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Abstract

Software homology detection is very meaningful for soft-
ware copyright protection and malicious code variants de-
tection. In this paper, we propose a genetic algorithm to
justify the binary code similarity. First of all, the binary
executable files are converted into control flow graph ,
and then use genetic algorithm to compute the similar-
ity among control flow graphs, which is regarded as the
evaluation metric for software homology detection. The
experimental results show that the method is not only ef-
fective, but also the average time efficiency is 0.3 times
that of the classical algorithm of graph edit distance.

Keywords: Binary Executable Files; Control Flow Graph;
Genetic Algorithm; Homology Detection

1 Introduction

With the rapid development of software, code plagia-
rism is emerging endlessly, which seriously threatens the
software intellectual property rights. In addition, in
March 2018, a total of 7,235,983 viruses were found in
the National Computer Virus Emergency Center,36,931
new viruses were added, and 76,606,087 computers were
infected [13]. Viruses or malware’s escape from detection
through code variants, but the core code does not change
much. Therefore, detection of code similarity is very nec-
essary. And the existing methods can be divided into
two categories, source code based or binary code based.
Considering sometimes we can not get the source code.
Therefore, binary code based homology detection is more
promising. That is, the similarity analysis based on bi-
nary code is very important.

For binary code similarity detection, graph based
method plays an important role in which Control Flow
Graph (CFG) is one of the most commonly used method.
Therefore, for binary code homology detection, it can be
transferred to graph similarity matching problems. That
is, given two graphs, graph matching involves establish-

ing the corresponding relations between their vertexes
and considering the consistency of edge sets at the same
time. CFG similarity comparison methods include graph
edit distance (GED), string matching, execution sequence
comparison, matching program basic blocks, and so on.
However, in general, the computation complexity of these
methods are quite large. Therefore, in this paper, we
propose a new graph matching algorithm for binary code
similarity analysis. First, the binary file will be converted
into CFG with relatively complete control flow informa-
tion using the dynamic and static combination technique.
And then use genetic algorithm (GA) to calculate the sim-
ilarity between CFGs. The algorithm can be used to ac-
curately identify the isomorphism subgraph relationship
and the exact identical CFGs, which can shorten the run-
ning time greatly, so as judging the software homology
effectively.

The organization of the paper is as follows: Section
II describes some related work. Section III presents the
framework of the proposed method. The experimental
results and detailed analysis are discussed in Section IV.
Section V concludes the whole paper and outlines some
directions of the future work.

2 Related Work

So far, there are certain amounts of research on homology
identification related area. Here, we will give some back-
ground work in two aspects, including sequenced based
analysis method and graph based method that closely re-
lated to this paper.

2.1 Sequence-based Analysis Method

Aiming at the problem of source code plagiarism, Guo
proposed an improved code plagiarism detection algo-
rithm based on abstract syntax tree, which can detect
plagiarism effectively [22]. Koschke demonstrated how
suffix trees can be used to obtain a scalable comparison,



International Journal of Network Security, Vol.22, No.5, PP.782-792, Sept. 2020 (DOI: 10.6633/IJNS.202009 22(5).08) 783

and presented a method to improve the accuracy through
user feedback and automatic data mining [10]. Liu pre-
sented an improved abstract syntax tree, which can effec-
tively detect code plagiarism by modifying the variable
type and adding meaningless variables [14].

However, the above mentioned methods are all
sequence-based ones, that can be bypassed by interference
techniques, such as instruction rearrangement, equivalent
instruction sequence replacement, branch inversion, etc.
And the essence of interference is that malicious code
can produce homogeneous code with different syntax but
same semantics. Therefore, the other direction is dynamic
based analysis, which generally relies on dynamic execu-
tion log to analysis the program behaviour. For instance,
through analyzing the anomaly and similarity of process
access behavior in data flow dependent networks, Mao et
al. introduced an active learning method by minimizing
risk estimation, which can improve the detection effect of
malicious code apparently [23]. Although dynamic based
method can extract the code running features, it relies on
virtual running environment and also can be challenged
by anti-virtual machine attacks [21].Yang et al. intro-
duces a method of defect detection based on homology
detection technology for open source software [28].

So, we can use more information, for instance, the func-
tion call diagram, to further detect malicious code. In
this aspect, Chae proposed a software plagiarism detec-
tion system using an API labeled CFG (A-CFG) that
abstracts the functionalities of a program [2]. Lim pre-
sented a method to compare CFGs by matching the basic
block of a binary program, which can effectively identify
the similar CFGs [12]. Wu gave a parallel method to ex-
tract the function call graph from the source code, and
introduced a new software structure information compar-
ison algorithm to effectively check the homology of the
software [24].

2.2 Graph Matching Based Method

Graph matching is a classical problem in computer sci-
ence. At the same time, GA also has some applications
in graph matching, code similarity detection and other
security areas [20]. Moon proposed a malware detection
system using a hybrid GA, in which a malware is repre-
sented as a directed dependency graph and transforms the
malware detection problem to the subgraph isomorphism
problem [8]. Jaeun gave a multi-objective GA with a lo-
cal search heuristic, comparing the degrees of each vertex
of two graphs that are mapped, and counted the num-
ber of mismatched vertices [5]. Kim proposed a new cost
function based on the program dependency graph using
the GA to measure the similarity of the program, the
method was proved to be feasible [7]. Xiang presented
an improved GA, which mainly studied the isomorphism
of subgraphs, and designed a special crossover function
and a new fitness function to measure the evolution pro-
cess [25].

In this paper, we combine static and dynamic method

to generate CFG, and then use graph matching to eval-
uate the binary software homology. The main contribu-
tions of the paper are as follows:

• Design a special GA to evaluate the similarity of bi-
nary files, which can be used to accurately identify
the isomorphism subgraph and the exact identical
CFGs, which is normally regarded as a NP-complete
problem. And the experimental result shows when
the number of CFG nodes is large, our method can
still get the CFG similarity and comparing with other
classical methods, the time overhead of our algorithm
is obviously reduced.

• For GA based CFG matching, we give a complete
framework including CFG mapping to chromosome,
operation design for the crossover, mutation, selec-
tion and fitness evolution.

3 The Proposed Method

The method proposed can be divided into two steps. The
first step is CFG extraction from the binary executable
files combining static and dynamic recovery method. And
the second step is CFG encoded and read into GA to
compute the similarities among different graphs. The
flowchart of the method is shown in Figure 1, where the
implementation of each step is described in detail below.

3.1 Binary Files’ CFG Extraction

Although static method has high code coverage, it cannot
obtain complete control flow. Although dynamic method
can obtain the exact program execution information, the
code coverage is low. So, the hybrid recovery method is
the combination of dynamic and static method, which en-
sures not only the high code coverage but also can solve
the indirect jump issues. And then use symbolic execu-
tion and reverse slicing techniques to further traverse the
binary file to obtain complete control flow information.

3.1.1 Symbolic Execution

Symbolic execution is the symbol substitution for real val-
ues when running a program. The advantage is that we
can traverse the paths of a program as much as possi-
ble by using the variable symbols. KLEE [9] and S2E [3]
are two typical symbolic execution tools based on source
code and binary code respectively. In symbolic execu-
tion, we can convert the program operation process into
a mathematical expression. Whenever a judgment and
a jump statement are encountered, symbolic execution
gathers the path constraints of the current execution path
into the constraint set of that path. Through constraint
solver, the path reachability can be obtained by solv-
ing the constraint set. Combining the actual execution
with the symbol execution, that first emerged in 2005, in
DART [18] and CUTE [19], many problems encountered
in traditional static symbol execution have been solved.
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Figure 1: The flowchart of binary code homology detection

However, there are some challenges to symbolic execu-
tion, for instance, the path explosion, solver unable to
solve, etc. For reducing the path explosion, heuristic func-
tions, reliable program analysis and software verification
techniques are some common strategies for reducing the
complexity of path exploration. For constraint solving
problems, there are two kinds of optimization methods.
One is the elimination of uncorrelated constraints and the
other is incremental solution.

3.1.2 Reverse Slicing

Program slicing is an important technique for program
analysis, Negi et al. highlights the different test cases and
comparative analysis of program slicing methods which
corresponds to the applications which are usually utilized
in software modification activities [15]. Given the slic-
ing standard < p, V >, the forward slicing of program
p contains all statements and control conditions affected
by variables in V , while the backward slice of program p
contains all statements and control conditions that have
direct or indirect effects on variables in V .

3.1.3 CFG Generation and Optimization

Currently, the common tools for generating CFG are FXE
(forced execution engine) [26], IDA Pro [17], et al. FXE
can solve the problem of indirect branch jump by dynam-
ically executing code, it is only suitable for the binary ex-
ecutable of Windows PE format under x86 architecture.
IDA Pro can generate CFG and function call graph, but
the repeated nodes in the graph are not merged or deleted,

also for binary codes, it lacks structural information, so
IDA Pro’s disassembly results are far from ideal [29].

In this paper, we use a new CFG tool Angr [27], which
is a binary analysis platform based on Python. It im-
plements different symbolic execution strategies, such as
veritesting [1]. The Angr system is originally designed
for the DARPA Challenge. It can load different binary
format files and their dependent libraries, and integrate
many advanced binary analysis techniques to generate
CFGs by combining dynamic and static methods. More-
over, Angr can optimize the basic block overlap in the
CFG, and the overlapping parts are merged and subdi-
vided to obtain more accurate control flow information.
Meanwhile, since Angr analyses and removes the edges
generated by loop structure and pseudo-return, it sim-
plifies the CFG and alleviates the explosion problem of
program state space, which improves the reconstructing
ability of CFG.

3.2 GA for CFGs Similarity Calculation

Given two directed graphs, and then number the nodes in
the graph [4], for example, as shown in Figure 2. We use
GA to select the best individual after several generations
of evolution, such as crossover and mutation, until the
evolution stop criteria is satisfied.

3.2.1 Chromosome Initialization

The GA adds a node of the matching graph to each chro-
mosome once each iteration, a corresponding node of the
matched graph is generated by random function until all
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Figure 2: Two examples of numbering nodes for directed graphs

the nodes of the matching graph are added to the chro-
mosome. According to Figure 2, the initialization process
is shown in Table 1, all the left nodes in the chromosome
comes from a relatively small matching graph (the left one
of Figure 2) and the right nodes come from the matched
graph (the right one of Figure 2). About the matching
graph, adding some rules for initialization:

• When the in-degree of the left node is zero, and the
out-degree of the right node is zero, they do not
match. And if the out-degree of the left node is zero,
and the in-degree of the right node is zero, it will
not match. For example, in Figure 2, node 5 of the
left graph doesn’t match node 7 of the right graph,
because the in-degree of node 5 is zero and the out-
degree of node 7 is zero.

• The current right node number is different from the
previous right node number in the chromosome, and
the number does not exceed the total number of
nodes in the matched graph. For example, in the
first chromosome of Table 1, the node corresponding
to the left node 2 must not be node 5 and the number
doesn’t exceed 7.

3.2.2 Chromosomes Selection

Both crossover and mutation operations in GA rely on se-
lection function. The selection operation in this paper is
similar to roulette-wheel selection. First of all, a random
function produces a number between 0 and 1 denoted as
a. Sum the fitness value of all chromosomes in the popula-
tion as S; Next, calculate the cumulative fitness value for
each chromosome, that is the sum of the fitness from the
first chromosome to the current one k, marked as Sk. Set
Sk as the divisor and S the dividend, the resulting quo-
tient is recorded as bk and compared with a, as shown in
Equation (1). If a 6 bk, returns the current chromosome
number k.

For example, in Table 1, according to Equation (1),
the cumulative fitness value of the first chromosome is
b1 = f1

f1+f2+f3+f4 , and the cumulative fitness value of

the second chromosome is b2 = f1+f2
f1+f2+f3+f4 . If a 6 b2,

returns the current chromosome number 2, and so on.

bk =
Sk

S
=

∑k
i=1 fi∑L
i=1 fi

. (1)

Where f denotes the fitness value and L = sizepop, k 6
sizepop.

3.2.3 Chromosomes Crossover

Before a crossover, we generate a number between 0 and
1 through a random function, denoted as rand. If rand 6
cross, then do crossover operation, otherwise, keep silent.

Two chromosomes are extracted from the population
by the selection function, the right nodes of the two
chromosomes (noted as Parent one and Parent two) are
crossed, and the beginning position of the middle part
is marked as “begin”, the ending position of the mid-
dle part is marked as “end”. begin and end generated
by random functions must satisfy begin < end, and the
difference is not equal to the length of the whole chro-
mosome. Let the middle part of the Parent one as the
middle part of the child one after crossing, then let the
nodes of the Parent two in turn to fill in the child one,
and after that do conflict detection. If there is a conflict,
traversing backward in turn. After the traversal, if the
nodes of the child one chromosome is not filled up, then
use the random function to generate the missing node and
then perform conflict detection. According to the above
crossover rules, can obtain two child chromosomes after
the crossover.

For example, take the right node of the first and second
chromosome in Table 1 to do a crossover and assume that
begin = 3, end = 5, the specific crossover steps with the
Parent one in mind are shown in Figure 3. Thus, the
chromosome produced by the crossover are 1 → 6, 2 →
5, 3→ 4, 4→ 2, 5→ 1, 6→ 3.

Combine two chromosomal populations before and af-
ter the crossover and then sorted according to the fitness
value in ascending order. If the population size is set to
sizepop, then select the top sizepop chromosome to form
the population after crossover.
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Table 1: An example of chromosome initialization

iterations # First
chromosome

Second
chromosome

Third
chromosome

Fourth
chromosome

1 1→ 5 1→ 6 1→ 1 1→ 2
2 1→ 5, 2→ 6 1→ 6, 2→ 1 1→ 1, 2→ 4 1→ 2, 2→ 3
3 1→ 5, 2→ 6 1→ 6, 2→ 1 1→ 1, 2→ 4 1→ 2, 2→ 3

3→ 4 3→ 4 3→ 2 3→ 6
4 1→ 5, 2→ 6 1→ 6, 2→ 1 1→ 1, 2→ 4 1→ 2, 2→ 3

3→ 4, 4→ 2 3→ 4, 4→ 2 3→ 2, 4→ 3 3→ 6, 4→ 4
5 1→ 5, 2→ 6 1→ 6, 2→ 1 1→ 1, 2→ 4 1→ 2, 2→ 3

3→ 4, 4→ 2 3→ 4, 4→ 2 3→ 2, 4→ 3 3→ 6, 4→ 4
5→ 1 5→ 5 5→ 6 5→ 1

6 1→ 5, 2→ 6 1→ 6, 2→ 1 1→ 1, 2→ 4 1→ 2, 2→ 3
3→ 4, 4→ 2 3→ 4, 4→ 2 3→ 2, 4→ 3 3→ 6, 4→ 4
5→ 1, 6→ 3 5→ 5, 6→ 3 5→ 6, 6→ 5 5→ 1, 6→ 5

fitness function
value

f1 f2 f3 f4

Figure 3: An example of crossover step
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3.2.4 Chromosome Mutation

Each chromosome in population is selected in turn on the
basis of the crossover operation. We generate a num-
ber between 0 and 1 through a random function, which
is denoted as rand. If rand 6 mutation, the mutation
operation is performed, otherwise, no mutation. When
the nodes of the second graph are not all added to the
chromosome, we use different random functions to gener-
ate a mutation position (position) and a mutation value
(num) in the chromosome, and then do conflict detec-
tion. If there is no conflict, replace them. Otherwise, a
new mutation is generated. If all the nodes of the second
graph have been added to the chromosomes, use random
functions to generate two different positions in the chro-
mosome (i and j), and exchange the right nodes of the
two positions as the mutated chromosomes.

For example, the third chromosome in Table 1, not all
nodes of the second graph are added to the chromosome at
the sixth iteration, and suppose position = 3, num = 4, it
is obvious that the mutation value generated at this point
conflicts with the subsequent right node, so suppose we re-
generate a mutation value num = 7, and there is no con-
flict, then the chromosome mutation is shown as the left
figure in Figure 4. Therefore, after the third chromosome
mutation, it’s 1 → 1, 2 → 4, 3 → 7, 4 → 3, 5 → 6, 6 → 5.
If there are 6 nodes in the second graph and all of them
have been added to the chromosome, assuming i = 2,
j = 5, the chromosome mutation is shown as the right
figure in Figure 4. Thus, after the 3rd chromosome mu-
tation, it’s 1→ 1, 2→ 6, 3→ 2, 4→ 3, 5→ 4, 6→ 5.

Figure 4: An example of mutation process

According to the rule of mutation, we perform the op-
eration of chromosome variation, and we compare the fit-
ness value of chromosomes before and after mutation. If
the fitness value of the chromosome is not reduced after
mutation, the mutation operation is canceled.

3.2.5 Fitness Calculation for Each Chromosome

In this paper, the fitness function F is divided into two
parts F1, F2, and define F = F1 + F2. F1 is composed
of the mismatched nodes number f1 and the mismatched
edges number f2, that is, F1 = f1+f2, where f1 and f2
are both for smaller graphs. For example, in Table 1, for
the 4th chromosome, after 3 times of iteration, the results
are: 1→ 2, 2→ 3, 3→ 6, at this time f1 = 3, f2 = 2.

However, only according to the results obtained by F1
is not scientific, because when two graphs are exactly the
same and two graphs are isomorphic subgraphs, the re-
sults of F1 are all zero. Therefore, we add the F2 part,
as shown in Equation (2), if the number of nodes in the
two CFGs is equal, then F2 is zero, otherwise it is not
zero.

F2 = 1− node one

node two
. (2)

Where node one represents the number of nodes of the
smaller graph, and node two the larger graph.

Therefore, the fitness function of the proposed method
is shown as Equation (3).

F = F1 + F2 = f1 + f2 + 1− node one

node two
. (3)

With this fitness function, if F1 = 0, F2 = 0, the nodes
and edges of two CFGs are exactly the same. And if
F1 = 0, F2 6= 0, the two CFGs are isomorphic subgraphs.

3.2.6 Stop Criteria of Population Evolution

When any one of the followings three rules occurs, the
GA will stop iteration and return the chromosome with
the smallest fitness value.

• The evolution times reach the predefined number;

• During evolution, the F1 value of a chromosome
equals 0;

• After several iterations, comparing with the popula-
tion changes before and after each evolution, there
are almost no changes in the fitness value.

4 Experiments

4.1 Experimental Data and Environment

Kernel32.dll is a very important dynamic link library file
in Windows, which belongs to kernel level file. It con-
trols the system memory management, the data input
and output operation and interrupt processing. When
the Windows start, the kernel32.dll resides in a specific
write-protection area in memory, preventing other pro-
grams from occupying the memory area [16]. We select
loadimagefile, loadappinitdlls and basepappinitdlls in
kernel32.dll and write.exe as experimental data. In de-
tail, we extract the experimental data files from Win-
dows 7 and Windows 10, altogether 8 files. write.exe,
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loadimagefile, loadappinitdlls, basepappinitdlls of Win-
dows 10 system. For Windows 7 system, named them
as write 7.exe, loadimagefile 7, loadappinitdlls 7 and
basepappinitdlls 7, and numbered them as 1, . . . 8, for
subsequent description. All the experiments is under the
Windows 10 system, and the related software include the
IDA, Angr, and VS2017. In addition, for GA parame-
ters, we set the number of population (sizepop) 20, the
number of evolution (maxgen) 2000, the crossover rate
(cross) 0.3, and the mutation rate (mutation) 0.8.

4.2 Comparative Experimental Methods

Among all graph matching algorithms, GED is the clas-
sical one with good fault tolerance and be suitable for
various types of graphs. Although there are other graph
similarity computation methods, especially the lately hot
graph neural network (GNN), it needs not only massive
data to train the network but also rich computational re-
sources. Therefore, we select a series of GED algorithms
as comparative ones, which can be more targeted when
compared with the experimental results of the proposed
method.

4.2.1 GED

The GA proposed in this paper is mainly used to calcu-
late the similarity between two directed graphs, which is
consistent with the classical GED method. Therefore, our
comparative experiment selects the edit distance method
and its two variant methods. GED is the sum of the min-
imum editing operation costs required to edit a source
graph into a target graph. The cost of each step is ob-
tained by defining the corresponding cost function [30].
In this paper, the cost of replacing, deleting and inserting
the nodes and edges of the directed graph in the edit-
distance method is all set to 1.

4.2.2 Edit Distance Based on Binary Linear Pro-
gramming Formula

In 2015, Julien Lerouge proposed a new binary linear
programming formulations for computing the exact GED
between two graphs (GED linear) [11], the advantage of
which is the universality of the formula, the similarity be-
tween digraphs and undirected graphs can be calculated.
But when the number of nodes is too large, the method
does not work, and the time cost of this method is larger
than that of other methods.

4.2.3 Edit Distance Based on Hausdorff Match-
ing

In 2015, Andreas Fischer proposed a quadratic time
approximation of GED based on Hausdorff matching
(GED distance) [6]. The advantage of the method is that
the time performance is greatly improved compared with
other methods. However, the disadvantage is that some
accuracy is lost, that is, a small loss of precision.

4.3 Experimental Results and Analysis

4.3.1 Comparison of CFG Generated by Angr
and IDA

In order to verify the integrity and simplification of the
CFG generated by Angr, we compare and analyze the
CFG generated by Angr and IDA. For example, the CFG
of the CADET 0001 file given by the DARPA Challenge,
Figure 5 is a CFG generated using Angr, and Figure 6 by
IDA. The number of basic blocks in the CFG generated
by Angr is more than that of IDA, and the basic block of
CFG generated by Angr also contains the basic block of
CFG generated by IDA. After merging overlapped nodes
and eliminating cyclic and unreachable edges and nodes,
Angr can obtain more accurate CFG, which can provide
a more concise CFG for subsequent analysis.

Figure 5: CFG based blocks generated by Angr

Figure 6: CFG based block generated by IDA

4.3.2 Comparison of GA with Other Experimen-
tal Methods

First, we get the CFGs of the control group files, and the
nodes and edges of the CFGs are shown in Table 2. Then
take one of them and compare it with the CFGs of the
control group. The experimental results are demonstrated
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by similarity trend diagram, in which the solid line refers
to the left Y axis and the dashed line refers to the right
Y axis. In this paper, the smaller the result, the greater
the similarity between the two graphs.

(2.1) Similarity between loadimagefile and contrast
files.

CFG of the loadimagefile consists 8 nodes and 12
edges, and the similarity trends are shown in Fig-
ure 7. Results of GA and three comparative ex-
perimental methods show that the descending or-
der of similarity with loadimagefile is 1 = 2 >
4 > 3 > 5 > 6 > 8 > 7. However, for
GED linear and GED distance, the edit distance be-
tween loadimagefile and itself is not zero, while
GED and GA can get that there is no differ-
ence between loadimagefile and itself, and the two
CFGs are exactly the same. It further shows that
loadimagefile of kernel32.dll in Windows 10 is not
modified, just the same as in Windows 7.

Figure 7: Similarity between loadimagefile and contrast
files

The time performance of the four methods is shown
as Figure 8. From Figure 8, it shows that the runtime
of GA is relatively stable. But with the number of
nodes increasing, the other three methods need more
time. When the loadimagefile file similarity calcu-
lation with the file #8, the GA method needs the
least running time, and both GED and GED linear
methods cost a long runtime. And on average, the
running time of GED linear is 9 times that of GA,
GED 3 times, and GED distance 0.6 times. But com-
paring with GED distance, GA is more accurate and
reasonable for identifying identical CFGs.

(2.2) Analysis of similarity between loadappinitdlls and
contrast files.

The CFG of loadappinitdlls contains 17 nodes and 29
edges. As mentioned in Section 4.2, when the number of

Figure 8: Time performances of four different methods
for computing loadimagefile

nodes is large, GED linear cannot calculate the similarity
(distance value) of two graphs. Just as in Table 3, we use
NA to describe. Therefore, we mainly concern the other 3
methods and the similarity results are shown in Figure 9.

Figure 9: Similarity comparison between loadappinitdlls
and contrast files

From Figure 9, it says that, for loadappinitdlls, the
similarity order calculated by GED distance is 4 > 1 =
2 > 3 > 5 > 6 > 8 > 7, and the distance between
loadappinitdlls and itself is not 0. When using GED,
the similarity order is 3 > 4 > 5 > 6 > 1 = 2 > 8 > 7,
and loadappinitdlls is exactly the same as itself. For GA
method, the result is consistent with the GED method.

Therefore, the results obtained, the results obtained by
GED distance and GED are inconsistent, and GA is con-
sistent with that of GED. And when the two programs are
exactly the same, the distance value should be 0, for in-
stance, loadappinitdlls and file #3. Therefore, the results
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Table 2: Nodes and edges of experimental files CFG

filenum(#) 1 2 3 4 5 6 7 8
Node number 8 8 17 10 24 25 48 45
Edge number 12 12 29 16 36 39 68 64

Table 3: Distance calculation by the GED linear method

filenum
(#)

filename distance value

1 loadimagefile 46
2 Loadimagefile 7 46
3 loadappinitdlls NA
4 Loadappinitdlls 7 50
5 basepappinitdlls NA
6 Basepappinitdlls 7 NA
7 Write.exe NA
8 Write 7.exe NA

obtained by GA and GED are more reasonable. Further,
the experiment shows that loadappinitdlls of kernel32.dll
in Windows 10 is slightly modified from Windows 7.

When calculating the similarity between the
loadappinitdlls and contrast files, the time perfor-
mance of the three methods is shown in Figure 10. It
can be seen that GA is less than that of both GED and
GED linear methods, and when the number of nodes
is too many, the GED linear cannot get result in a
reasonable time. When calculating similarity between
loadappinitdlls and the file #3, GA is significantly longer
than that of GED distance. And the main reason is file
#3 is the loadappinitdlls file itself, and GA will evolve to
a perfect match. When a chromosome fitness value is 0,
the evolution stops. But for GED distance, it is not 0.
On average, running time for GED is 3 times that of the
GA, and GED distance 0.6 times.

(2.3) Similarity comparison between loadappinitdlls 7
and contrast files.

The CFG of loadappinitdlls 7 contains 10 nodes and 16
edges. The similarity diagram is as Figure 11. According
to Figure 11, the results calculated by the two variations
of editing distance show that the order of similarity with
loadappinitdlls 7 is 1 = 2 > 4 > 3 > 5 > 6 > 8 > 7,
and loadappinitdlls 7 is not exactly the same as itself.
For GED and GA method, the order of similarity with
loadappinitdlls 7 is 4 > 1 = 2 > 3 > 6 > 5 > 8 >
7. So, for GA and GED, there is no difference between
loadappinitdlls 7 and itself, and two CFGs are identical.

Based on the results, the loadappinitdlls 7 should be
the most similar to itself, so the most similar file number
should be 4. The results of the four methods show that
the file with the least similarity to loadappinitdlls 7 is
the file #7. Therefore, it can be proved that the method
proposed in this paper is reasonable to some extent.

Figure 10: Time performance of 4 different methods for
computing loadappinitdlls

For loadappinitdlls 7, the time performance of the
four methods are shown in Figure 12. It can be seen
that the time cost of the GED and GED linear meth-
ods is gradually increasing with the increase of the num-
ber of nodes, but the trend of GA is almost the same as
that of GED distance. On average, the running time of
GED linear is 7 times that of GA, GED is 3 times, and
GED distance is 0.5 times.

5 Conclusions and Future work

In this paper, we proposed a genetic algorithm method
to calculate the similarity between two binary files. First,
the binary file is converted into CFG, and then the simi-
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Figure 11: Similarity comparison between
loadappinitdlls 7 and contrast files

larity between CFGs are calculated by GA. For similarity
calculation, the proposed method is consistent with the
GED method and can be used to accurately identify the
isomorphism subgraph relationship and the exact identi-
cal CFGs, which is the basis of software homology detec-
tion.

GED is a very classical graphic similarity calculation
algorithm. Compared with other methods, GED has the
advantages of high accuracy and simple operation. The
distance can be calculated simply by inputting 2 pairs of
graphs. The similarity trend of GA in experiment (2.1) is
almost the same as the three comparison algorithms, and
the results of GA in experiment (2.2) and (2.3) are only
the same as those of GED algorithm. Since the difference
between the target file and itself should be equal to 0, we
can infer that the results of GA and GED are more rea-
sonable. Moreover, the proposed method is high efficient,
especially for graphs with massive nodes. Also, according
to the fitness function designed in this paper, GA can ef-
fectively identify whether the two graphs are isomorphic
sub-graphs or exactly the same. About time performance,
on average, GA is 0.3 times that of the GED, 0.1 times
the GED linear and 1.7 times the GED distance.

About future work, some directions should be aug-
mented. First of all, CFG is the analysis basis. How
to enrich the CFG is a direction worth further study. Af-
ter that, for GA based software homology detection, it
should be reinforced in more real and wide areas applica-
tions. Meanwhile, some hyper-parameters of GA should
be optimized automatically and adaptively according to
different applications.
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