers p and
q with equal length.
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2) Compute n = pq, k = n + 1, η = φ(n) and µ =
φ(n)−1 mod n,where φ(n) = (p− 1)(q − 1).

3) The private key is sk = (η, µ) and the public
key is pk = (n, k).

Encryption.

1) Choose a message m(0 6 m 6 n) randomly.

2) Select a random v where Z∗n2 .

3) Calculate c = km · vnmod n2 = Encpk(m)).

Decryption.
m = L(cηmod n2) · µmod n, where L(x) = x−1

n .

Homomorphic Properties.
Define c1 = Encpk(m1), c2 = Encpk(m2), pk is pub-
lic key, sk is private key.

1) Encpk(m1) · Encpk(m2) mod n2 = Encpk(m1 +
m2 mod n).

2) Encpk(m1)m2mod n2 = Encpk(m1m2 mod n).

3) Encpk(m1)kmod n2 = Encpk(km1 mod n).

In this paper, we define homomorphic addition symbol
is ⊕ and define homomorphic multiplication symbol is
�. For example, c1 ⊕ c2 = Encpk(m1 + m2),k � c1 =
Encpk(m1)k.

3 Two-Part Edwards Curve Digi-
tal Signature

In this part, we show the two-part EdDSA signing pro-
tocoal. Two parties P1, P2 interact with each other to
generate the public key and signature. The protocol has
four phases which are setup, two-part key generation and
two-part signing. The verify phase is same as EdDSA
verify phase.

3.1 Setup

There are parameters:
params = (a, d, q, L,B,H(x), b, ENC(p), DEC(i)).
These parameters are the same with those in Section 2.1.

3.2 Two-Part Key Generation

In the two-part key generation phase, P1 and P2 interact
with each other to generate the two-part EdDSA public
key Q.

1) P1 chooses a random string k1 which is cryp-
tographic security. Then, P1 computes str1 =
Hash(k1). str1 is the P ′1s private key generat-
ing elements. Then, P1 computes itself private key
sl1 = str1 [len] ...str1

[
len
2 + 1

]
, which len is length

of str1. And then, P1 gets itself signing param-
eters perix1 = str1 [1] ...str1

[
len
2

]
. P1 computes

Q1 = sl1 · B. Then, P1 sends (prove-com, 1, Q1, sl1)

to FRDL−com
zk . At last, P1 generates a Paillier key-

pair (pk, sk). P1 sends (prove, 1, N(p1p2)) to F
Rp

zk ,
where pk = N = p1 · p2.

2) When P2 receives (proof, 1, Q1) from FRDL

zk and

(proof, 1, N) from F
Rp

zk successfully. P2 chooses
a random string k2 which is cryptographic se-
curity. Then, P2 computes str2 = Hash(k2),
str2 is the private key generating elements of
P2. Then, P2 computes itself private key sl2 =
str2 [len] ...str2

[
len
2 + 1

]
. The len is length of str2.

And then, P2 gets its own signing parameters
perix2 = str2 [1] ...str2

[
len
2

]
. P2 computes Q2 =

sl2 · B. And then, P2 sends (prove, 2, Q2, sl2) to
FRDL

zk . Finally, P2 computes Q = sl2 ·Q1 and stores
(sl2, Q, pk, perix2).

3) When P1 receives (proof, 2, Q2) form FRDL

zk , P1 com-
putes Q = sl1 · Q2, Q′ = ENC(Q). P1 stores
(sl1, Q, (sk, pk), perix1, Q′), and P1 sends (decom, 1)
to FRDL

zk . If not received , it abort.

4) Finally, if P2 receives (decom, 1, Q1) from FRDL

zk ,
computes Q = sl2 · Q1, Q′ = ENC(Q). P2 stores
(sl2, Q, pk, perix2, Q

′). Otherwise, it abort. Obvi-
ously, Q = sl1 · Q2 = sl2 · Q1 = (sl1 · sl2)B. Then
P1 and P2 interaction processes are described in Fig-
ure 3.

3.3 Two-Part Signature Generation

In two-part signature generation phase, P1 and P2 in-
teract with each other to generate the Two-part EdDSA
Signature (R,S).

1) P1 computes r1 = Hash(perix1||M) mod L. Us-
ing Paillier algorithm encrypt r1 and sl1, such
that C1 = Encpk(r1), C2 = Encpk(sl1). Then
P1 computes Qr1 = r1 · B. Finally, P1 sends
(prove, 1, (c1, c2), (r1, sk)) and (commit, 1, Qr1) to
FRPDL−com
zk .

2) If P2 receives (proof, 1, (Qr, C1, C2)) and (commit, 1)
from FRPDL−com

zk ,
then it executes the following steps ; otherwise, it
aborts. P2 computes r2 = Hash(perix2||M) mod L.
P2 computes Q′2 = ENC(Q2); Then, P2 com-
putes n1 = Hash(perix2||Q′2) mod L and n2 =
Hash(perix2||Q′) mod L. Then P2 computes e =
Hash(m) mod L and Qr2 = r2 · B. P2 sends
(prove, 2, R) to FRDL

zk .

3) When P1 receives (proof, 2, Q2) from FRDL

zk , P1 sends

(decom, 1) to FRDL−com
zk .

4) When P2 receives Qr1, P2 computes part of signa-
ture R = e · r2 · Qr1 and r = ENC(R). Next, P2

computes k = Hash(r||Q′||m) mod L. According
to the homomorphic properties of Paillier cryptosys-
tem, P2 can compute s1 = ((r2e) mod q + n1q)�C1,
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Figure 3: Two-part EdDSA key generation

s2 = ((ksl2) mod q + n2q) � C2. P2 computes
s′ = s1 ⊕ s2. Finally, P2 sends s′ to P1.

5) If P1 receives s′ from FRDL

zk , then goes to the fol-
lowing steps; Otherwise, it abort. P1 can compute
the R, P1 decrypts s′ using its private such that
S = Decsk(s′) mod L. Finally, P1 can verify and
output the signature (R,S). Then P1 and P2 inter-
action processes are described in Figure 4.

3.4 Correctness

The correctness of the two-part EdDSA is proven as fel-
lows:

S = Dec(s′) mod L = Dec(s1 ⊕ s2) mod L

= Decsk((((r2e) mod L+ n1L)� c1)⊕
(((ksl2) mod L+ n2L)� c2))mod L

= ((r2e) · r1) + ((ksl2) · sl2) mod L

= r1r2e+ ksl1sl2 mod L

4 Security Model

Definition 1. Define a security of the digital signature
scheme π = (GenKey, Sign, V erify), we define an exper-
iment Sign-forgeA,π(1h) consists of the following steps:

1) GenKey(1h)⇒ (pk, sk).

2) ASignsk(·)(1h, pk)⇒ (m∗, σ∗).

3) M is the set of all message which can be queried.
An adversary A can query the oracle to get mes-
sage. Then, the experiment outputs 1 if m∗ /∈ M
and V erify(m∗, σ∗) = 1.

Definition 2. If a signature scheme π is existentially
unforgeable under chosen message attack for every prob-
abilistic polynomial-time adversary A, then there exist a
negligible function η such that for every h.

Pr[Sign-forgeA,π(1h) = 1] 6 η(h).

Then, we define an experiment DistSign-
forgebA,π(1h). We define

∏
is our two-part signing

protocol. In this experiment, an adversary A can control
one of parties.

∏
b(·, ·) is an oracle which executes the

instructions from party P3−b honestly. The adversary A
can interact with part P3−b to generate signatures with
any message. In this protocol, the key generation process
is executed only once, and the signature generation
process can be executed many times. The adversary A
can query the oracle inputed two parameters , one is a
session identifier (sid) and the other is input message or
next incoming message. The oracle works as follows:

1) Upon receiving a query (0, 0) at the first time, P3−b
uses the oracle to initialize a machine M in the
two-part key generation part of protocol

∏
. If P3−b

sends the first message in this two-part key genera-
tion phase, then this message is the oracle’s reply.

2) When oracle receives a query (0,m), if the two-part
key generation has not been completed, then oracle
sends the message to the machine M as the next in-
put message, and return M ’s reply. (If key genera-
tion phase has been finished, then oracle reply ⊥ and
exit.)

3) When oracle receives a query (sid,m), where sid 6=
0 and m is not the empty string. If two-part key
generation phase is not completed, then the oracle
returns ⊥.



International Journal of Network Security, Vol.23, No.4, PP.558-568, July 2021 (DOI: 10.6633/IJNS.202107 23(4).02) 563

1P 2P

3q

2 4,rQ q

4q

( )modskS Enc s L¢=

( , )R S

1 2s s s¢ = Å

1rQ

decom

s¢

1, , , , 1m sl Q Q perix¢
1, , , , 2m sl Q Q perix¢

1 ( 1|| )modr Hash perix m L=

1 1( )pkC Enc r=

2 1( )pkC Enc sl=

1 1rQ r B= ×

3q

1 2 3Commit, , ,C C q
*R

zkF

2 ( 2 || )modr Hash perix m L=

2 2( )Q ENC Q¢ =

1 2( 2 || )modn Hash perix Q L¢=

2 ( 2 || )modn Hash perix Q L¢=

( ) mode Hash m L=

2 2rQ r B= ×

4q
*R

zkF

*R

zkF
2 1rR er Q= ×

( )r ENC R=

( || || )modk Hash r Q m L¢=

1 2 1 1(( )mod )s r e L n L C= + Ä

2 2 2 2(( )mod )s ksl L n L C= + Ä

*R

zkF
( ) mode Hash m L=

2rR re Q= ×

1rQ

Compute

Compute

Compute

Compute

Generate proof of

Generate Commit of

Verify

Compute

Compute

Compute

Compute

Compute

Compute

Generate a proof 2rQof

Verify

Compute

Compute

Compute

Compute

Compute

Compute

Compute

Compute

Compute

Verify and output

Figure 4: Two-part EdDSA siganture generation

4) Upon receiving a query (sid,m), the two-part key gen-
eration phase has completed and this sid is the first
time requested, that means this is a sign require. The
oracle call a new machine Msid running the instruc-
tions of part P3−b in protocol

∏
with (sid,m). Msid

is initialized with the key and the parameters stored
in M at the end of the two-part key generation phase.
If party P3−b sends the first message in the two-part
signing phase, then the oracle replies with this mes-
sage.

5) When oracle receives a query (sid,m), the two-part
key generation has already finished and sid is not the
first time queried, then the oracle sends m to Msid.
Msid uses the message m as an input message. The
oracle uses Msid’s output as the next message. If
Msid completes, then Msid’s output is returned.

In the above process, an adversary can control part
Pb(b ∈ 1, 2) and can interact with

∏
b in this experi-

ment. If the adversary can forge a signature using a
message which has not been queried to the oracle, then
the adversary wins. We define the experiment DistSign-
forgebA,π(1h) and the security definition of protocol

∏
.

Definition 3. We define an security experiment
DistSign-forgebA,π(1h) as follows:

1) A
∏

b(·,·) ⇒ (m∗, σ∗).

2) Let M be the set of all messages which adver-
sary A could query. The adversary can query or-
acle with form (sid,m). If and only if m∗ /∈ M
and V erifypk(m∗, σ∗) = 1, then the experiment
outputs 1, where the pk is two-part signing sys-
tem verification key which output by P3−b in two-
part key generation. Verify is an algorithm of π =
{GenKey, Sign, V erify}.

Definition 4. A protocol
∏

is a security two-part pro-
tocol for the two-part signature generation for scheme π,
if for every probabilistic polynomial-time oracle machine
adversary A and b ∈ [1, 2], there exist a negligible function
η such that for every h:

Pr[DistSign-forgebA,π(1h) = 1] 6 η(h).

Definition 5. We define a security function SignEdDSA,
this function have two subroutines work in the security
analysis of protocol

∏
. These two subroutines as follows:

1) (x,Q)← Expt-EdDSAkeygen(n).

2) (R,S)← Expt-EdDSAsigning(m).

Define Expt-EdDSAkeygen(n) is EdDSA key generation
function, which generate an EdDSA key pair (x,Q) by
invoke the EdDSA key generation algorithm. We define
n as a counter. Define Expt-EdDSAsigning(m) is Ed-
DSA singing function, which generate an EdDSA signa-
ture (S,R) by invoke the EdDSA signing algorithm. We
define m is input message.
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5 Security Analysis

In this section, we give the security analysis of our two-
part protocol.

Theorem 1. If the EdDSA signature is existentially-
unforgeable under a chosen message attack and Pail-
lier encryption scheme is indistinguishable under chosen-
plaintext attack, then our two-part signature algorithm is
secure.

Proof. First of all, in our protocol we use zero-knowledge
technology to proof data between P1 and P2.All par-
ties can prove the authenticity of the data through zero-
knowledge proof-of-knowledge. If adversary A can break
these zero-knowledge model with probability ε, then it
can break this two-part protocol with probability ε±η(k)
where η(k) is a negligible function.

In the process of proof, we assume adversary can cor-
rupt P1 or P2 in the experiment. We prove respectively
that P1 corrupted and P2 corrupted. In addition, we con-
struct an adversary As who can forge a vaild EdDSA sig-
nature with probability µ1 in Definition 1. The proba-
bility µ1 is close to the probability that A forges a vaild
signature in Definition 3 negligibly. Adversary As can
invoke EdDSA key generation function and EdDSA sign-
ing function which describe in Definition 5 with input
(sid,m).

Assume that Paillier has CPA security, then for any
probabilistic polynomial time algorithm A and b ∈ [1, 2]
exists a probabilistic polynomial-time algorithm As and
a negligible function µ for every h:

|Pr[Sign-forgeA,π(1h) = 1]

− Pr[DistSign-forgebA,
∏(1h) = 1]| ≤ µ(h).

(1)
Where, π denotes EdDSA signature scheme and

∏
denotes the Two-part EdDSA signature scheme. If Ed-
DSA is security, then according to Definition 2 there
exists a negligible function µ′ for every h, we can con-
clude |Pr[Sign-forgeA,π(1h) = 1]| ≤ µ′(h). On the
basis of Equation (1), we conclude that |Pr[DistSign-
forgebA,

∏(1h) = 1]| ≤ µ(h)+µ′(h), obviously µ(h)+µ′(h)
is negligible, thus according to Definition 4 we conclude∏

is security. Now, we just need to proof Equation (1)
holds in the case of b = 1 and b = 2, respectively.

If b = 1, it means adversary A corrupts part P1.
Let A be a probabilistic polynomial-time adversary
in DistSign-forgebA,

∏. We construct a probabilistic

polynomial-time adversary As in Sign-forgebA,π. As sim-
ulates the execution for A as follows:

1) First, adversary As can invoke Expt-
EdDSAkeygen(n) for Q. Q is the public key of
EdDSA.

2) Second, As invokes A by inputing 1h to simulate or-
acle

∏
for A in DistSign-forge as follows:

a. At the beginning of the experiment, A always
replies ⊥ in the following two cases. The first
case is that the key generation phase has not
completed the second case is that the adversary
A has not query (0, 0) to

∏
. After A queries

(0, 0) to
∏

that means this experiment is start-
ing.

b. When As receives the first message (0,m1) from
P1. It is the first message in the two-part key
generation phase. As computes the oracle’s re-
ply as follow steps:

i. Adversary As can analyze message
(prove, 1, Q1, sl1) sent by P1 to FRDL−com

zk .

ii. Adversary As checks Q1 = sl1 · B. If this
equation holds, As calculates Q2 = (sl1)−1 ·
Q. Otherwise, As chooses a random point
as Q2.

iii. Adversary As sets the oracle’s replay to be
(proof, 2, Q2) and sends it to A.

iv. Adversary As can analyze message

(prove, 1, N, (p1, p2)) sent by P1 to F
Rp

zk .

v. Adversary As checks the equation N = p1 ·
p2 = pk, If this equation is not equal, abort.

vi. Adversary As stores
perix2 = str2 [1] ...str2

[
len
2

]
.

c. Adversary receives the second message (0,m2)
from P1 and works as follows:

i. As parses m2 form of (decom, 1) as A in-
tends to send to FRDL−com

zk .

ii. If Q1 6= sl1 · B, As generates the oracle
response to P2 and aborts.

iii. As stores (Q, perix2, sl2, pk) and the
two-part key generation phase is completed.

d. As receives a query (sid,m) where sid has not
been queried yet. Adversary As could invoke
function Expt-EdDSAsigning(m) with input m.
The function will return a vaild EdDSA signa-
ture (R,S). Then, As will reply to A as follows:

i. When first message (sid,m)
received is in the form of
(prove, commit, (C1, C2), (Q1, sl1), r1).
If Qr1 = r1 · B and C1 = Encpk(r1),
C2 = Encpk(sl1), then As sets
Qr2 = (r1)−1 · R. Otherwise, As ran-
domly selects a point as Qr2. As sends
the message (proof,Qr2, 2) to A that A
expects to receive.

ii. Upon receiving a message of the form
(decommit, 1) for the second time from A.
If Q1 6= sl1 · B, then exit. Otherwise, A
chooses a random number ρ ∈ Z, compute
S′ = Encpk(S + ρ · L), where S is received
from function Expt − EdDSAsigning(m)
and then As sets the oracle reply S′ to A.
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iii. Once A halts and outputs a pair
(m∗, σ∗) , adversary As outputs (m∗, σ∗).
At this point, we could prove that Equa-
tion (1) holds. Our ultimate purpose here
is to prove that A’s view in the simulation
by As is identical to its view in a real exe-
cution.

In the two-part key generation phase, there is a
difference between the simulation and the real execu-
tion. The difference is the generation of Qr2. In the
real execution, P2 computes P2’s private key sl2 =
str2 [len] ...str2

[
len
2 + 1

]
. And then, P2 computes Q2 =

sl2 · B. However, in the simulation, if As not exit, then
As computes Q2 = (sl1)−1 ·Q, where Q is the public ver-
ification key received by As from key generation function
Expt-EdDSAkeygen(n). Thus, the distribution over sl2·B
and (sl1) · Q are identical. Obviously, the public key Q
obtained by executing the simulation process is the same
as that obtained by the function Expt-EdDSAkeygen(n)
and we can think of Q as random point.

Therefore, in this phase the A’s view in simulation is
identical to its view in a real execution.

In the two-part signing phase, there are two differences.
The one difference is the generation of R. In the real
execution, P2 computes r2 = Hash(perix2|| m) mod L
and Qr2 = r2 · B. And then, P1 computes R = er1 ·Qr2
or P2 computes R = er2 · Qr1. But in the simulation,
P2 computes Qr2 = (r1)−1 · R, where R is generated by
signing function Expt-EdDSAsigning(m). Obviously the
distribution between Qr2 = r2 · B and Qr2 = (r1)−1 · R
is identical. The other difference is the generation of S′

which is the ciphertext of signature. In the simulation, S
is an encryption of S + ρ · L. However, in real execution,
it is an encryption of s = r1r2e+ ksl1sl2 + (n1r1 +n2r2)q
where n1,n2 are hash value generated by P2.

Observe that by the definition of EdDSA signature
s = r + kd = r1r2e + ksl1sl2 mod L, we can imply that
r1r2e+ksl1sl2 = smodL, then r1r2e+ksl1sl2 = s+ l ·L.
Therefore, the difference between the real execution and
simulation with S is that:

1) Real execution: s+ l · L+ ρ · L.

2) Simulation: s+ ρ · L.

Since the distribution of S in the real execution and the
simulation is statistically close. We prove that Equa-
tion (1) holds for b = 1.

If b = 2, we use a similar method described above,
adversary As corrupts part P2. Let A be a probabilis-
tic polynomial-time adversary in DistSign-forgebA,

∏ and
As be a probabilistic polynomial-time adversary in Sign-
forgeA,π.

In this phase simulation must be designed to work
without knowing the paillier private key. That means As
should not know the paillier private key. There is a poten-
tial problem here, P2 may send the wrong value to P1. In
order to solve this problem, we assume that As will abort

at some random point. As chooses i ∈ [1, ..., p(h) + 1] ran-
domly. p(h) is the upper bound of the number of query.
If As chose correctly with probability 1

p(h)+1 that means

As could simulate A’s view with probability 1
p(h)+1 . In

this case, we consider S′ is right. Thus, A can forge a
signature in SignEdDSA with probability at least 1

p(h)+1 .

The probability of As can forge a signature in
∏

also at
least 1

p(h)+1 .

The As work as follows:

1) Adversary As receives (1n, Q) from key generation
function Expt−EdDSAkeygen(n), where Q is a pub-
lic key for EdDSA.

2) Let p(h) be upper bound of the query times that
A queries

∏
, As chooses i ∈ {1, 2, ..., p(h) + 1} ran-

domly.

3) As invokes A and simulates oracle
∏

in DistSign-
forgeb=2

A,
∏(1h) as follows: In two-part key generation

phase.

a. Before the two-part key generation phase fin-
ished, As always replies ⊥ to all queries. What-
ever the content of the query is. Before A query
(0, 0) to

∏
, As always replies ⊥ to all queries.

b. After A queries (0, 0) to
∏

, As generates a valid
paillier encryption key-pair (sk, pk) and sets the
oracle reply (proof, 1, N) and (commit, 1).

c. Adversary As receives the first message (0,m1)
from P2. It is P2’s first message in the two-part
key generation phase.

i. Adversary As can analyze message
(prove, 2, Q2, sl2) sent by P2 to FRDL

zk .

ii. As checks Q2 = sl2 · B. If this equation is
not equal, then abort.

iii. As sets the oracle reply to
(decom, 1, Q1), where Q1 = (sl1)−1 ·Q.

iv. Adversary As stores
perix1 = str1 [1] ...str1

[
len
2

]
.

v. As stores (sl1, pk, sk, perix1, Q) two-part
key generation phase finished.

In the two-part signing phase:

4) Upon receiving a query of the form (sid,m) where
sid has not been queried yet. As queries the Sign-
ing function Expt− EdDSAsigiing(m∗) with m and
obtains a valid signature (R,S). Then, adversary As
interacts with A in the following steps:

a. A receives the first message (proof, 2, Q2) that
A sends to FRDL

zk . As checks Q2 = r2c · B and
that Q2 is a vaild point. As computes Qr1 =
(r2)−1 · B. As sends (decom,Q1, 1) to P2 as if
coming from FRDL

zk .
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b. When receiving second message (sid,m2). The
message m2 is encrypted signature s′. If and
only if this is the i-th call by A to the oracle

∏
it continues. Otherwise, it aborts.

5) Once A halts and outputs (m∗, σ), As outputs
(m∗, σ) and halts.

When the (sid,m) is first query and it is the j − th
query. P1 does not obtain a valid signature (R,S) with
public verification key Q. We consider i = j, then the
difference between the A’s view in a real execution and
the simulated execution by As is C1 and C2 . In the real
execution, C1 = Encpk(sl1), C2 = Encpk(r1), Q1 = sl1 ·B
and r1 = Hash(perix1||M) mod L, however in the simu-
lation sl1 and r1 are random value, it is identical. Since
As has not hold the pailier private key in the simulation.
The indistinguishability of the simulation follows from a
reduction of indistinguishability of the encryption scheme
under CPA. We can conclude that:

|Pr[Sign-forgeA,π(1h) = 1|i = j]

− Pr[DistSign-forge2A,
∏(1h) = 1]| 6 η(h).

Pr[DistSign-forge2A,
∏(1h) = 1]

6
Pr[Sign-forgeAs,π(1h) = 1]

p(h) + 1
+ η(h).

Pr[Sign-forgeA,π(1h) = 1]

≥
Pr[DistSign-forge2A,

∏(1h) = 1]

p(h) + 1
− η(h).

We can conclude that if adversary A forges a valid
signature in Sign-forgeA,π with a non-negligible proba-
bility, then As can forge a valid signature in DistSign-
forgeb=2

A,
∏with a non-negligible probability.

6 Efficiency and Experimental
Results

In this section, we will give a comparison of our work with
other protocols and show the experiment results.

We implemented our protocol, Zhang’s [28] protocol,
Lindell’s [18] protocol and Zhang’s [27] protocol, respec-
tively, using Java(11.0.3) and Jpbc-lib on personal com-
puter with Intel i5-4200H @2.80Ghz processor, 8G bytes
memory and Microsoft Windows 10 x64 professional op-
erating system. In [28], [18] and our protocol we use
curve25519. We also implemented these four protocols
on Android devices(HUAWEI nova3e with Kirin 659 2.36
Ghz processor, 4G bytes memory and Android 9 operat-
ing system).

First of all, we compare the running time of the four
protocols in different phases on PC and smartphone. The
results are illustrated in Figure 5 and Figure 6, respec-
tively, which were obtained in 30 executions. The exper-
imental results show that our protocol runs faster than
the other two algorithms [18, 28] in the key generation

phase under the same elliptic curve conditions. The two-
part identity-based signature scheme [27] runs faster in
key generation phase and sign phase. However, it takes
more time in the setup phase and have a problem of key
escrow.
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Figure 6: Run time on Smartphone

Secondly, we analyzed the efficiency of each stage of
our scheme on PC. As shown in Figure 7. In two-part key
generation phase, Keygen phase1 is defined as the execu-
tion process of P1 before the first message, Keygen phase2
as the execution process of P2 between the first message
and the second message, and Keygen phase3 as the exe-
cution process after the second message. In two-part sign-
ing phase, Sign phase1 is defined as the execution process
of P1 before the first message, Sign phase2 as the exe-
cution process of P2 between the first message and the
second message, Sign phase3 as the execution process of
P2 between the second message and the fourth message,
and Sign phase4 as the execution process of P1 after the
fourth message.

Then, we compare the storage space of these three sig-
nature protocols in Table 1. Our public key length is
one byte shorter than those of other two schemes. Our
signature length is 8 bytes shorter than that in Lindell’s
protocol [18].

Finally, we analyze the size of message as follows. In
the two-part key generation phase, the length of all mes-
sages of P1 is 256bits + 1024bits + 512bits = 1792bits.
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Table 1: Length of public key and signature

Protocol Public key Signature
Zhang’s [28] 33 bytes 64 bytes
Lindell’s [18] 33 bytes 72 bytes

Ours 32 bytes 64 bytes

The length of all messages of P2 is 256bits. In the two-
part signing phase, the length of all message of P1 is
256bits+ 1024bits+ 1024bits = 2304bits, the length of all
messages of P2 is 2048bits + 256bits = 2304bits. There-
fore, it is efficient for practical application even in re-
stricted environment.

7 Conclusions

• In this paper, we have proposed a two-part signature
on edwards curve. This protocol could be effectively
applied in blockchain to reduce the risk of key loss.
We describe the steps of this protocol and give an
analysis of security. Further, we implemented our
algorithm and compare with other schemes.

• This protocol can be applied to many real-world sce-
narios. For example, the signature of blockchain
transactions. The security authentication of users
in the Internet of Things and Internet of Vehicleetc.

• In the future work, we need implement algorithm in
real-world applications to further obtain operational
data and improve the real execution efficiency of the
algorithm.
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