International Journal of Network Security, Vol.23, No.2, PP.270-277, Mar. 2021 (DOI: 10.6633/1JNS.202103-23(2).10)

270

Enhanced Deduplication Protocol for Side
Channel in Cloud Storages

Jie Ouyang!, Huiran Zhang'?3, Hongqing Hu!, Xiao Wei%?3, and Dongbo Dai!
(Corresponding author: Dongbo Dai)

School Computer Engineering and Science, Shanghai University, Shanghai 200444, China'

Shanghai Institute for Advanced Communication and Data Science, Shanghai 200444, China?
Materials Genetics Institute, Shanghai University, Shanghai 200444, China3
(Email: dbdai@shu.edu.cn)
(Received July 31, 2019; Revised and Accepted Dec. 3, 2019; First Online Feb. 3, 2020)

Abstract

Cloud storage usually adopt client-based deduplication,
which can achieve considerable savings in both storage
and bandwidth. However, an attacker can carry out a
steal-file-content (SFC) attack, exposing data privacy. In
this paper, a simple yet effective scheme, called double
bytes transport protocol (DBTP), is proposed. In this
scheme, the client-side requests deduplication checks of
the double chunks simultaneously, and the server-side re-
ceives the deduplication request and response with a rea-
sonable value. The result demonstrates that DBTP can
significantly mitigate the side channel’s risk while main-
taining the high bandwidth efficiency of deduplication.

Keywords: Cloud Storage; Data Privacy; Deduplication
Check; Side Channel

1 Introduction

As a convenient and popular service model, cloud storage
services enable users to store and access various resources
in the cloud on demand. Major cloud storage providers
offer multiple file types of storage. According to a re-
port of an International Data Corporation (IDC), the to-
tal amount of digital data in global data centers is explod-
ing rapidly [16]. According to the latest information, the
volume of global digital data created and replicated is up
to 33 Zettabytes in 2017, while with the advent of the era
of big data, it will exceed 175 Zettabytes in 2025. IDC
analysis also shows that 49% of the data will be stored
in a public cloud environment and close to 75% data has
a copy. This similar phenomenon also exists in the re-
search report of Microsoft Research Institute [10]. Based
on the above surveys, a large amount of redundant data
will storage in the cloud. If the cloud storage services
cannot process these redundant data, it will cause waste
of cloud storage space and increase network bandwidth
when users upload files to cloud storage.

Nowadays, there are two main ways to implement the

deduplication check. They are service-side deduplication
check and client-side deduplication check respectively. In
the former, the users must upload the data to the server-
side first, then server-side deletes the redundant data
again. This approach can reduce storage overhead, but
cannot save bandwidth. In the latter, client-side divide
the file into multiple chunks and send chunks hash sig-
natures to cloud and check for the existence or inexis-
tence status of chunks. It can not only delete redundant
data but also save bandwidth. Therefore, the commercial
cloud storage services mostly adopt the cross-user client-
side deduplication check to maintain a specified number
of copies of files [13]. It can achieve the maximize the
utilization of storage space.

Although cross-user client-side deduplication check can
bring the above benefits, it will also lead to the threat of
side channel [4]. According to the traditional deduplica-
tion check, if fingerprint matching of a chunk does not
exist, it means that there is no such chunk on the server-
side. The server-side will feed back to the client-side and
request to upload the file chunk. If fingerprint matching
is successful, the file chunk does not need to be uploaded.
Based on the above observation, the client-side needs to
receive the exact feedback from the server-side and de-
cides whether to upload file chunk. However, the users
can always obtain the determined existence or inexistence
information of the chunk by observing the data traffic
transmitted between the client-side and the server-side.
Thus, existence or inexistence response from server-side
products the threat of data privacy leakage. and creates
a side channel [4]. This privacy leakage can lead to the
following potential attacks.

Identifying files: In order to identify the existence or
the inexistence status of a specific file, an attacker per-
forms a deduplication check by using well-designed file
template.Violent file cracking can be seen as the most
straightforward privacy leak.

Stealing the file content: Normally, an attacker can
check whether a particular file is stored in a cloud stor-

International Journal of Network Security, Vol.23, No.2, PP.270-277, Mar. 2021 (DOI: 10.6633/1JNS.202103-23(2).10)

age. However, what is more serious is that the attacker
might apply this attack to multiple versions of the same
file and obtain the secret information of files by brute
force. As shown in Figure 1, the file T is the target file to
be attacked. The attacker has obtained other information
about file T except x. In order to steal the secret content
of x, the attacker try to use a way of brute force. It uses n
files with all possible values of x (x1, X2, ..., X,,) to probe
deduplication respectively. If only file F,, does not upload
the file chunk, the attacker will be very sure that the se-
cret information is x,,. Because the server-side identifies
the existence of the unique chunk x,,, the content of x is
stolen by the attacker. If the number of possible versions
of the target file is moderate [5], the success rate of this
attack is very high.

Covert Channel: As long as the two parties reach a
consensus, a covert channel can bypass the censorship and
communicate with each other [12,22]. It means that file
existence status can be used as the medium of communi-
cation.

T X
F; X
E, X,

Figure 1: The attack in chunk-level deduplication

The obvious drawback of the traditional deduplication
check is that the attacker can continuously use templates
of file chunks to violently verify the sensitive information
of the file which are stored in server-side, but attacker
usually blocks the upload of file chunks. Because the tem-
plates of these file chunks can be used repeatedly, thus this
is one of the key factors that leakage of user data privacy.
However, the server-side does not take effective measures
to against this threat.

In order to address these challenges, we propose dou-
ble byte transport protocol (DBTP), a simple yet effective
strategy to ensures a balance between privacy security and
deduplication check benefit. It achieves the two-side pri-
vacy (existence privacy and inexistence privacy). Since
deduplication check of single chunk make the user clearly
knowing whether the chunk exists on the cloud, the strat-
egy uses auxiliary chunk to perform the deduplication
check on double chunks at once and return the reason-
able value. This means that there exist enough room to
confuse the attacker’s judgment when client-side performs
deduplication check. In particular, in order to solve side
channel, there is set a list D for recording dirty chunks (file
chunks that need to be uploaded but not uploaded under
normal deduplication check). Chunk list H for recording
chunks that no longer needs to be checked. It helps save
bandwidth and storage overhead. As can be seen from Ta-
ble 1, compared to existing solutions, the DBTP protocol

271

has its own advantages, such as no redundant parameter
configuration, no additional hardware, two-side privacy
protection and storage space savings.

Table 1: Comparisons between DBTP and other schemes

NoArgument | NoHardware | Privacy | Save
RT No Yes No No
ZEUS Yes Yes No Yes
ZEUST | No Yes Yes No
RARE | Yes Yes Yes No
Mozy No Yes No No
Shin Yes No Yes Yes
Heen Yes No Yes Yes
DBTP | Yes Yes Yes Yes

The scheme achieves the two-side privacy and main-
tains the deduplication rate of the original deduplication
check. Specifically, if a double chunks combination is
confirmed not in the cloud by deduplication check, the
client-side will only upload one of the chunks first. The
remaining chunk will be combined with the other chunk
that is selected from the remaining list chunks. It is dif-
ferent from RARE [5] which implements privacy security
with excessive redundant chunks upload. Other similar
programs, just like ZEUS [15] can’t satisfy the inexis-
tence privacy and RT [4] only offer the inexistence pri-
vacy. ZEUST [15] is based on ZEUS and RT to enhance
the privacy security, but the setting of the random thresh-
old parameter severely reduces the deduplication rate.

We conducted a detailed security analysis about the
return values of the server-side in the DBTP scheme. It
demonstrates that DBTP can effectively resist side chan-
nel attack.In addition, this method only involves the inter-
actions between the client-side and server-side and does
not need the extra hardware [23]. It is only minimally
modified on the original deduplication check technology.

The DBTP implementation does not require additional
parameter configuration. Most solutions [4,12] are to en-
sure privacy security through random threshold parame-
ters. ZEUST [15] adopt a random threshold chosen uni-
formly in a range [2, d] to maintain an inexistence privacy.

2 Background and Related Work

2.1 Deduplication in Cloud Storages

Data deduplication is an effective technique to eliminate
the redundant data which results in storage saving di-
rectly [8,20]. For example, as shown in Figure 2, the
client-side of user Aaron first uploads the file fm, then
the file f,, will be divided into A, B, C, D, E, and F
chunks by the dicing algorithm. When the hash values of
these chunks are matched, it is found that these chunks
are not in the cloud.Therefore, they are all uploaded to
the server-side. Later, another client-side of user Beck

International Journal of Network Security, Vol.23, No.2, PP.270-277, Mar. 2021 (DOI: 10.6633/1JNS.202103-23(2).10)

wants upload file fn to own cloud folder. After dedupli-
cation check, he or she founds that chunks E, F, and C
already exist in the cloud. Thus, the user Beck only needs
to upload H, I and J, which are three chunks that did not
exist in the cloud. The result is that server-side saves
storage and respective bandwidth. It is foreseeable that
as the size of users increases, the amount of redundant
data is bound to increase more. At that time, the bene-
fits of deduplication check must be considerable. Xia et
al. [18] present a P-Dedupe system. It uses pipeline and
parallelization techniques to accelerate the deduplication
process. In our work, we focus on cross-user client-side
data deduplication. In addition, different chunk segmen-
tation algorithms can use different slice sizes for files. For
example, Dropbox [3] performs the deduplication check
and the file is partitioned to some chunks with a deter-
mined value of 4MB size.

Exitense
- RN Exitense
JEITES exitense

v

B F c

1

Ll =[]

‘
i
client-side

User Beck divides file f, |
into above chunks.

client-side

User Aaron divides file f,

into above clunks. |

Figure 2: An example of deduplication check

The most mainstream scheme of deduplication check is
the cross-user client-side data deduplication. Cross-user
means that deduplication check is executed in the stor-
agespace shared by all users. Compared with deduplica-
tion check under single-user, redundant data deletion rate
based on cross-user has increased a lot. Client-side means
that the deletion of redundant data is performed on the
client. The process is that the client-side sends the hash
value of the chunks to the server-side. According to the
hash matching results of the server-side, the client-side
determines whether the chunks are to be uploaded to the
server-side. It is illustrated in Figure 3, where the client-
side sends direction request and server-side gives direction
response. It is used to tell user whether the chunk need
to be uploaded to the cloud.

2.2 Related Work for the Side Channel

Especially, after performing hash matching of file
chunk,the cloud needs to deterministically return the exis-
tence status.The problem of side channel which is appear-
ing in the traditional deduplication check. It is defined by
Harnik et al. [4]. In order to address the problem of side

272

divide the file
—Etn chunks a,b,c,etc

calculate the hash
value of the
chunks according
to h(*)

1
|
EIEIE I
|
|

users upload file

—_—
file

USERS

Is chunk x(a or borc)in

upload hash values to the cloud for
matching

¥es or no

Figure 3: Deterministic response of data deduplication

channel,they recommend using a random threshold solu-
tion (RT). The server-side assigns a threshold t, which is
belongs to [2, d]. Thus, it is only known by the server-
side. When a file chunk ¢, is uploaded and the number
of existing copies is greater or equal to t;, the system will
perform client-side deduplication. The problem of this
scheme is the uncontrollability of the d value. If the d
is too large, the number of copies will be too much. If
the d is too small, it will lead to lower security. Thus, the
choice of this parameter is difficult. However, this random
threshold solution also has privacy issues. If the number
of chunk copies recorded in the cloud exceeds the speci-
fied threshold t,, the deduplication check will expose the
privacy of file existence. Compared to the global thresh-
old solution of Harnik, Lee and Choi [11] adopted a ran-
dom threshold t; at each uploaded chunk. It is claimed
to show stronger privacy than Harnik et al.’s solution.
Armknecht et al. [1] recently proved that deduplication
thresholds uniformly sampled from [1, B] achieve the op-
timal defense for the natural privacy measure. In particu-
lar, Wang et al. [9] designed the deduplication thresholds
based on a gametheoretic approach. Unfortunately, all of
the above proposals are based on the RT category, thus
have the same weaknesses.

The idea of Mozy [21] is that only small-size files con-
tain sensitive information, but large-size files such as mu-
sic and movie are not sensitive. Based on such assump-
tions, the scheme designs a threshold x for the file size.
If the size of the file is smaller than x, it is treated as
the small file, otherwise it is regarded as the large file.
Therefore, when the size of the file is larger than x, the
deduplication check will be performed, otherwise it will
not. Obviously, this lack of theoretical support, because
there is no necessary connection between the size of the
file and the importance of sensitive information.

Many previous studies focus on deduplication for pe-
riodical backup streams [7,12]. Spatial or temporal lo-
cality has been exploited in [17]. Yu et al. [19] propose
ZEUS which can achieve weak existence privacy but can-
not achieve inexistence privacy. In order to implement
two-side privacy, Yu et al. further propose ZEUS™. It is
to combine the use of ZEUS and RT.

International Journal of Network Security, Vol.23, No.2, PP.270-277, Mar. 2021 (DOI: 10.6633/1JNS.202103-23(2).10)

In addition to above solutions, there exist some re-
searchers recommend using the extra hardware between
the client-side and server-side to enhance the privacy of
data security. S. Li et al. [2] propose a secure and efficient
client-side encryption deduplication scheme (CSED). This
solution introduces a private key server to generate MLE
keys to resist brute force attacks. Shin and Kim [12] pro-
pose a deduplication protocol. It implements differential
privacy check based on an independent server bridging
between the client-side and server-side. Similar methods
is that Heen et al. [22] considered to set trusted gateway
bridges between the users and cloud. Based on the above
methods of using additional hardware, the deterministic
relationship that between client-side requests and server-
side responses can be broken.

3 Design and Implementation

As the methods mentioned above, there exist defects in
the processing of channel problems. In this section, the
DBTP algorithm is presented. It is used to solve the
channel problem and keep the benefits of deduplication
check. To ease reading, we summarize major notations,
they are used to construct the DBTP in Table 2.

Table 2: List of notations used in the DBTP
Symbols

Description

The file that will to be uploaded

The chunks in which the file {, is divided
Chunk size

chunks that no longer need to be checked
K is a collection of all file chunks

g assists in deduplication checking

X) Hash function

fy
Cn
¥
H
K
ta,
I(

3.1 The Simple Introduction of DBTP

The biggest problem with the traditional deduplication
protocol is that deduplication check with only one chunk
at a time. The server-side explicitly returns the state
of a chunk’s existence. Thus, the attacker can judge
whether the chunk has been transmitted by observing
network traffic. In DBTP, the basic idea is to use the
flag chunk(tag) for auxiliary transmission under different
transmission conditions. When the user runs the local
client program, the client-side will generate a flag chunk
according to the agreement with the cloud. According to
the agreement, the cloud defaults the flag chunk already
exists. The combination method of double chunks is only
[xi, Xi+1] or [x;, tag]. The deduplication check on the
other double chunk combination is based on the specific
implementation details of the DBTP algorithm.

273

3.2 Scheme Design in Detail

The cloud returns 0 to client indicate that the chunk does
not exist in the cloud. If cloud returns 1 means the op-
posite. As you know from the Figure 4, ¢; denotes the
number of chunks that the cloud requires client-side to
upload. The t; represents both chunks c¢; and ¢ are not
in the cloud storage, the to represents c; is not but co is
in the cloud storage, and so on.

Divide the file
into chumks x{ab.c.etc)

L,
- BoBEE™
— Uv CLOUD STORAGE
- E ‘m (o)

J

_ ala
g [ESDONISE

{0,0} i Mol

return json format of {60y to {03} fetSPIE Yol

client-side e —

L TSR » 10
Iesponse

1.1 i SRR

Figure 4: The process of the scheme

When the uploaded file is split, there are only two
types of combinations. One is the combination of ordi-
nary chunks like [x1, x3], neither x; nor xs is a tag. The
other is the combination of ordinary and tag chunks like
[x;, tag]. Deduplication check for a hash list of two chunks
at the same time. Obviously, the number of chunks re-
quired to be uploaded can only be selected in 0, 1, and 2.
First, except for t4, the others cannot equal 0. Otherwise,
the chunk will be missing. Thus, DBTP needs to meet t;
0, to # 0, and t3 # 0. Specifically, if the attacker is
interested in chunk cs, he or she can upload two chunks of
[c1, n] first. Thus, ¢; must exist in the cloud. Then, the
attacker can upload [c1, ¢z]. Obviously, if t3 # t4 and the
state value of ¢c; both are 1, the existence state of ¢y can
be easily determined. In this sense, t3 = t4 needs to be
satisfied. Similarly, it can be obtained that t; = t4 must
also be satisfied.

It is easy to draw the following conclusions that to
= t3 = t4 and the values must be selected from 1 and
2. Thus, the value of [t1, t2, t3, t4] can be [1,1,1,1],
[2,1,1,1], [1,2,2,2] and [2,2,2,2]. Nonetheless, if the result
returned by the serverside is [2, 2, 2, 2], it can offer the
strongest privacy, but deduplication will be ineffective.
However, [2,1,1,1] clearly exposed the privacy of inexis-
tence which c¢; and ¢y do not exist in the cloud. Therefore,
we can only choose from [1,1,1,1] and [1,2,2,2]. Obviously,
[1,2,2,2] is not conducive to bandwidth savings. Based on
the above analysis, the most suitable values of t are [1, 1,
1, 1]. It means that result will be returned to client-side
in Table 3.

International Journal of Network Security, Vol.23, No.2, PP.270-277, Mar. 2021 (DOI: 10.6633/1JNS.202103-23(2).10)

Table 3: Design for DBTP

t ci,¢;] | the chunk is uploaded by client-side
t1 =11 [0,0] C; O C;

to = 1 [0,1} C;

ty = 1 [1,0} Cj

t4 =1 [1,1] C; Or Cj

3.3 DBTP Algorithm Description

The algorithm shows the details of DBTP. First,in or-
der to prevent the illegal behavior of malicious attackers,
the system needs to verify the user’s identity information.
In the registration stage, the user needs to submit some
personal information to the server. After receiving the in-
formation, the server will issue a smart card to the client,
which contains some security parameters for later authen-
tication [2,18,19]. After the registration phase, users can
access the server in the authentication phase. Only users
with valid smart cards and corresponding passwords can
be successfully verified by the server. In that case, users
without permission will not be able to access the system
for malicious attacks. Besides this, we can also adopt an
efficient certificateless conditional privacy preserving au-
thentication scheme [2,14] or a privacy preserving public
auditing scheme [6]. Chunk list H store chunks that have
been uploaded. K is a collection of all file chunks. When
the user attempts to upload a file f, to the cloud. First of
all, the file f, will be divided into chunks by size p. The
number of file chunks may be odd or only the last a chunk
is left to be checked. Thus, it need use the tag chunk to
assist the deduplication check (line 02-03). It should be
emphasized that check of tag will return 1 by default.

Specifically, the client-side selects two different chunks,
h(c;) and h(c;), to carries out deduplication check (line
05-09). If i is equals to j means that only the last chunk
needs to be checked, so it will be matched to the tag
chunk for deduplication check (line 05-07). For the two
kind of combinations above, client-side performs dedupli-
cation check and cloud sends the values of chunk status
according to Figure 4 (lines 10-21). Depending on Ta-
ble 2, client-side receives values of JSON format from
cloud and decides which chunk will be uploaded (lines
22-37). Importantly,client-side save the chunk that is up-
loaded and exist in the cloud already to the H list. When
two chunks are combined next time, the chunks in the H
list will be ignored. It will speeds up the deduplication
check.

4 Performance Evaluation

4.1 Experiment Settings

Based on Linux system, we have built a preliminary pro-
gramming and testing environment. The scheme is tested
on centos-release-6-8 on Intel(R) Xeon(R) CPU E5-26xx

274

Algorithm 1 DBTP

1: Begin

2: client partitions f, into chunks cy,...,c,.

3: create a chunk tag = c,41.

4: while i,j € K and i,j ¢ H do

5. random selection of two chunks [c; ,c;] and i # j.
6: if i == j then

7: h(c;) = h(tag).

8 end if

9: client performs deduplication on [h(c;) ,h(c;)].
10: if ¢; and c¢; not in cloud then
11: cloud responses [0,0] according to Figure 4.
12: end if

13: if ¢; not in cloud and c; in cloud then

14: cloud responses [0,1] according to Figure 4.
15: end if
16: if ¢; in cloud and c; not in cloud then
17: cloud responses [1,0] according to Figure 4.
18: end if

19: if ¢; in cloud and c; in cloud then
20: cloud responses [1,1] according to Figure 4.
21: end if
22: if client receives [c; ,¢;]=[0,0] then
23: client uploads c; or c; for Table 2.
24: H=HUc; orc;
25: end if
26: if client receives [c; ,¢;]=[0,1] then
27: client uploads c; for Table 2.
28: H=HUc; and ¢
29: end if
30: if client receives [c; ,c;]=[1,0] then
31: client uploads c; for Table 2.
32: H=HUc; and c;
33: end if
34: if client receives [c; ,c;]=[1,1] then
35: client uploads c; or c; for Table 2.
36: H=HUc; and c;
37 end if
38: end while
39: End

v4. DBTP is implemented by Python 3.7.6 platform and
MySQL database.

4.2 Experiment Results

DBTP can realize two-side privacy to avoid side channel
attack. The privacy experiment uses 10M, 20M and 30M
files as the target test object. The cut size ¢ of each file
is set to 2K, 3K, 4K, 5K respectively. The experimental
results are shown in Figures 5, 6 and 7.

International Journal of Network Security, Vol.23, No.2, PP.270-277, Mar. 2021 (DOI: 10.6633/IJNS.202103-23(2).10) 275

Target file size: 10M

5000 4
4000 -
n
< 30001
[=
E
§ 2000
=
1000 |
DA —_ —_ —_
2K 3K aw 5K
File cutting value: the size of g
Figure 5: Target file size(10M)
Target file size: 20M
10000
BO0OD
w
f G000 4
o
"
s
a0
=
2000
o T T =T —r=
2K 3K aK 5K
File cutting value: the size of g
Figure 6: Target file size(20M)
Target file size: 30M
16000 -
14000
12000 4
»
T 10000
=
w BOOD
3
£ oo
=
4000
2000 4
o T T = =T

2K 3K 4K 5K
File cutting value: the size of g

Figure 7: Target file size(30M)

Deduplication ratio is an important indicator to mea-
sure the efficiency of deduplication check. Results are
shown in Figures 8, 9 and 10. The deduplication ratio
is defined as follows & = A/S = (S-B)/S. The formula is
explained as follows, « indicates the deduplication rate,
and A represents the deleted file size for performing dedu-
plication check operation. The value of A is equal to the
difference between S and B, where S represents the total
size of the file thatwas not subjected to the deduplication

process at the time of uploading, and B represents the
file size that has been uploaded to the cloud. The dedu-
plication rate is not only affected by the deduplication
strategy, but also by chunk size.

Chunk size:2k

—— original deduplication check
—#— deduplication check of DBTP

(¥,
o

5
o

%]
o

Deduplication ratio(%)
w
o

-
L=]
|
|

o

0
005 1
00511
000Z 1
00SC
000€ 1
00SE

)
=)
©
(a) The number of files

Figure 8: Deduplication ratio comparison(2k)

Chunk size:3k

=0~ onginal deduplication check
—#— deduplication check of DBTP

301

Deduplication ratio(%)

=
(=]
|
|

o

0

006 1
000t
00St
0002
00sL
000t
00SE

(b) The number of files

Figure 9: Deduplication ratio comparison(3k)

Chunk size:4k

—O— original deduplication check
—f— deduplication check of DBTP

=)}
o

w
o

N
o

[ae}
o
b

A

Deduplication ratio(%)
w
(=]

[y
o
\

|

o

0
005 1
00011
00SL
000¢C
005 1
000¢€
00SE

(c) The number of files

Figure 10: Deduplication ratio comparison(4k)

International Journal of Network Security, Vol.23, No.2, PP.270-277, Mar. 2021 (DOI: 10.6633/1JNS.202103-23(2).10)

4.3 Result Analysis

In this section, we have completed two experiments. The
former is the experiment of DBTP security privacy for
avoiding side channel attack and the latter is a compar-
ison experiment between DBTP and the original schema
deduplication rate. Based on Figures 5, 6, and 7, we ex-
amine files of sizes 10M, 20M, and 30M, respectively. For
example, the target file T, the attacker does not know
about a small part of the file, but this part is the privacy
part that the attacker is more interested in. Now, we use
a computer B to play an attacker to upload different file
templates. These templates only modify the imaginary
privacy part. The number of probes for each file upload
is shown on the y-axis. Through traffic analysis, whether
it is a target file of size 10M, 20M or 30M, when violent
trials are cracked on them, file blocks are uploaded every
time. Because the attacker cannot observe the transmis-
sion of zero traffic, it is impossible to judge whether the
modified data part matches the target file. Based on the
above analysis, the DBTP protocol protects the privacy
of data.

From the Figures 8, 9 and 10, compared the dedupli-
cation ratios of the two methods. It is obvious that the
original deduplication check has relatively higher dedu-
plication ratio compared to the DBTP method. Because
the original deduplication check finds the maximum op-
portunity to eliminate the redundant chunk. Fortunately,
deduplication check of DBTP guarantees the two-side pri-
vacy of data, but the deduplication ratio is only a little
reduced, and the gap between them is within an accept-
able range. In general, DBTP precisely guarantees a good
balance between deduplication efficiency and data privacy
protection.

5 Conclusions

Although cloud storage service providers have widely
adopted cross-user client-side deduplication check to re-
duce redundant data and communication costs, it leaks
the privacy of the chunk existence or inexistence status,
resulting in more threats like side channel. In this pa-
per, we propose a solution, DBTP, based on tag chunk for
auxiliary transmission. This scheme leaks zero-knowledge
for side channel. In other words, it can prevent the at-
tacker from gaining the existence or inexistence status in-
formation from deduplication check. DBTP implements
a stronger two-side privacy and performance guarantee
based on minimal modification of the ordinary deduplica-
tion mechanism.

Acknowledgments
This work was supported by the National Key
Research and Development Program of China

(No.2018YFB0704400).

276

References

[1] A. Chiniah, J. A. D. Dhora, and C. J. Sandooram,
”Erasure-coded network backup system (ECNBS),”
in International Conference on Information, Com-
munication and Computing Technology, pp. 3543,
2017.

[2] Z. Guo, "Cryptanalysis of a certificateless condi-
tional privacy-preserving authentication scheme for
wireless body area networks,” International Journal
of Electronics and Information Engineering, vol. 11,
no. 1, pp. 1-8, 2019.

[3] Z. Han, W. Xia, Y. Hu, D. Feng, Y. Zhang, Y. Zhou,
M. Fu, and L. Gu, "Dec: An efficient deduplication-
enhanced compression approach,” in IEEE 22nd In-
ternational Conference on Parallel and Distributed
Systems (ICPADS’16), pp. 519-526, 2016.

[4] D. Harnik, B. Pinkas, and A. Shulman-Peleg, ”Side
channels in cloud services: Deduplication in cloud
storage,” IEEE Security & Privacy, vol. 8, no. 6, pp.
40-47, 2010.

[5] S. Lee and D. Choi, ”Privacy-preserving cross-
user source-based data deduplication in cloud stor-
age,” in International Conference on ICT Conver-
gence (ICTC’12), pp. 329-330, 2012.

[6] C.Liand Z. Liu, ”A secure privacy-preserving cloud
auditing scheme with data deduplication,” Interna-
tional Journal of Network Security, vol 21, no. 2, pp.
199-210, 2019.

[7] S. Li, C. Xu, and Y. Zhang, ”CSED: Client-side
encrypted deduplication scheme based on proofs of
ownership for cloud storage,” Journal of Information
Security and Applications, vol. 46, pp. 250-258, 2019.

[8] J. Liu, N. Asokan, and B. Pinkas, ”Secure dedu-
plication of encrypted data without additional inde-
pendent servers,” in Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communica-
tions Security, pp. 874-885, 2015.

[9] D. Meister and A. Brinkmann, ”Multi-level compar-

ison of data deduplication in a backup scenario,” in

Proceedings of SYSTOR: The Israeli Ezxperimental

Systems Conference, pp. 8, 2009.

D. T. Meyer and W. J. Bolosky, ”A study of prac-

tical deduplication,” ACM Transactions on Storage

(TOS’12), vol. 7, no. 4, pp. 14, 2012.

J. Paulo and J. Pereira, ” A survey and classification

of storage deduplication systems,” ACM Computing

Surveys (CSUR’14), vol. 47, no. 1, pp. 11, 2014.

Z. Pooranian, K. C. Chen, C. Mu Yu, and M.

Conti, ”Rare: Defeating side channels based on

data-deduplication in cloud storage,” in IEEE IN-

FOCOM IEEE Conference on Computer Communi-

cations Workshops (INFOCOM WKSHPS’18), pp.

444-449, 2018.

P. Puzio, R. Molva, M. Onen, and S. Loureiro,

”Cloudedup: Secure deduplication with encrypted

data for cloud storage,” in IEEE 5th International

Conference on Cloud Computing Technology and Sci-

ence, vol. 1, pp. 363-370, 2013.

[10]

[11]

International Journal of Network Security, Vol.23, No.2, PP.270-277, Mar. 2021 (DOI: 10.6633/1JNS.202103-23(2).10)

[14]

[15]

[17]

[18]

[19]

[20]

[22]

S. Shan, ”An efficient certificateless signcryption
scheme without random oracles,” International Jour-
nal of Electronics and Information Engineering, vol.
11, no. 1, pp. 9-15, 2019.

Y. Shin and K. Kim, ”Differentially private client-
side data deduplication protocol for cloud storage
services,” Security and Communication Networks,
vol. 8, no. 12, pp. 2114-2123, 2015.

V. Turner, J. F. Gantz, D. Reinsel, and S.
Minton, ”"The digital universe of opportuni-
ties: Rich data and the increasing value of

the internet of things,” IDC Analyze the Fu-
ture, 2014. (https://www.emc.com/leadership/
digital-universe/2014iview/index.htm)

D. Wang, D. He, P. Wang, and C. H. Chu, ” Anony-
mous two-factor authentication in distributed sys-
tems: Certain goals are beyond attainment,” IFEFE
Transactions on Dependable and Secure Computing,
vol. 12, no. 4, pp. 428-442, 2014.

D. Wang and P. Wang, ”Two birds with one stone:
Two-factor authentication with security beyond con-
ventional bound,” IEEE Transactions on Dependable
and Secure Computing, vol. 15, no. 4, pp. 708-722,
2016.

D. Wang, N. Wang, P. Wang, and S. Qing, ”Pre-
serving privacy for free: Efficient and provably
secure two-factor authentication scheme with user
anonymity,” Information Sciences, vol. 321, pp. 162—
178, 2015.

W. Xia, H. Jiang, D. Feng, F. Douglis, P. Shilane,
Y. Hua, M. Fu, Y. Zhang, and Y. Zhou, ”"A com-
prehensive study of the past, present, and future of
data deduplication,” Proceedings of the IEEE, vol.
104, no. 9, pp. 1681-1710, 2016.

W. Xia, H. Jiang, D. Feng, and Y. Hua, ”Silo:
A similarity-locality based near-exact deduplication
scheme with low ram overhead and high through-
put,” in USENIX Annual Technical Conference, pp.
26-30, 2011.

W. Xia, Y. Zhou, H. Jiang, D. Feng, Y. Hua, Y. Hu,
Q. Liu, and Y. Zhang, "Fastcdc: A fast and efficient
content-defined chunking approach for data dedupli-

277

cation,” in {USENIX} Annual Technical Conference
({USENIX}Y{ATCY 16), pp. 101-114, 2016.

[23] C. M. Yu, S. P. Gochhayat, M. Conti, and C.
S. Lu, 7Privacy aware data deduplication for
side channel in cloud storage,” IEEE Transactions
on Cloud Computing, 2018. (https://ieeexplore.
ieee.org/stamp/stamp. jsp?arnumber=8260900)

Biography

Jie Ouyang received the bachelor degree in engineering
from Nanchang HangKong University, Nanchang, Jiangxi
Province,China in 2014. Now, he is a master student in
software engineering at the School of Computer Engineer-
ing and Science,Shanghai University. His research inter-
ests include Network Security, Cloud computing platform,

Data mining and analysis. Email:oyjcoding@shu.edu.cn.

Huiran Zhang received the B.S. degree and the Ph.D.
degree from the University of Toyama, Japan. He is
currently an Associate Professor with the Shanghai Uni-
versity, Shanghai, China. His research interests include
Cloud Computing, Machine Learning, and big data se-
mantic processing.

Hongqging Hu has been learning at Shanghai Univer-
sity for her master's degree from September 2017 to the
present.She is focusing on the research of cloud comput-
ing and machine learning.

Xiao Wei received the B.S. degree from the Shandong
University, China, and the Ph.D. degree from Shanghai
University, China, all in computer science. He is cur-
rently an Associate Professor with the Shanghai Univer-
sity, Shanghai, China. His research interests include NLP,
machine learning, textual semantic analysis, and big data
semantic processing.

Dongbo Dai is a lecturer at Shanghai University. His
main research interests are computational theory and al-
gorithmic game theory.

