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Abstract

Verifiable secret sharing is the core basic protocol of many
cryptographic systems, which is widely used in secure
communication in network environment. By now, there
are many researches on verifiable secret sharing for thresh-
old structure, which lacks generality and flexibility com-
pared with general access structure. However it is diffi-
cult to realize verifiable secret sharing scheme for general
access structures. Existing generalized verifiable secret
sharing schemes are few and have low efficiency. In this
paper, we propose a new verifiable secret sharing scheme
of general access structure. We use knowledge commit-
ment scheme based on bilinear pairing to ensure the se-
curity and concealment of public information, and adopt
the Micali-Rabin’s random vector representations tech-
nique to improve the the efficiency of verification process.
Our security and performance analysis shows that the new
scheme is more efficient and practical compared to exist-
ing similar schemes.

Keywords: Bilinear Pairing; General Access Structure;
Micali-Rabin’s Random Vector Representations Tech-
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1 Introduction

Secret sharing is the basic protocol for constructing cryp-
tographic schemes such as secure multiparty computation
and digital signature, which is mainly used for the dis-
tribution, preservation and reconstruction of secret and
key (or other secret information), to prevent loss, dam-
age or been tampered of information. The fundamen-
tal idea of secret sharing is that secret is divided into
multiple parts by one dealer and shared among differ-
ent participants, and some subsets of participants can be
used to reconstruct the secret, while others cannot recon-
struct it and get no information about secret. Shamir [10]
and Blakley [2] first proposed the (t,n) threshold secret

sharing scheme based on Lagrange interpolation poly-
nomial and mapping geometry theory respectively. As-
muth [1] proposed the threshold secret sharing scheme
based on Chinese Remainder Theorem (CRT). Halper and
Teague [6] combined game theory with secret sharing and
proposed the concept of rational secret sharing for the
first time, that is, all participants are rational rather than
honest or malicious. TIAN [12] analyzed the distribution
mechanism and reconstruction mechanism of secret shar-
ing under the framework of game theory, and studied the
problem of one secret sharing based on Bayesian game,
which solved the cooperation of this kind of rational se-
cret sharing system. But none of these schemes can prop-
erly detect and prevent the malicious behavior of dealers
and participants. To address possible dishonesty among
participants, Chor et al. [3] proposed the concept of ver-
ifiable secret sharing (VSS) based on large integer factor
decomposition problem for the first time. Stadler [11] im-
proved the Chor’s scheme, and proposed the Publicly Ver-
ifiable Secret Sharing schemes (PVSS) based on discrete
logarithm. TIAN [13] constructed a non-interactive pub-
lic verifiable secret sharing using bilinear pairs on elliptic
curves, and its information rate reached 2/3. Jhanwar [4]
proposed a PVSS scheme and provided a formal proof for
the IND-secrecy of his scheme, based on the (t, n)-multi-
sequence of exponents Diffie-Hellman assumption. After
that, a lot of achievements have been made in the re-
search on secret sharing schemes. However, almost all of
the above schemes are designed for threshold structure,
the threshold secret sharing is only a special case of gen-
eralized secret sharing.

Threshold structure lack flexibility and are not applica-
ble in some specific scenario compared with general access
structure. For instance, the dealer share secret among
participants U1, U2, U3, U4 and specify the two subsets of
participants {U1, U2}, {U2, U3, U4} can reconstruct the se-
cret. So (t,n) threshold secret sharing scheme is no longer
applicable under this circumstance. In order to study the
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secret sharing of general access structures with wider ap-
plicability, Ito et al. [8] first proposed a secret sharing
scheme based on general access structure, that is, the co-
operation of participants with any authorized subset can
reconstruct the secret. Harn et al. [7] applied integer pro-
gramming to the generalized secret sharing scheme. They
stipulate authorized subsets and non-authorized subsets
to try to find a reasonable share allocation scheme so as
to achieve the general access structure with the tradi-
tional (t,n) threshold scheme, but the scheme was expen-
sive and has low efficiency in calculation. In the existing
secret sharing scheme of general access structure, either
the correctness of secret shares cannot be verified, or the
computational overhead is increased to achieve the verifi-
ability of secret shares.

Therefore, we propose an efficient generalized verifi-
able secret sharing scheme based on Micali-Rabin’s ran-
dom vector representations technique. In view of the
complexity of verification process and the low probabil-
ity of verifying the correctness of computing result, we
adopt Micali-Rabins random vector representation tech-
nique, based on Zero-Knowledge Proof(ZKPs), proposed
by Micali and Rabin [9]. Zero Knowledge Proofs, pro-
posed by Golddwasser [5], are one of the most remark-
able innovations in information security, which refers to
the ability of a prover to convince a verifier that a state-
ment is true without providing any useful information to
the verifier, has been widely used in the field of infor-
mation security. Rabin [9] developed a novel secure and
highly efficient way for verifying correctness of the output
of a transaction while keeping input values secret, based
on the ZKPs. Xin [15] proposed a new fair and ratio-
nal delegation computation. Aiming at the complexity of
the verification problem, they adopted the Micali-Rabin’s
random vector representation technique. Consequently,
ZKPs is used to prove the correctness of the computing
results, which provides a new direction for our research.

In this paper, a new generalized verifiable secret shar-
ing (GVSS) scheme is proposed. The contributions of our
proposed GVSS are as follows: First, we proposed a GVSS
scheme based on the difficulty of Diffie-Hellman problem
of bilinear pairings. In this scheme, secret shares are cho-
sen by the participants themselves, effectively avoiding
deception by the dealer. Also, compared with threshold
schemes, this scheme can specify any authorized subsets
to reconstruct secret, which greatly increases the flexibil-
ity of secret sharing and expands the application scenarios
of the schemes. Second, on account of the comlexity of
verification phase, we adopt Micali-Rabin’s random vec-
tor representation technique, that is, the secret shares are
represented by knowledge commitment scheme for bilin-
ear pairing. When needs to verify the correctness of secret
shares, it only needs to execute an efficiently process ac-
cording to the public information on the bulletin board.

The rest of this paper is organized as follows. In Sec-
tion 2 we give the relevant backgrounds. Our proposed
GVSS is described in Section 3. In Section 4, we give se-
curity analysis of our proposed GVSS and the comparison

of performance between our proposed GVSS and the VSS
proposed by ZHANG [16] and Tsu-Yang [14]. Conclusion
is given in Section 5.

2 Preliminaries

2.1 Bilinear Pairing

Let G1 and G2 be additive cyclic groups and multiplica-
tive cyclic groups of order q, where q is a big prime num-
ber. Assuming that discrete logarithm problems on group
G1 and G2 are difficult. A map: e : G1 ×G1 → G2 with
the following properties is called a bilinear pairing:

1) Bilinear: e(aP, bQ) = e(P,Q)ab for all P,Q ∈ G1 and
a, b ∈ Z∗q .

2) Non-degenerate: There exists P,Q ∈ G1 such that
e(P,Q) 6= 1.

3) Computable: For all P,Q ∈ G1, there exists an effi-
cient algorithm to compute e(P,Q) = 1.

2.2 Knowledge Commitment Scheme
Based on Bilinear Pairing

Let P,Q ∈ G1 be two generators of group G1. Nobody
knows the the discrete log of P,Q (anybody does not know
the n ∈ Z∗q such that Q = nP ). When making commit-
ment to s ∈ Z∗q , we just have to compute the commitment
COM(s) = e(P,Q)s. When revealing the commitment,
only s needs to be disclosed, and the verifier can verify
whether the commitments revealed by dealer are correct
according to COM(s) = e(P,Q)s.

2.3 Micali-Rabin’s Random Vector Rep-
resentations

We adopt the knowledge commitment scheme based on
bilinear pairing by Tian [?], the equality is proved by zero
knowledge proofs. The properties of the bilinear pairing
satisfy the above assumption, and Fq is a finite field and
q is a large prime number of 128bits.

Definition 1. A random vector representation of x is
a vector X = (u, v), where u, v ∈ Z∗q , u was randomly
chosen, and v = (x− u)modq. The value of the vector X
is val(X) = (u+ v)modq.

Definition 2. Commitment to vector X = (u, v) is
COM(X) = (COM(u), COM(v)), where COM(u) =
e(P,Q)u, COM(v) = e(P,Q)v.

Definition 3. A list of commitments COM(X(j)), 1 ≤
j ≤ m are called value consistent if val(X(j)) =
val(X(j+1)) for any 1 ≤ j ≤ m.

When needs to prove COM(X), COM(Y ) value con-
sistent, where X = (u1, v1), Y = (u2, v2), we will prove
val(X) = val(Y ). Note that val(X) = val(Y ) if and only
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if there exists w ∈ Z∗q such that X = Y + (w,−w)(If
such an w does not exist, the value is inconsistent). The
prover randomly chooses c← {1, 2}. Assume that c = 1,
the prover reveals to verifier u1, u2,−w. The verifier com-
putes COM(u1), COM(u2), and compares to the posted
first coordinates of COM(X), COM(Y ). The verifier
next checks that u1=u2 − w is true. Vice versa, assume
that c = 2, the prover reveals to verifier v1, v2, w. The ver-
ifier computes COM(v1), COM(v2) and compares to the
posted second coordinates of COM(X), COM(Y ). The
verifier next checks that v1 = v2 +w is true. Apparently,
the prover accepts an false formula with a probability of 1

2 .

Lemma 1. If more than k commitments are
false, then the probability that the verifier accepts
is ( 1

2 )k.

Proof. The probability that any val(X(j)) 6= val(X(j+1))
is not found to be wrong is at most 1

2 . So the probability
that at least k formulas are not found wrong is ( 1

2 )k with
a randomly chosen value c← {1, 2}.

3 Scheme

This scheme assumes that the Dealer D needs to share the
secret s between n participants. Also, the scheme assumes
the existence of a secure bulletin board(SBB), which is
used to publish data and cannot be deleted or modified
as soon as it is published. At the same time, the published
data is visible to dealer and all participants. The scheme
includes Distribution Phase, Verification Phase and Se-
cret Reconstruction.

Initialization: Assume that Fq is a finite field and q is a
large prime number, G1 and G2 are respectively additive
cyclic groups and multiplicative cyclic groups of order q,
P,Q ∈ G1 are two generators of group G1. The properties
of the bilinear pairing satisfy the above assumption, and
there are efficient algorithms for mapping e : G1 ×G1 →
G2 on groups G1 and G2. H : G2 → Z∗q is the anti-
collision hash function.

The secret distributor specifies the authorized subset.
Assume that the participants set is P = {P1, P2, · · · , Pn},
Γ0 = {δ1, δ2, · · · , δn} is the minimum access struc-
ture, δj = {P1j , P2j , · · · , P|δj |j} is the authorized subset,
which |δj | is the number of members in δj . The secret dis-
tributor is SD, the secret reconstructor is SR, the shared
secret is s.

3.1 Distribution Phase

Step 1. Each participant Pij randomly chooses sij ∈ Z∗q ,
and computes Rij = e(P,Q)sij . And keeps sij se-
cretly, delivers Rij to SD.

Step 2. SD randomly selects s0, and computes R0 =
e(P,Q)s0 . Then, chooses a ∈ Z∗q randomly and
construct a 1st degree polynomial f(x) = (s +

ax)modq. Simultaneously, chooses t different ran-
dom numbers d1, d2, · · · , dt to represent these t au-
thorized subsets in Γ0 respectively. In succession,
SD computes f(1), and for each authorized sub-
set δj = {P1j , P2j , · · · , P|δj |j} in Γ0 computes Hj =
f(dj)⊕H(R1j

s0)⊕H(R2j
s0)⊕· · ·⊕H(R|δj |j

s0). Fi-
nally, publish R0, f(1), H1, H2, · · · , Ht, d1, d2, · · · , dt
on the SBB.

3.2 Verification Phase

All participants of any authorized subset δj can cooperate
to reconstruct the secret s. Assume that the participants
of δj = {P1j , P2j , · · · , P|δj |j} reconstruct the secret s.

Step 3. Each participant Pij computes Rij′ = R
sij
0

based on the public information R0 on the SBB. And
each participant Pij posts on the SBB 3k rows of

Rij
′: COM(R

(h)
1j′ ), · · · , COM(R

(h)
|δj |j′), 1 ≤ h ≤ 3k.

The 3k rows of SBB use the Micali-Rabin’s ran-
dom vector representations technique COM(R

(h)
1j′ ) =

(COM(u
(h)
ij′ ), COM(v

(h)
ij′ )), where R

(h)
1j′ = (u

(h)
ij′ ,

v
(h)
ij′ ), val(R

(h)
1j′ ) = (u

(h)
ij′ + v

(h)
ij′ ) mod q, 1 ≤ h ≤ 3k.

Step 4. To begin with, Pij randomly chooses half of
the commitments from the 3k rows of Rij′ , Pij se-

cretly reveals Rij′ and commitment values R
(h)
1j′ =

(u
(h)
ij′ , v

(h)
ij′ ) to SR.

Next, determines the value of c ← {1, 2} by flip-
ping a coin, opening a part of the remaining com-
mitments value. Assume that c = 1, Pij secretly

reveals the commitments COM(u
(h)
ij′ ), COM(u

(h+1)
ij′ )

and −w to SR, where w = (u
(h+1)
ij′ − u

(h)
ij′ ) mod q.

Assume that c = 2, Pij secretly reveals the commit-

ments COM(v
(h)
ij′ ), com(v

(h+1)
ij′ ) and w to SR, where

w = (v
(h+1)
ij′ − v(h)ij′ ) mod q.

Step 5. At first, SR privately received commitment val-

ues R
(h)
1j′ = (u

(h)
ij′ , v

(h)
ij′ ) and Rij′ sent by Pij . SR

first verify that the equation val(Rij′) = (u
(h)
ij′ +

v
(h)
ij′ ) mod q is correct.

Next, SR performs a value consistent check on the
remaining commitment values. Assume that re-
ceived c = 1, SR opens the commitment value

COM(u
(h)
ij′ ), COM(u

(h+1)
ij′ ) and −w, then verifies that the

equation COM(u
(h)
ij′ ) = (COM(u

(h+1)
ij′ ) + (−w)) mod q is

correct. If received c = 2, SR opens the commitment

value COM(v
(h)
ij′ ), COM(v

(h+1)
ij′ ) and w, then verifies that

the equation v
(h)
ij′ = (u

(h+1)
ij′ +w) mod q is correct. Appar-

ently, only opened half of the commitment values at one
time, from lemma 1, it can be seen that the probability of
the participants accepting an false equation is 1

2 , if more
than k commitments are false, then the probability that
the participants accept is (1

2 )k.
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3.3 Secret Reconstruction

Step 6. And then SR received the verified Rij′ . With
these values, SR can compute Hj′ = Hj⊕H(R1j′)⊕
H(R2j′)⊕ · · · ⊕H(R|δj |j′). With the two coordinate
points (1, f(1)), (dj , Hj′), SR can reconstruct f(x) =
xf(1)− xHj′ − djf(1) +Hj′(1− dj)−1. At last, the
shared secret can be recovered by computing s =
f(0) mod q.

4 Scheme Analysis

4.1 Security Analysis

Theorem 1. If the Rij′ received by the secret recu-
perator SR are verified by the Micali-Rabin’s ran-
dom vector representations technique, then Rij′ is
the correct and has not been modified. Then this
new scheme is verifiable.

Proof. In the verification phase, by adopting the
Micali-Rabin random vector representations tech-
nique, each participant Pij committed 3K rows:

COM(R
(h)
1j′ ), · · · , COM(R

(h)
|δj |j′), 1 ≤ h ≤ 3k to the

Rij′ on the SBB. In the verification phase, SR verify

half of the commitments u
(h)
ij′ , v

(h)
ij′ and Rij′ sent by

Pij(That is to verify that val(R
(h)
ij′ ) = (u

(h)
ij′ + v

(h)
ij′ )modq

is equal). If verification fails, SR reject Rij′ sent by the
dealer. If it’s verified, SR performed a value consistent
check on the remaining commitment values, that is

verified COM(u
(h)
ij′ ) = (COM(u

(h+1)
ij′ ) + (−w)) mod q

or v
(h)
ij′ = (u

(h+1)
ij′ + w) mod q. According to Lemma

1, if more than k commitment values are wrong, the
probability of SR accepting the wrong results is ( 1

2 )k.
To sum up, the Rij′ verified by Micali-Rabin’s random
vector representations technique is the correct and has
not been modified, this scheme is verifiable.

Theorem 2. The knowledge commitment scheme
based on bilinear pairing meets the requirements
of complete hiding and computational binding.

Proof. Assume that there exists s′ ∈ Z∗q and s′ 6= s such
that COM(s′) = COM(s)(that is, the dealer can open
the commitment in two ways). Assume that s = s′+t, 0 <
t < q, that is e(P,Q)s

′
= e(P,Q)s. Because P,Q ∈ G1

are two generators of group G1, and q is the big prime
order on group G1, so qP = 0, qQ = 0(0 is the point at
infinity of the group G1). We get e(s′P,Q) = e(sP,Q)
from e(P,Q)s

′
= e(P,Q)s = e(sP,Q) = e(s′P,Q), so we

have sP = s′P . So there exists sP − s′P = tP = 0 with
s = s′ + t, 0 < t < q. But, 0 < t < q, this contradicts
P with order q, so it has to be s = s′, that is, the dealer
only can open the commitment in one way. So the scheme
meets the requirement of computational binding.

Also COM(s) = e(sP,Q) = e(P, sQ), it is not compu-
tationally feasible for an attacker to try to get the specifics

of the commitment, since the calculation of Diffie-Hellman
problem (CDHP) of bilinear pairings are hard to work out.
In conclusion, the knowledge commitment scheme based
on bilinear pairing meets the requirements of complete
hiding and computational binding.

Theorem 3. It is assumed that the calculation of
Diffie-Hellman problem (CDHP) of bilinear pair-
ings are difficult to be solved, then the proposed
scheme is of security.

Proof. In the verification phase, the attackers try to get
the s0 and sij from the commitments R0 and the com-

mitments of 3k rows COM(R
(h)
1j′ ), · · · , COM(R

(h)
|δj |j′), 1 ≤

h ≤ 3k posted on the SBB, they have to solve R0 =

e(P,Q)s0 , COM(u
(h)
ij′ ) = e(P,Q)

u
(h)

ij′ and COM(v
(h)
ij′ ) =

e(P,Q)
v
(h)

ij′ . However, the discrete logarithm prob-
lem(DLP) on the elliptic curve and the calculation of
Diffie-Hellman problem (CDHP) of bilinear pairings are
difficult to be solved. So it’s not computationally feasible
to get the specifics of the commitments.

At the same time, the participant Pij tries to dis-
tribute false Rij′ to SR in the verification phase,
that is COM(Rij′

′) = COM(Rij′), where Rij′
′ 6=

Rij′ , Rij′Rij′
′ ∈ Z∗q . However, according to theorem 2,

the knowledge commitment scheme based on bilinear pair-
ing meets the requirement of computational binding, the
dealer only can open the commitment in one way. So Pij
cannot send a false Rij′ to SR. Also, the secret shares sij
of each participant Pij in this scheme are chosen by the
participants themselves, avoiding the distributor’s decep-
tion.

4.2 Performance Analysis

This section briefly analyzes the performance of the pro-
posed scheme by comparing it with the existing scheme.
Te denotes the time of executing a bilinear pairing, Tm
denotes the time of executing a scalar of multiplication
in G1, Texp denotes the time of executing an exponenti-
ation in G2, Tp denotes the time of computing the poly-
nomial value. The time of executing a modular addition
operation in Z∗q and one-way hash function are negligible
compared with Te and Tm. Therefore, we just consider
those time-consuming operations Te, Tm, Texp, Tp, other
computational overhead is ignored.the computational ef-
ficiency as shown in Table 1.

The above mentioned, |δj | denotes the number of mem-
bers in authorized subset, hence |δj | � n. Therefore,
performance analysis shows that in our scheme, with the
adoption of Micali-Rabin’s random vector representations
technique, the verification process is much less computa-
tionally intensive. Compared with the above two schemes,
the computational costs in the distribution phase has also
been significantly improved.
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Table 1: Comparison of computational costs

Distribution Verification Reconstruction
Schemes Phase Phase Phase
TIAN’s scheme[8] (3n+ t)G1 tTexp +G1 + (t+ 1)Te 3tTm + 2tTe
ZHANG’s scheme[14] (n+ 1)Tm + 2tTexp tTe + n(t+ 1)Texp tTm
Tsu-Yang’s scheme[15] nTe + (4n+ t)Tm (n+3)Te + n(t+ 1)Tm tTm

+nTexp + nTp +nTexp + ntTp
TIAN’s scheme[8] (n+1)Te + nTexp 6k |δj |Te + |δj |Texp Tm

4.3 Simulation Analysis

For the generalized verifiable secret sharing based on
Micali-Rabin’s random vector representation technique
proposed in this paper, simulation analysis was carried
out in combination with the actual scenario. All data
were the average of the experimental results for 10 times.
The execution performance of the secret distribution pro-
cess is shown in Figure 1. It can be seen that the execution
time is linear with the change of the number of people.
Because as the number of people increases, the number
of operations of bilinear pairing and exponentiation in-
creases. As can be seen from Figure 2, as the sub-secret
is verified by Micali-Rabin’s random vector representation
technique in the verification phase, the calculation time
of the secret verification process is less affected by the
number of participants, and the calculation time of the
secret reconstruction process does not change much with
the number of people. In general, the scheme has good
application value in practical application scenarios.

Figure 1: The curve of secret distribution calculations as
the number of people changes

5 Conclusions

The (t,n) threshold secret sharing scheme has certain lim-
itations in practical application, so it is of great applica-
tion value to study the secret sharing of general access
structure. This paper proposes a verifiable secret shar-
ing scheme based on general access structure. Firstly,
our scheme adopts the knowledge commitment scheme
based on the bilinear pairing to guarantee the conceal-
ment and security of public information. Secondly, our

Figure 2: The curve of calculation costs as the number of
people changes in the verification phase, and the curve of
secret reconstruction calculations as the number of people
changes

scheme adopts Micali-Rabin’s random vector representa-
tions technique, which greatly improves the efficiency of
the verification phase. Finally, by analyzing the security
and performance of the scheme, the scheme satisfies the
feature of verifiable secret sharing and is more efficient
than the existing schemes. The next work is to design a
efficient secret sharing scheme with general access struc-
ture that can be publicly verified and applied to suitable
application scenarios.
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