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Abstract

With the rapid development of cloud storage, an increas-
ing number of data owners are willing to outsource their
data to cloud server to greatly reduce local storage over-
head. However, in cloud storage, the ownership of the out-
sourced data is disconnected from the management, which
makes the outsourced data deletion become a crucial secu-
rity challenge: the cloud server might reserve the data ma-
liciously for economic interests, and return wrong deletion
results to cheat the data owners. To solve this problem,
we design a novel outsourced data deletion scheme. If the
cloud server does not execute deletion command honestly,
the data owner can detect the dishonest data reservation
by checking the returned deletion evidence. Additionally,
we adopt Merkle hash tree to achieve public verifiability
in outsourced data deletion without requiring any trusted
third party. Meanwhile, the proposed scheme is able to
achieve efficient data leakage source tracking to prevent
the data owner and the cloud server from slandering each
other. Finally, we prove that our scheme can satisfy the
desired security requirements.

Keywords: Cloud Storage; Data Deletion; Efficient Track-
ing; Merkle Hash Tree; Public Verifiability

1 Introduction

Cloud computing, a newly-developing and promising com-
puting paradigm, can connect large-scale computing re-
sources, network resources and storage resources together
through the Internet [7]. Thanks to the rapid devel-
opment of computer software and hardware technology,
cloud computing can utilize its plenty of resources to pro-
vide many attractive services, for instance, data stor-
age and sharing service, outsourcing service, verifiable
databases service, and so on. These services have been
widely applied by the public, especially for cloud stor-

age service. The cloud storage service provider can offer
on-demand data storage service to the tenants [9]. By
employing the high-quality cloud storage service, all the
resource-constraint data owners could upload their per-
sonal data to remote cloud server for saving heavy local
storage overhead. Because of the attractive advantages,
an increasing number of data owners, including individu-
als and corporations prefer to embrace cloud storage ser-
vice.

Despite a number of advantages, cloud storage ser-
vice inescapably suffers from a few novel security chal-
lenges [3,6]. First of all, the outsourced file might contain
some data owner’s privacy information, which should be
kept secret. Therefore, data confidentiality has become a
particularly austere security challenge for cloud storage.
Generally speaking, the traditional encryption technique
can be seen as a solution to this issue. However, it can
only offer a partial solution because it is very difficult to
execute significative operations over the ciphertext. The
fully homomorphic encryption algorithm seems a poten-
tial solution, but the existing protocols are not efficient
and practical. Secondly, both the data owner and the
cloud server may be dishonest. Both of them might ex-
pose the data maliciously to slander each other. There-
fore, how to precisely trace the data leakage source is a
challenge which requires to be solved. Last but not least,
the data owner cannot execute any operation over the
outsourced data directly because he will lose the direct
control over the data. All the operations over the out-
sourced data, such as data deletion operation, might be
executed by the cloud server. However, the cloud server
might not remove the data sincerely for economic inter-
ests. Hence, how to securely remove outsoutced data is
also a security threat.

Although plenty of solutions have been proposed to
realize data deletion, there are still some security chal-
lenges in processing the outsourced data deletion. Firstly,
plenty of existing data deletion schemes reach deletion by
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overwriting the physical disks [8, 13, 18]. To be specific,
they use some random data to overwrite the data which
needs to be deleted. To make the data deletion opera-
tion more secure, some researchers suggest that the disk
should be overwritten more than one times. Although
overwriting the disk can theoretically solve the problem
of data deletion, it still has some inherent limitations.
On the one hand, overwriting the physical medium isn’t
efficient for real applications. Especially for distributed
storage system, it is very difficult to overwrite every disk
which maintains the data copy. On the other hand, there
may be some physical remanence of the overwritten data
left on the disk. The attacker who equips with advanced
microsoping tools can recover the overwritten data with
the physical remanence [5]. Therefore, it is desired to im-
prove the efficiency and the security of the data deletion
schemes.

Boneh and Lipton [2] firstly utilized cryptography tech-
nique to delete the data instead of protecting them,
which can make the data deletion operation more se-
cure and efficient, and resulting in plenty of follow-up
schemes [10, 14, 16]. To be specific, these schemes should
firstly use encryption key to encrypt the data before stor-
ing. Then they destroy a very short decryption key to
make a large amount of related ciphertext unavailable,
and return an erasure outcome to the data owner. This
approach can efficiently delete the digital data. However,
a lot of existing cryptography-based data deletion schemes
are not able to achieve verifiability. That is, the data
owner must trust the returned deletion result since he
cannot verify it conveniently. However, the storage server
may reserve the data maliciously and return a wrong out-
come to cheat the data owner. Therefore, the requirement
of deletion result verifiability should be introduced into
the data deletion schemes.

Last but not least, some schemes have been put for-
warded to provide the data owner with the ability to ver-
ify the data deletion result conveniently [11,20,22,25,26].
They delete the outsourced data and then return a re-
lated data deletion proof. The data owner can check the
deletion result by verifying the returned deletion proof.
However, these schemes all assume that the data owner is
honestly. If the deleted data is later discovered, the cloud
server is deemed to reserve the data maliciously, and the
data owner should be entitled to compensation. How-
ever, there are some dishonest data owners in real-world,
and they may expose the data maliciously to slander the
cloud server to obtain compensation. All the existing
schemes are not able to judge the data leakage source
under the dishonest data owner and cloud server model
because both of the two entities can obtain the same data
backup. Therefore, we should offer the ability to track
the data leakage source if the data is exposed.

Although various schemes have been put forward to
deal with the problem of data deletion, most of them have
a few deficiencies. First of all, in a lot of existing solutions,
the data owner must trust the returned outcome since he
cannot verify it. However, the cloud server might reserve

the data backup maliciously and return a wrong outcome
to cheat the data owner, but the data owner cannot detect
the malicious behavior. Secondly, although some existing
deletion schemes provide the data owner with the abil-
ity to verify the deletion outcome, they cannot achieve
traceability. When the data is leaked, they cannot trace
the data leakage source. To the best of our knowledge,
it seems that there is not research work on publicly ver-
ifiable data deletion scheme that supports data leakage
source tracking. Hence, we design a new scheme to delete
the outsourced data and trace the data leakage source.

1.1 Our Contributions

In this paper, we put forward a novel publicly verifiable
data deletion scheme for cloud storage, which can simul-
taneously achieve data leakage source tracking. The main
contributions of our proposed scheme are as follow:

• We put forward a new Merkle hash tree-based
publicly verifiable outsourced data deletion scheme,
which can simultaneously achieve data leakage source
tracking. To be specific, after executing data deletion
operation, the cloud server can utilize Merkle hash
tree to generate a deletion proof. If the cloud server
reserves the data backup maliciously, the data owner
can detect the cloud server’s dishonest behavior by
verifying the proof.

• Our proposed scheme can satisfy the property of
traceability, which is different from the previous so-
lutions. That is, if the data is leaked, the proposed
scheme can trace the data leakage source, which can
prevent data owner and cloud server from exposing
the data maliciously to slander each other. Addi-
tionally, the proposed scheme is also very efficient in
computation and communication.

This paper is an extension of our previous work that
was presented at SICBS [24]. In the following, we show
the main differences between this paper and the confer-
ence version. Firstly, we demonstrate the related work
more detailedly in Section 1. Secondly, we put forward a
more detailed scheme, and add the high description of the
proposed scheme in Section 4. We also identify the main
security properties for the proposed scheme in Section 3.3,
and we prove that our new scheme can satisfy these design
goals in Section 5.1. Finally, we will add the experimen-
tal simulation and performance comparison between our
scheme and two previous schemes in Section 5.3.

1.2 Related Work

Data deletion has been studied for a long time. Perl-
man et al. [12] utilized a trusted third party (TTP) to
solve the data deletion problem. First of all, they en-
crypt the data with a data key, then the TTP further
encrypts the data key with a control key. When the data
owner will not need the file anymore, the TTP will make
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the data key unavailable by destroying the control key,
thus the corresponding ciphertext cannot be decrypted
anymore. In 2010, Tang et al. [15] designed a practical
and implementable file assured deletion (FADE) system.
They firstly use a data key to encrypt the file. After that
the data key will be encrypted with a control key which
associated with a policy. Besides, one or multiple TTPs
maintain the policies together. Finally, when they want
to delete the file, they can remove the related policy, and
instruct the TTP to delete the corresponding key.

To offer the data owner the ability to verify the dele-
tion outcome, Hao et al. [5] presented a novel data dele-
tion protocol. In their protocol, they store the private key
in a trusted platform module’s protected memory. Then
they reach data deletion by destroying the private key
and finally return a signature as an evidence. In 2016,
Luo et al. [8] presented a permutation-based data dele-
tion scheme. They suppose that the cloud server could
merely maintain the latest version of the data. Addition-
ally, all the backups will be consistent when they are up-
dated. Then they reach deletion by updating them with
random data. Finally, the data owner is able to verify
the deletion outcome through a challenge-response proto-
col. In 2018, Yang et al. [21] used blockchain to design a
novel scheme to achieve publicly verifiably data deletion.
In their scheme, they utilize blockchain to reach public
verifiability without requiring any TTP, which is quite
different from a lot of the previous schemes. After exe-
cuting deletion operation, the cloud server can generate a
deletion proof, which will be published on the blockchain.
Finally, the data owner can check the deletion result by
verifying the proof.

Xue et al. [19] put forward a verifiable data deletion
method, which could also achieve provable data transfer
and data integrity verification. Their scheme gives the
data owner the ability to move the outsourced data be-
tween two different clouds. Moreover, the data owner is
able to check the transferred data integrity on the tar-
get cloud through provable data possession (PDP) pro-
tocol. Then the original cloud deletes the transferred
data blocks, and utilizes Rank-based Merkle hash tree
(RMHT) to generate a deletion proof. Wang et al. [17]
presented a similar method in 2018. Recently, Yang et
al. [23] put forward a novel verifiable outsoutced data
transfer and deletion scheme. In their scheme, the data
owner is able to migrate the outsourced data between two
different clouds, and then delete the transferred data from
the original cloud server. Additionally, they utilize the
primitive of vector commitment (VC) to realize public
verifiability without requiring any TTP.

1.3 Organization

The remainder of this paper is organized as follows: We
describe the preliminary of Merkle hash tree in Section 2.
In Section 3, we describe the problem statement in detail.
To be specific, we firstly formalize the system model of
our novel scheme. Then we present the main security

challenges. Finally, the security goals will be identified. In
Section 4, we put forward our new publicly verifiable data
deletion scheme in detail. A brief analysis of the proposed
scheme, and the performance evaluation are presented in
Section 5. Finally, we will conclude the proposed scheme
in Section 6.

2 Merkle Hash Tree

Merkle hash tree (MHT), a specific binary tree, is always
used to authenticate digital data [1, 4]. By using MHT,
the communication and computation overhead during the
verification process will be decreased greatly. In MHT,
each leaf node maintains a hash value of the data block
which needs to be authenticated, and every internal node
keeps a hash value of the concatenation of its two children.
For example, if we want to authenticate data set D =
{d1, d2, d3, d4}, the MHT is illustrated as Figure 1, h2 i =
H(di), where i ∈ [1, 4], h1 2 = H(h2 1||h2 2), H is a secure
one-way hash function. Finally, the public key signature
technique is used to sign the root node.

Figure 1: An example of MHT

The verifier can verify any subset of D by utilizing the
verification object Φ, which is a set of all sibling nodes
on the path from the authenticated leaf node to the root
node. For instance, to verify d3, Φ contains h1 1 and
h2 4. The verifier computes h′0 1 = H(h1 1||H(h2 3||h2 4))
firstly. Then he checks that whether h′0 1 = h0 1 holds,
and verifies the validity of the signature. If both the verifi-
cations pass, it means that d3 is valid; otherwise, it means
that d3 has been tampered with maliciously.

3 Problem Statement

3.1 System Model

In the following, we formalize the system model of our new
scheme, which involves three entities: a data owner O, a
cloud server S and a trusted agency TA, as illustrated in
Figure 2.
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Data owner Cloud Server

Deletion Request/Result

Trusted Agency

Figure 2: The system model

• The data owner O. It is a resource-constraint en-
try, who prefers to outsource his personal data to the
cloud server for saving local storage overhead. When
O will not need the data anymore, he sends a data
deletion command to the cloud server to delete the
outsourced data permanently. Finally, O can check
the deletion result by verifying the returned deletion
proof.

• The cloud server S. It refers to an entry which has
large-scale computing resources, network resources
and storage resources, thus, can maintain a large
amount of data for resource-constraint O. When O
will not need the outsourced data anymore, S will be
required to delete the outsourced data from the disk.
After that S may generate a deletion evidence for O
to check the deletion outcome.

• The trusted agency TA. It is a trusted third party,
which is absolutely righteous. That is to say, TA will
never collude with O or S to cheat the other mali-
ciously. TA always behaves honestly and righteously,
therefore, both S and O fully trust TA uncondition-
ally.

3.2 Security Threats

We assume that the cloud server S is “semi-honest-but-
curious”. As a result, S may not follow the protocol hon-
estly for economic interests. Besides, the attackers, such
as hackers or malicious users may try their best to ac-
cess the outsourced data illegally. Therefore, we seriously
consider the following two types of attacks: the internal
attacks and the external attacks. The internal attacks are
launched by the internal attackers, such as the dishonest
cloud administrators, who would try to dig some sensitive
information from the outsourced data. Furthermore, the
dishonest S may share the outsourced data with others for
financial incentives. The external attackers (e.g., hackers
and illegal users) might try to access the outsourced file
and dig privacy data. Therefore, we should consider the
following three security challenges.

• Data privacy disclosure. Privacy disclosure is a
very common and serious security threat in cloud

storage. On the one hand, the internal attackers are
so curious that they may dig some sensitive informa-
tion from the outsourced data. Moreover, the self-
ish cloud server moves the outsourced data to other
subcontractors for saving storage overhead, or shares
them with some other corporators for economic inter-
ests. On the other hand, the external attackers may
try their best to access the file to find some privacy
data.

• Data corruption. The outsourced data may be pol-
luted for the following reasons. First of all, the man-
ager performs erroneous operations, software or hard-
ware malfunctions all may cause data loss. Secondly,
the external attackers (e.g., hackers) may modify or
delete the data arbitrarily. Last but not least, when
the data owner downloads the file, the cloud server
sends part of the data for saving bandwidth, or de-
livers some unrelated data to cheat the data owner.

• Malicious data reservation. When the data
owner will not need the data anymore, he will send
a deletion command to the cloud server to delete the
data permanently. However, the selfish cloud server
might not execute the data deletion operation hon-
estly for the following factors: (1) it needs some com-
putational cost to delete the data from the physical
medium; (2) the cloud server might try to reserve the
data to dig some privacy data.

3.3 Design Goals

In our new scheme, we aim to achieve publicly verifiable
data deletion in cloud storage. Meanwhile, when the data
is leaked, we can trace the data leakage source efficiently.
Therefore, our scheme should realize the following four
goals.

• Data confidentiality. To ensure the outsourced
data confidentiality, it should prevent the attackers
from accessing the data directly because the data
may contain some privacy information. That is, it
is necessary to use cryptography algorithm to en-
crypt the file before uploading it to the cloud server.
Moreover, the corresponding decryption key should
be maintained secretly.

• Data integrity. To prevent the outsourced data
from being polluted, the data owner should be given
the ability to verify the data integrity and availabil-
ity. If the outsourced data has been polluted, the
data owner should be able to detect the malicious
manipulation.

• Verifiable data deletion. To make the cloud server
delete the data from physical medium sincerely, the
data owner should be given the ability to verify the
deletion result. If the cloud server reserves the data
dishonestly, the data owner can detect the malicious
data reservation by verifying the returned proof.
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• Accountable traceability. To prevent the data
owner and the cloud server from slandering each
other, it should satisfy the property of accountable
traceability. To be specific, we can trace the data
leakage source precisely when the data is leaked. Ad-
ditionally, upon the data owner and the cloud server
executing some operations, they cannot deny their
performances anymore.

4 Our Construction

4.1 High Description

In this paper, we study the problem of publicly verifiable
cloud data deletion with efficient tracking under the com-
mercial mode, which is very similar to schemes [5,19]. In
our system model, there is a trust problem between the
cloud server S and the data owner O: both of them might
not fully believe each other. On the one hand, O might
not believe that S will execute data deletion operation
honestly. On the other hand, S thinks that O may re-
serve the data deliberately, and expose them to slander
that S did not sincerely delete the data after deletion.
Now plenty of data deletion methods have been proposed,
but all of them assume that O is honest, thus O will not
slander S maliciously. However, this assumption is not
realistic. Therefore, we propose a novel scheme, which
aims to make the data deletion publicly verifiable and the
data leakage source traceable.

Data owner Cloud Server

l Deletion Request

Trusted Agency

n  Deletion Verification

m  Deletion Result

Figure 3: The main processes of our scheme

Our proposed scheme not only can achieve publicly
verifiable data deletion but also can realize efficient data
leakage source tracking, and Figure 3 describes the main
steps of the proposed scheme. First of all, O encrypts the
file to protect the privacy, and then sends the ephemeral
ciphertext to TA. Then TA further encrypts the received
ephemeral ciphertext and sends the final ciphertext to S.
After that TA verifies the storage result, and O deletes
the local backup. When O wants the outsourced file, he
downloads the corresponding ciphertext and decrypts it
to obtain the plaintext. If O will not need the file any-
more, he is willing to send a deletion command to delete

the data from S. Upon receiving the deletion request, S
deletes the related data and returns a deletion evidence
to O. Finally, O can check the data deletion result by
verifying the proof. In our scheme, we utilize MHT to re-
alize public verifiability, and the verification process does
not need any TTP.

4.2 The Concrete Construction

In this part, we put forward our new scheme in detail.
First of all, we define a few notations. Before embracing
cloud storage service, the data owner O must pass the au-
thentication of cloud server S. For simplicity, we assume
that O has been authenticated and become a legal user
of S. Then O can set a unique identity id, which is main-
tained by O and TA secretly. Besides, we suppose that
O, S, TA respectively has a ECDSA key pair (pko, sko),
(pks, sks) and (pkt, skt). H1(·) and H2(·) are two secure
hash functions. Furthermore, we assume that every file
is named with a secret and unique name, and the name
is so secure that it can resist brute-force attack. Without
loss of generality, we can assume that O wants to upload
file F to S, and nf is the name of F .

• Encrypt. To guarantee data confidentiality, the data
owner O should encrypt the file F before uploading,
and the detailed processes are as follow.

– First of all, O encrypts the file F : Co =
Encko

(F ), where ko = H1(sko||id||nf ), and Enc
is an IND-CPA secure symmetric encryption al-
gorithm. Then O computes a file tag tagf =
H1(nf ) and a hash value ho = H1(Co||id||tagf ).
Finally, O sends the ephemeral ciphertext Cfo

to TA, where Cfo = (Co, tagf , ho).

– Upon receiving Cfo , TA verifies that whether
the equation ho = H1(Co||id||tagf ) holds.
If ho 6= H1(Co||id||tagf ), TA aborts and
returns failure; otherwise, TA further en-
crypts Cfo : Ct = Enckt

(Cfo), where kt =
H1(skt||id||tagf ). Then TA computes a hash
value ht = H1(Ct||id||tagf ). Finally, TA sends
the final ciphertext Cft to S, where Cft =
(Ct, tagf , ht).

• StoreCheck. On receipt of Cft , the cloud server S
maintains the data and returns a storage proof. For
simplicity, assume that m files are stored in MHT.

– Upon receipt of Cft , S stores the data in the
leaf node of MHT. Here we can take m = 8 for
example, and Cft is stored in the leaf node 6,
as illustrated in Figure 4. Then S computes a
signature on the hash value of the root node:
sigr = Signsks

(h0 1), where Sign is a ECDSA
signature generation algorithm. Finally, S re-
turns storage proof λ = (sigr,Φ) to TA, where
Φ is the verification object (h1 1, h2 4, h3 5).
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Figure 4: MHT for storage proof

– On receiving λ, TA checks that whether S stores
the file and generates the storage proof honestly.
To be specific, TA computes the following equa-
tions:

h′3 6 = H2(Cft);

h′2 3 = H2(h3 5||h′3 6);

h′1 2 = H2(h′2 3||h2 4);

h′0 1 = H2(h1 1||h′1 2);

Then TA checks that whether the equation
h′0 1 = h0 1 holds. If h′0 1 6= h0 1, TA quits
and outputs failure; otherwise, TA verifies that
if sigr is a valid signature on h0 1. If sigr is not
valid, TA quits and outputs failure; otherwise,
TA trusts that S stores the data honestly, and
sends λ to O, then O deletes the local backup.

• Decrypt. When data owner O needs the file F , he
should download the ciphertext from the cloud server
S and decrypt it to obtain the plaintext.

– In order to download the ciphertext, O needs
to generate a download request Rd. First
of all, O computes a signature sigd =
Signsko

(download||tagf ||Td), where Td is a
timestamp. Then O sends download request
Rd to S, where Rd = (download, tagf , Td, sigd).
Upon receiving Rd, S checks the validity of
Rd through signature verification. If Rd is not
valid, S quits and outputs failure; otherwise, S
sends Cft = (Ct, tagf , ht) and Rd to TA.

– Upon receipt of Cft and Rd, TA firstly ver-
ifies the validity of Rd. If Rd is not valid,
TA quits and outputs failure; otherwise, TA
checks that if ht = H1(Ct||id||tagf ) holds. If
ht 6= H1(Ct||id||tagf ), TA quits and outputs
failure; otherwise, TA decrypts Ct to obtain the
ephemeral ciphertext Cfo = Deckt

(Ct), where

Dec represents a traditional symmetric decryp-
tion algorithm, and kt = H1(skt||id||tagf ). Fi-
nally, TA sends Cfo = (Co, tagf , ho) to O.

– Upon receiving Cfo = (Co, tagf , ho), O checks
that if the equation ho = H1(Co||id||tagf ) holds.
If ho 6= H1(Co||id||tagf ), O quits and outputs
failure; otherwise, O executes decryption op-
eration to obtain the corresponding plaintext
F = Decko

(Co), where ko = H1(sko||id||nf ).

• Delete. When data owner O will not need the file
F anymore, he wants to permanently delete the file
from the cloud server S.

– To delete the outsourced data, O needs to gen-
erate a deletion request Re. Firstly, O computes
a signature sige = Signsko(delete||tagf ||Te),
where Te is a timestamp. Then O generates
a deletion request Re = (delete, tagf , Te, sige),
and sends Re to S.

– Upon receipt of Re, S firstly checks the
validity of Re. If Re is not valid, S
aborts and returns failure; otherwise, S deletes
the data and computes a signature sigs =
Signsks

(delete||tagf ||Te||Re). Then S utilizes
sigs to replace Cft to re-construct the MHT, as
illustrated in Figure 5. Finally, S computes a
new signature on the hash value of the new root
node sig∗r = Signsks(h∗0 1), and returns a dele-
tion proof τ to O, where τ = (Re, sigs, sig

∗
r ,Φ),

and Φ = (h1 1, h2 4, h3 5).

Figure 5: The MHT for deletion proofs

• DelCheck. After receiving τ , the data owner O can
check the deletion result by verifying τ .

– Firstly, O checks that whether the signature
sigs is valid. If sigs is not valid, O quits and
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outputs failure; otherwise, O computes the fol-
lowing equations:

h∗
′

3 6 = H2(sigs);

h∗
′

2 3 = H2(h3 5||h∗
′

3 6);

h∗
′

1 2 = H2(h∗
′

2 3||h2 4);

h∗
′

0 1 = H2(h1 1||h∗
′

1 2);

– Then O checks that whether the equation h∗
′

0 1 =
h∗0 1 holds. If h∗′0 1 6= h∗0 1, O quits and out-
puts failure; otherwise, O verifies that whether
the signature sig∗r is a valid signature on h∗0 1.
If sig∗r cannot pass the verification, O quits and
outputs failure; otherwise, O can trust that the
deletion proof τ is valid. If the deleted data dis-
covered again, based on the evidence, O should
be entitled to compensation.

5 Scheme Analysis and Imple-
mentation

In the following section, we give a brief analysis of the pro-
posed scheme. Firstly, we analyze the proposed scheme’s
security properties in detail. Secondly, we present the
comparison among our scheme and some previous schemes
in theory. Finally, we evaluate the performance through
the simulation experiments.

5.1 Security Analysis

In this part, we analyze the security of our proposed
scheme, including the data confidentiality, data integrity,
public verifiability, traceability and non-repudiation.

5.1.1 Data Confidentiality

To protect the sensitive information, the data owner uses
IND-CPA secure AES algorithm to encrypt the file be-
fore uploading. Additionally, the data owner keeps the
encryption key and decryption key secret. That is, any
attacker cannot acquire the encryption key and decryp-
tion key maliciously. In other word, the malicious at-
tacker cannot obtain any plaintext information from the
ciphertext. Hence, our novel scheme can reach data con-
fidentiality.

5.1.2 Data Integrity

Our proposed scheme is able to ensure the outsourced
data integrity. In the decryption process, the cloud
server S will firstly send the final ciphertext Cft and the
download request Rd to the trusted agency TA, where
Cft = (Ct, tagf , ht) and Rd = (download, tagf , Td, sigd).
On receipt of Cft and Rd, TA will check Rd and Cft before
decrypting. If Rd is not valid, it means that O does not
require to download the file, and TA aborts; otherwise,

TA checks Cft . To be specific, TA checks that whether

the equation ht
?
= H1(Ct||id||tagf ) holds. The id is kept

secret by O and TA. Therefore, S cannot forge a new
C ′t to make equation ht = H1(C ′t||id||tagf ) hold. That is,
if and only if Ct is intact can the verifications pass, and
TA decrypts Ct to obtain Cfo . Therefore, TA always can
detect the malicious operation if S falsifies Ct.

Besides, upon receiving Cfo = (Co, tagf , ho) from
TA, O will check it before executing decryption opera-
tion. To be specific, O verifies that whether the equation

ho
?
= H1(Co||id||tagf ) holds. The attacker cannot falsify

a new C ′o to make equation h′o = H1(C ′o||id||tagf ) hold
because the id is maintained secretly by O and TA. That
is, the attacker cannot forge C ′o to cheat O successfully.
Therefore, if and only if Cfo is intact can the verification
pass.

As the analysis described above, the proposed scheme
can achieve data integrity.

5.1.3 Public Verifiability

Our new scheme can reach publicly verifiable data dele-
tion in cloud storage. After executing data deletion oper-
ation, the cloud server S generates a deletion proof τ to
prove that he has performed data deletion honestly. Note
that τ = (Re, sigs, sig

∗
r ,Φ), where Φ = (h1 1, h2 4, h3 5).

Then anyone who given τ (called verifier) can check the
data deletion result by verifying the evidence τ . Firstly,
the verifier checks the validity of the deletion request Re.
If Re is not valid, the verifier aborts and returns failure;
otherwise, the verifier checks the validity of the signature
sigs. If sigs is not valid, the verifier aborts and returns
failure; otherwise, the verifier utilizes H2(sigs) and Φ to
re-compute h∗0 1. Finally, the verifier checks that whether
the signature sig∗r is a valid signature on h∗0 1. If and only
if all verifications pass will the verifier trust that the dele-
tion proof τ is valid. Note that the verification phases do
not involve any private information, and any verifier can
check the deletion outcome. Therefore, we think that our
scheme is able to realize the property of public verifiabil-
ity.

5.1.4 Traceability

The proposed scheme can trace the data leakage source
precisely when the data is leaked. In our scheme, the
data owner O owns the plaintext F and the ephemeral
ciphertext Cfo . The trusted agency TA further encrypts
the ephemeral ciphertext Cfo to obtain the final cipher-
text Cft . Then the cloud server S maintains the final
ciphertext Cft . Besides, O cannot access to the final ci-
phertext Cft , and S cannot access to the plaintext F and
the ephemeral ciphertext Cfo . That is, only TA and O
can obtain the ephemeral ciphertext Cfo , and only TA
and S can obtain the final ciphertext Cft . Note that TA
is absolutely impartial, and it will never collude with O
(or S) to cheat S (or O). Hence, on the one hand, the
data leakage source must be O if Cfo is exposed. That is,



International Journal of Network Security, Vol.22, No.5, PP.885-896, Sept. 2020 (DOI: 10.6633/IJNS.202009 22(5).20) 892

Table 1: Functionality comparison among three schemes

Scheme Scheme [5] Scheme [22] Our Scheme
Trusted Third Party Yes Yes Yes
Public Verifiability Yes Yes Yes

Data Confidentiality Yes Yes Yes
Data Integrity No Yes Yes

Non-repudiation No Yes Yes
Traceability No No Yes

Table 2: Computational complexity comparison

Scheme Scheme [5] Scheme [22] Our Scheme
(Encrypt) 2E + 4H 1E +mH 2E + 6H
(Decrypt) 1E + 1D + 3H - 1S + 1V + 2D + 4H

(Store) - 1S + 1V + 46mH 1S + 1V + (2n+1 + n)H
(Delete) 1S 2S + 1V + 23H 3S + 1V + (n+ 1)H

(DelCheck) 1V 1V + 20H 2V + (n+ 1)H

the dishonest O cannot reserve Cfo and then expose it to
successfully slander that S did not delete the data hon-
estly. On the other hand, the data leakage source must
be S if Cft is leaked. Therefore, if S reserves Cft mali-
ciously and resulting in data leakage, S cannot deny his
dishonest data reservation. That is, the proposed scheme
can reach the data leakage source traceability.

5.1.5 Non-repudiation

In our scheme, we assume that both the data owner O
and the cloud server S may deny their behaviors thus
slander the other. Without loss of generality, we analyze
the non-repudiation when S is malicious and O is dishon-
est, respectively.

Case 1: Malicious cloud server S. The malicious
cloud server S may slander the data owner O.
First of all, the malicious S deletes the outsourced
data arbitrarily to save storage overhead, and
then slanders that he performed the data deletion
operation as O′s command. For this scenario, O
can require S to present the data deletion request
Re = (delete, tagf , Te, sige), where sige is a sig-
nature generated by O with private key sko. On
the one hand, O had never generated and sent Re

to S to delete the data. On the other hand, S
cannot forge a valid Re since S does not has the
private key sko. Therefore, S cannot present Re to
prove that he deleted the outsourced data as O′s
command. Secondly, S reserves the data dishonestly
and slanders that O had not required him to remove
the outsourced data. Here, O can demonstrate the
data deletion proof τ = (Re, sigs, sig

∗
r ,Φ), where

sigs is a signature generated by S with private key
sks. The signature sigs can be seen as a proof,
which can prove that O has required S to delete the

data, and S has responded to this request. That is,
the dishonest S cannot successfully slander O.

Case 2: Dishonest data owner O. The dishonest
data owner O denies his behavior and slanders the
cloud server S maliciously. Firstly, O had asked
S to delete the data, and S had done it honestly.
However, O declares that he had never asked S to
delete the data, and slanders that S deleted the
data arbitrarily. Here, S can show the deletion
request Re = (delete, tagf , Te, sige), which contains
a signature sige generated by O. No one else can
forge a valid signature sige to further forge a valid
deletion request Re. Therefore, Re can be seen as
an evidence which can prove that O had required S
to delete the data. Secondly, O had never required
S to delete the data. Nevertheless, O declares that
he had required S to delete the file and S did not
do it sincerely. In this case, S can require O to
show the deletion proof τ = (Re, sigs, sig

∗
r ,Φ) which

generated by S. However, S did not generate τ at
all. In addition, O cannot forge a valid τ . Therefore,
O cannot slander S successfully.

5.2 Comparison

In the following, we compare the functionality and com-
putational complexity among our new scheme and two
previous schemes [5, 22] in theory, then Table 1 and Ta-
ble 2 demonstrate the comparison results, respectively.

From Table 1 we can have the following findings.
Firstly, all of these three schemes need to introduce a
trusted third party to achieve publicly verifiable data
deletion. Secondly, all of them can guarantee data con-
fidentiality, which can protect the sensitive information
that contained in the outsourced file. Thirdly, Hao et
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al. scheme [5] cannot satisfy the data integrity and
non-repudiation, which is different from our scheme and
Yang et al. scheme [22]. Last but not least, only our new
scheme is able to achieve traceability, which can prevent
data owner and cloud server from slandering each other.
Overall, our new scheme is more attractive than the other
two schemes.

Then we compare the performance of the three schemes
in theory, and the results are listed as time complexities
in Table 2. For simplicity, we use symbols E and D to
represent a symmetry encryption and decryption, respec-
tively. Moreover, we denote by H a hash computation, S
a signature generation operation, and V a signature veri-
fication operation. Meanwhile, we assume that the MHT
has m = 2n leaf nodes and the number of data blocks in
scheme [22] is m. Finally, we ignore the other overhead,
such as multiplication and communication overhead.

5.3 Performance Evaluation

In this part, we simulate our proposed scheme and two
previous schemes [5, 22], then provide the performance
evaluation. The related algorithms are implemented with
PBC library and the OpenSSL library on an Unix ma-
chine, which equips with Intel(R) Core(TM) i5-6200U
processors running at 2.4 GHz and 8 GB main memory.
For simplicity, we simulate all the entities on this Linux
machine and ignore the communication overhead.

The outsourced file always contains some sensitive in-
formation, which should be kept secret. Therefore, the
data owner needs to use secure encryption algorithm to
encrypt the file before uploading. We increase the size of
the file from 0.125 MB to 1 MB with a step for 0.125 MB,
and the number of data blocks in Yang et al. scheme [22]
is fixed in 1024. Then the approximate time cost is shown
in Figure 6. We can find that although the time over-
head will increase with the size of the file, the encryption
operation is one-time. Moreover, our proposed scheme
and Hao et al. scheme [5] cost almost the same time
cost to encrypt the same size of file. Meanwhile, Yang et
al. scheme [22] needs more time cost than the other two
schemes. Hence, we think our proposed scheme is efficient
to encrypt file.

After uploading the file to the cloud server, the data
owner wants to check that whether the cloud server main-
tains the data honestly. The main computation comes
from storage proof generation and storage result verifi-
cation. In our scheme, the cloud server needs to com-
pute (2m − 1) hash values and a ECDSA signature to
generate storage proof, where m = 2n. Then the data
owner needs to execute (n + 1) hash calculations and a
signature verification operation to verify the storage re-
sult. In Yang et al. scheme [22], the computation con-
sists of a signature generation and a signature verification,
and 46m hash computations. We increase the number n
from 1 to 8 with a step for 1, and then Figure 7 presents
the efficiency comparison. From Figure 7 we can realize
that although the computational overhead increases with
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Figure 6: Time cost of encryption

n, the growth rate of our scheme is relatively lower than
that of Yang et al. scheme [22]. Meanwhile, our proposed
scheme costs less time overhead. Therefore, our proposed
scheme is more efficient than Yang et al. scheme [22].
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Figure 7: Time cost of storage

For saving storage overhead, the data owner does not
maintain any local data backup after outsourcing the file
to the remote cloud server. Therefore, when the data
owner needs the file, he needs to download the correspond-
ing ciphertext from the cloud server, and then decrypts
it to obtain the plaintext. We increase the ciphertext
from 0.125 MB to 1 MB with a step for 0.125 MB, and test
the approximate time overhead. Then the efficiency com-
parison of decryption process between the two schemes
is shown in Figure 8. From Figure 8 we can realize that
the time cost will increase with the size of the decrypted
ciphertext, and our scheme’s growth rate is lower than
that of Hao et al. scheme [5]. Moreover, although our
scheme will cost a little more time when the ciphertext
is less than 0.75 MB, the extra overhead is small and ac-
ceptable. Further, when the ciphertext is larger than 0.75
MB, the time cost of our scheme is less than that of Hao et
al. scheme [5]. In real application, the ciphertext is often
larger than 0.75 MB. Therefore, we can think that our
scheme is more efficient than Hao et al. scheme [5] to
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decrypt same size of ciphertext.
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Figure 8: Time cost of decryption

When the data owner will not need the outsourced file
anymore, he wants to permanently delete the data from
the cloud server. To delete the outsourced file, our scheme
needs to execute three signature generation operations
and a signature verification computation. Moreover, our
scheme also needs to perform (n+ 1) hash calculations to
update the MHT. However, Hao et al. scheme [5] merely
needs to generate a signature. Meanwhile, Yang et al.
scheme [22] needs to compute 23 hash values, generate
two signatures and perform a signature verification oper-
ation. Then the efficiency comparison among the three
schemes is shown in Figure 9. We can easily find that the
time overhead of our scheme will increase with the num-
ber n, but the growth rate is very low. However, the time
overhead of the other two schemes is almost constant.
Moreover, although our scheme needs a little more time
to delete a file, the time cost is very small. For example,
when n = 40, the time cost is about 1.5 microseconds.
Meanwhile, note that the deletion operation is one-time.
Therefore, our scheme is still very efficient.
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Figure 9: Time cost of deletion

After deletion, the data owner is able to check the data
deletion result through verifying the returned deletion ev-
idence. Our scheme needs to execute two signature verifi-

cation operations and (n+1) hash computations to verify
the deletion result. However, Hao et al. scheme [5] only
needs to verify the validity of a signature. Meanwhile,
Yang et al. scheme [22] needs to verify a signature and
compute 20 hash values. Then the time cost comparison
among the tree schemes is demonstrated in Figure 10. We
can easily find that the time cost of our scheme will in-
crease with n, while the time of the other two schemes is
almost constant. However, the growth rate of our scheme
is very low. Additionally, although our scheme costs a lit-
ter more time than the other two schemes, the time cost
is very small. Meanwhile, note that the verification oper-
ation can be finished off-line. Therefore, it will not affect
the overall efficiency.
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Figure 10: Time cost of deletion verification

6 Conclusions

In this paper, we put forward a novel MHT-based pub-
licly verifiable outsourced data deletion scheme, which
also supports efficient data leakage source tracking. In
cloud storage, both the data owner and the cloud server
might think the other is dishonest. In our new scheme,
we use the cryptographic primitive of MHT to deal with
this trust problem. To be more specific, the cloud server
should use MHT to compute an evidence after deletion.
If the cloud server reserves the data maliciously, the data
owner is able to easily detect the dishonest data reserva-
tion by verifying the deletion proof. In addition, our novel
scheme can satisfy the property of data leakage source
traceability, which can prevent the data owner and cloud
server from exposing the data to slander the other. In
the future, we will study how to reach data deletion and
leakage source traceability without requiring any TTP.
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