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Abstract

As one of popular issues in data mining area, outlier de-
tection aims to find the objects which show abnormal be-
haviors from original datasets’ distribution, and it can
be applied in various applications such as bank fraud,
network intrusion detection, system health monitoring,
medical care, public safety and security, and etc. Re-
cently, the density-based outlier detection has been pro-
posed which is the highly efficient and significant method
for outlier detection processing. It adopts the relative
density of an object to indicate the degree of an object
is an outlier compared with its neighbors. Specifically,
it aims at computing the Local Outlier Factor (LOF). In
this paper, we propose a novel distributed density-based
outlier detection method for large-scale data processing,
namely IGBP. First, we split the data space into several
grids and then allocates these grids into the data nodes
with greedy algorithm in a distributed environment. Be-
sides, we propose a distributed LOF computing method
with KD-tree for detecting density-based outliers in par-
allel way. The validity of the proposed approaches is fi-
nally verified by experiments, Experimental results which
demonstrate that our proposed method outperform the
baselines.

Keywords: Density-based Outlier; Distributed Algorithm;
Greedy Algorithm; Kd-Tree; LOF

1 Introduction

With the development of big data techniques in large scale
data processing, outlier detection is one of importance but
complex tasks in data mining area, it can be widely used
in various applications such as bank fraud, network in-
trusion detection, system health monitoring, medical care
and public security protection, and etc. Outlier detection
can help us to discover valuable knowledge and abnor-

mal patterns. Therefore, it has become one of hotspot
directions in data mining, recently.

Hawkins who has addressed that an outlier is an ob-
servation that deviates obviously from other observations
as to arouse suspicion that it was generated by a differ-
ent mechanism [9]. In recent years, there are many studies
about outlier detection. For example, distance-based out-
lier detection [13] and density-based outlier detection [5]
are well representative works in traditional outlier detec-
tion methods. However, most of them only consider the
centralized environments or single node processing. With
the increasing scale of big data, the performance of these
proposed methods cannot satisfy computing requirements
of users. For instance, in the area of credit card fraud
detection, we obtain the users’ trade information as a
dataset. If the credit card is stolen, its transaction pat-
tern usually changes dramatically, especially that the lo-
cations of transactions and the purchased items are often
unusual for the authentic card owner. Therefore, we de-
fine these abnormal transaction records as outliers. Then,
the techniques of the outlier detection can help us to iden-
tify outliers to find out whether user accounts have been
theft. And it can avoid the property damage. Besides,
Outlier detection technology also can used to detect the
cheating of game bots in Massively Multiplayer Online
Role-playing Games [17].

Fortunately, there are some recent studies which at-
tempt to utilize distributed computing environment to
speed up the computation, and there are several related
methods [10,11,14] for distributed outlier detection were
proposed. For example, E. Lozano and E.Acufia [16] pro-
pose a master-slave architecture for distributed comput-
ing. More specifically, each slave node computes its neigh-
borhood set and sends it to the master node. And the
master node will collect all the partial neighborhood sets
and compute LOFs of all the tuples. However, a large
number of tuples in proposed method are aggregated to
the master node, and then lots of calculations are needed
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to conduct the result. Thus, the master node will be the
bottleneck when the data scale is increasing. And a high-
performance master node is necessary. Recently, Mei Bai
et al. adopt a coordinator and a number of datanodes for
outlier detection problem [3]. The coordinator is respon-
sible for the overall scheduling. Each datanode stores sev-
eral data subsets in grids, and calculates LOF's in the data
subsets. The coordinator in this frame only takes charge
of the scheduling and all the actual computations are allo-
cated to the datanodes. Thus, the coordinator would not
be a bottleneck if the data scale is large. In order to reduce
the network overhead, their grid allocation algorithm allo-
cates the adjacent grids to the same datanodes. However,
their proposed algorithm only need a small quantity of
network communications between pairs of datanotes and
the average numbers of tuples in each grid are likely to
be very different. Hence, to address these limitations, we
focus on improve the computational complexity which is
the greatest bottleneck of this issue.

In this paper, we aim to model density-based outlier
detection in a distributed manner. The general idea is
that we attempt to compare the density around an object
with the density around its local neighbors. The basic
assumption of density-based outlier detection method is
that the density around a non-outlier object is similar to
the density around its neighbors, but the density around
an outlier object is significantly different from the density
around its neighbors [8]. Through our sufficient analysis,
we discover that workload and network communications
in computing architecture will increase while the scale of
data is increasing. But the increased speed of workload
is higher than network communication. Besides, if the
dimensionality of data increases, the performance will be
much better. Therefore, we propose an improved algo-
rithm in this paper which aims at detecting density-based
outliers in distributed environments efficiently compared
to [3]. Moreover, our experiments are implemented to
demonstrate the effectiveness and high efficiency. We will
show the detailed description of algorithm in Section 4.

The rest of this paper is organized as follows. In Sec-
tion 2, we will overview the related works. Section 3
states the problem of density-based outlier detection in
a distributed environment. Section 4 detailedly presents
our improved algorithm. Section 5 gives the experimental
results. In the end, we conclude this paper in Section 6.

2 Related Work

We first make briefly overview of outlier detection in Sec-
tion 2.1. Then the previous methods of distributed outlier
computing are described in Section 2.2.

2.1 Outlier Detection

Hawkins firstly give a definition about outliers in 1980 [9].
Afterwards, Beckman and Cook [4] present more im-
proved definition and survey. Markou and Singh [18,19]
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present a review about statistical approaches for out-
lier detection. Especially in [19], they present a review
about neural network based approaches for outlier detec-
tion. Fujimaki et al. present a semi-supervised outlier
detection method by using a set of labeled “normal” ob-
jects [7]. Dasgupta and Majumdar also propose a semi-
supervised method [6] for outlier detection task. Subse-
quently, distance-based outliers was developed by Knorr
and Ng [13]. And the index-based, nested loop—based
and grid-based approaches are well explored to speed up
distance-based outlier detection [12,13].

Other proximity-based approach is the density-based
outlier detection [5], In order to detect a tuple whether
is an outlier or not, a local outlier factor (LOF) which
defines in [5] represents the degree of this tuple to be an
outlier is assigned to each tuple [3]. LOF is based on
a concept of a local density, where locality is given by
k nearest neighbors, whose distance is used to estimate
the density. By comparing the local density of a tuple
to the local densities of its neighbors, one can identify
the regions of similar density, and tuples that have a sub-
stantially lower density than their neighbors. These are
considered to be outliers [8]. Besides, the HilOut algo-
rithm was proposed by Angiulli and Pizzuti [2]. Aggarwal
and Yu [1] develop the sparsity coefficient-based subspace
outlier detection method. Kriegel et al. proposed angle-
based outlier detection [15].

2.2 OQutlier Detection in Distributed En-
vironments

Lozano and Acufia propose a distributed algorithm to
compute density-based outliers [16]. However, owing to
all the tuples are transferred to the master node, the work-
load on the master node is quite heavy. Thus, this method
is unable to achieve good performance when the data scale
is huge.

Mei et al. adopt a coordinator and a number of datan-
odes [3]. And the coordinator is responsible for the overall
scheduling. Fach datanode stores several data subsets in
grids, and calculates LOFs in the data subsets. After com-
parison, the coordinator in this frame is only in charge of
the scheduling and all the actual computations are allo-
cated to the datanodes. Hence, the coordinator would not
be a bottleneck if the data scale is huge. In order to re-
duce the network overhead, their gird allocation algorithm
allocates the adjacent grids to the same datanodes. How-
ever, in fact, their algorithm only need a small amount of
network communications between pairs of datanotes. In
addition, the time and space complexity of LOF are very
high. In this paper, we present an improved algorithm
based on theirs to efficiently detect density-based outliers
in distributed environments. Moreover, our experiments
are implemented to demonstrate the validity.
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3 Preliminaries

3.1 Problem Formalism

we will show some definitions to better solve our problem
and they will be applied in our proposed method.

Local density: It is estimated by the typical distance
at which a tuple can be reached from its neighbors.
And distance is usually adopted in LOF, which is an
additional measure to produce more stable results
within clusters.

Reachability distance: Let d(A, B) be the distance be-
tween A and B, k-distance(A) be the distance of the
object A to the k-th nearest neighbor. To simplify
the description, we define the distance as Euclidean
distance in the rest of this paper similar to [21].
Hence,

1) There are at least k tuples A’ such that
d(A, A") < d(A, B).

2) There are at most k — 1 tuples A” such that
d(A, A") < d(A, B).

Note that the set of the k nearest neighbors includes all
tuples at this distance, which can in the case of a ”tie”
be more than k tuples. We denote the set of k& nearest
neighbors as N (A4) = A’|d(A, A") < d(A). This distance
is used to define what is called reachability distance:

Rdy (A, B) = max{k-distance(A), d(A, B)}.

As shown in following Figure 1, it illustrates the original
intention of reachability distance. Tuples B and D have
the same reachability distance (k=3), while G is not a k
nearest neighbor.

Thus, the reachability distance of an object A from
B is the true distance of the two objects, but at least
the k-distance(A). Objects that belong to the k nearest
neighbors of A are considered to be equally distant. The
reason for this distance is to get more stable results. Note
that this is not a distance in the mathematical definition,
since it is not symmetric.

The local reachability density of an object A is defined
by

1

o ZBENk(A) Rd,B,A
[Ni(A)]

LRD(A)

where the inverse of the average reachability distance of
the object A from its neighbors. Note that it is not the
average reachability of the neighbors from A (which by
definition would be the k-distance(A)), but the distance
at which A can be "reached” from its neighbors. With
duplicate points, this value can become infinite.

The local reachability densities are then compared with
those of the neighbors using

LRD(B)
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Figure 1: k-distance neighborhood and reachability dis-
tance when k=3

where the average local reachability density of the neigh-
bors divided by the object’s own local reachability density.
A value of approximately a given threshold indicates that
the object is comparable to its neighbors (and thus it is
not an outlier). A value less than the threshold indicates
a denser region (which would be an inlier), while values
significantly larger than the threshold indicate outliers.

The traditional methods usually form all pair Eu-
clidean distance matrix, and then run KNN query to
proceed further. It is ©(n?) in terms of both space and
time complexity. However, it can be improved with KD-
tree [20].

3.2 Distributed Environment

As Figure 2 shows, we utilize a distributed framework that
consists of a coordinator and a number of datanodes. The
coordinator is for the overall scheduling similar to [3].
Each datanode is to store a portion of a complete data
set. Most of previous algorithms utilize a master-slave
architecture for outlier detection, while lots of computa-
tions are performed on the master node. Following [3],
we also do that the coordinator in our frame only takes
charge of the scheduling and all the actual computations
are allocated to the datanodes. Besides, Density-based
outlier detection is to compute the LOF of each tuple for
a given integer k. First, we use improved GBP (IGBP)
algorithm to split the data set into several subsets and
assign them to the datanodes. After that, our algorithm
work via two main steps. First, each datanode processes
the local tuples. And LOF's of some tuples can be com-
puted directly in the local nodes. Second, we will output
LOFs of the rest of the tuples by a few necessary network
communications compared with [3].
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Figure 2: Computation frame

4 The Improved GBP Algorithm
(IGBP)

4.1 Grid-based Partition

In our IGBP algorithm, we first attempt to split the whole
d-dimensional space into several isometric grids. While
grid-based partition method conducts limitations in the
high-dimensional data, Hence, we cut each dimension into
several equal segments (the number of segments is de-
noted by s). After that, the space is partitioned into s¢
grids. Let g, ,,..,2, be the gird that is at the x;-th
position for dimension i. Next, we give the definition of
adjacent grid:

N(9117$27'-- @d) = {gyhyz,"' ,yd‘max(lvxi - 1) <y <

min(s7 i + 1)»9y1,y2,~~- Yd 7& 1,20, ,Id}'

Next, we allocate these grids to the datanodes. In order
to speed up the computations of density-based outliers,
we propose an allocation method through considering the
following two factors.

1) To obtain high parallelism, we set the number of tu-
ples on each datanode almost the same (balance the
workload).

According to Section 3.1, we compute the k-distance
neighborhood for each tuple and reduce the network
overhead if we allocate the adjacent grids to the same
datanodes as possible. The details of the proposed
method are shown in Algorithm 1.

4.2 Distributed LOF Computing

In above part, we have split the data set into several
grids and allocated them to the corresponding datanodes.
Next, we turn to compute the LOF for each tuple in par-
allel way. By analyzing the definitions in Section 3, it
is clear that LRD is the premise of LOF. In order to
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Algorithm 1 Grid allocation

Input: The grid set G; The datanode set IV;
Output: output: Allocation plan;
1: sort the grids in G according to the number of tuples
in a grid in the descending order;
. for each grid g in G do
if there exist datanodes with no grid then
n < randomly choose a datanode with no grid;

else

for each datanode n; in N do

2

3

4

5

6: Initialize a datanode set N';
7

8 if n; has the least tuples then
9

insert n; into N';

10: end if

11: if there exists at least one datanode in N’
with grids which belong to adjacent grids N, then

12: n < choose the datanode in N’ with
the largest number of grids which belong to adjacent
gridsNg;

13: else

14: n<«randomly choose a datanode in N';

15: end if

16: end for

17: end if

18: allocate g to n;

19: end for

calculate LRDs effectively, we have to compute the k-
distances and k-distance neighborhoods for all the tuples
first, which is the core part of this section.

However, in distributed environments, the situation is
more complex. It’s difficult to compute the actual k-
distances of all the tuples. For example, in Figure 3, con-
sidering the tuples in grid g;, the local k-distance neigh-
borhood of tuple A is identical to its actual k-distance
neighborhood. However, tuple B shows a complex situa-
tion. Its local k-distance neighborhood is C, D, E, which
cannot be computed unless D, F is transmitted from go
to gird ¢;.

For previous work in [3], they classify the tuples in a
grid into 2 categories. A tuple whose neighborhoods can
be computed in local grid is a grid-local tuple. Otherwise,
it is a cross-grid tuple. After that, they proposed an al-
gorithm to solve this problem. This part is not the most
significant point in our paper. For distributed LOF com-
puting, we will make a example to explain our proposed
method which is different from previous work.

First, as shown in Figure 4, there is a set P with 120
tuples in 2-dimensional space, and the number of datan-
odes is 10. Thus, we set s = 4 and split the space into 16
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Table 1: Improved algorithm process

Sequence number | Grid ID | Number of tuples | Allocated datanode | Average number of tuples
1 g1,2 11 n1 /
2 91,1 10 U] /
3 93,2 10 ns /
4 91,4 10 Ny /
5 93,4 9 n5 /
6 93,3 9 ng /
7 93,1 3 ny /
8 94,1 8 ng /
9 J4,4 7 ng /
10 91,3 7 n10 8.9
11 92,2 6 n1o0 9.5
12 92,4 6 Ng 10.1
13 92,1 6 nr 10.7
14 94,2 5 ng 11.2
15 g4,3 4 Ng 116
16 92,3 4 ns 12
Dim 2
A Neighbors of g,
4
° g14 24 g34 844
3 10 6 9 7
g1,3 £23 £33 843
g o) ) 7 4 9 4
Figure 3: Example of DLC (k=3) 812 822 g32 842
11 6 10 S
grids. The related number of tuples is shown at the bot- 1
tom of each grid. According to the algorithm 1, we sort 1.1 g2.1 £3.1 841
the grids by the number of tuples in a grid, and the result
is shown in Table 1. Then, for each of the first 10 grids, 10 6 8 8
we randomly allocate it to a datanode with no grid. Af- 0 | 5 A ‘=
ter that, totally 89 tuples have been allocated, and the 3 Dim 1
average number of tuples per datanode is 8.9. When al- Figure 4: Example of grids
locating the 11th grid gs 2, there are 4 datanodes whose
numbers of tuples are not larger than 8.9, including nr;
ng; Ng; n1o- We choose nig because the number of tuples the number of tuples in datanotes {ni,ng,---,nio}

in nyg is smallest. Using the same method, we allocate all
the grids to the corresponding datanodes.

After allocation, the number of tuples in data notes
{ni,ng,-- o} is {11,10,10,10,13,13,14,13,13,13}.
We use o (standard deviation) to indicate how spread out
a data distribution is. A low standard deviation means
that this algorithm balances the workload well. We use
computational formula of standard deviation to obtain:

2 2 2 2 2 2 2 2 2 2
o= \/11 +102+1024+10%+413 1—1(—]13 +142+13°+13°4132 1.483

Second, according to the previous algorithm in [3],

is {11,10,10,10,15,13,14,13,11,13}.  We also obtain

1.732.

o

5 Experimental Evaluation

We implement our proposed approaches using python pro-
gramming language, and evaluate the performance in a
cluster (with 4 data nodes and 1 coordinator) where each
node (coordinator or datanode) has a Intel Core i5 @ 2.53
GHz CPU, 32G main memory. We first use a synthetic
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Table 2: The influence of data scale

Method 100000 tuples 500000 tuples 1000000 tuples
k=10 k=20 k=10 k=20 k=10 k=20
In [16] 782ms 1243ms 5341ms 7988ms 13568 27755
In [3] 512ms 910ms 4122ms 6278 9742 22495
In IGBP 547ms 932ms 3907ms 5611 8472 16625
k=10 Table 3: Open datasets
16000 Number of Instances | Number of Attributes
14000 approach in [8] Shuttle 58000 9
12000 =#—approach in [9] Census 48842 14
_ —8—-IGBP Drug 215063 6
2 10000
E 8000
E 6000
zzzz Table 4: Results in three datasets
0 Methods Shuttle Ruéletrll:lj(mS)Drug
100000 500000 1000000
data scale In [16] 12339 34987 47788
In [3] 3374 7120 9759
Figure 5: Runtime comparison IGBP 3115 5780 6880

dataset to verify the efficiency of our proposed method
IGBP. Then we choose three open datasets Shuttle, Cen-
sus and Drug which have been widely used in outlier de-
tection to further show the highly efficiency and effective-
ness of IGBP.

5.1 IGBP with Synthetic Data

We generate various synthetic data sets to analyze the
performance of our methods. Specifically, we compare
our proposed method with [3,16]. We generate several
clustering center points. And the tuples in each cluster
follow a Gaussian distribution. Finally, we add some gen-
erated noise into dataset, and the dimension of the data
set is 3. The detailed parameter settings and the runtime
are summarized in Table 2.

As shown in the table, with the increase of data scale,
the runtime for our algorithm show better performance
than previous work [3,16]. Besides, experimental results
demonstrate that workload balance is more significant
than network overhead in this issue. Figure 5 illustrates
that the impact of different data scale, with the increase of
data scale, our proposed method outperform better base-
lines.

5.2 IGBP with Open Datasets

In this part, we use three popular real-world datasets to
evaluate our proposed method. Shuttle, Census and Drug

which have been widely used in outlier detection. The
details has shown in following Table 3.

As Table 4 shows that our proposed method have low
time consumption than [3,16] based on three real-world
datasets. More specifically, with the increase of data
scale, we find that our proposed method have higher effi-
ciency compared with [3,16].

6 Conclusions

In this paper, we focus on the problem of density-based
outlier detection in distributed environments for high-
dimensional and large-scale data sets. We first introduce
the basic concept of LOF. We summarized the approach
in [3] to solve the problem of distributed LOF computing
in detail. The advantages and disadvantages of the ap-
proach are discussed. Then, we propose an improved algo-
rithm based on greedy algorithm, namely IGBP. With the
experimental results, we show the efficiency and effective-
ness of the proposed approaches compared with previous
work. The results demonstrate that our algorithm out-
perform baseline. In future, we will considerate more effi-
cient policies to balance the time consumption and space
consumption.
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