
International Journal of Network Security, Vol.22, No.5, PP.736-742, Sept. 2020 (DOI: 10.6633/IJNS.202009 22(5).03) 736

Eighth Power Residue Double Circulant
Self-Dual Codes

Changsong Jiang1,3, Yuhua Sun1,2, and Xueting Liang1

(Corresponding author: Yuhua Sun)

College of Science, China University of Petroleum1

Qingdao, Shandong 266580, China

Provincial Key Laboratory of Applied Mathematics, Putian University, Putian, Fujian 351100, China2

School of Computer Science and Engineering, University of Electronic Science and Technology of China3

(Email: sunyuhua 1@163.com)

(Received Mar. 1, 2019; Revised and Accepted Sept. 16, 2019; First Online Jan. 23, 2020)

Abstract

Self-dual codes are one of the most important classes of
linear codes. Power residue classes are widely used in
the constructions of linear codes and pseudo-random se-
quences. In this paper, we give new constructions of
self-dual codes over GF(2) and GF(4) by eighth power
residues. We get multiple pure double circulant codes
and bordered double circulant codes. Some of these new
self-dual codes have large minimum distances.
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1 Introduction

The famous paper ”A mathematical theory of commu-
nication” [26] by Shannon marked the beginning of cod-
ing theory. Codes with good properties have many ap-
plications in cryptography and communication systems.
Most of the codes constructed in the initial stage were
binary codes. Now, codes over finite fields and over finite
rings are very common in both mathematical and engi-
neering literatures. Thanks to having neat mathematical
structure and being easy to code and decode, linear codes
play a decisive role in coding theory. It is worth not-
ing that, among linear codes, there is one class of special
codes, i.e., self-dual codes which are widely used in data
transmission and have become important tools to con-
struct quantum error-correcting codes. Therefore various
methods of construction and analysis of self-dual codes
have been presented by coding researchers and various
classes of linear codes with self-dual property appeared
successively in many literatures. For example, readers can
refer to [1–6,9,11,17–19,22,24,25,28,29] or can also refer
to the survey paper [13] for the advances of early research
in this field. It is well known that power residue classes
have become an important tool to construct stream ci-

pher sequences with good pseudo-random properties (for
example, see [7, 23, 27]). In fact, they have also been
used to construct error-correcting codes, and a very in-
teresting method of constructing linear codes or self-dual
codes is combining double circulant matrices and residue
classes to give the generator matrix of codes(for example,
see [8, 10, 12, 16, 21])). But, in most of the relevant lit-
eratures at present, the residue being used to construct
codes are mainly quadratic residue.

Recently, Zhang and Ge introduced fourth power
residue double circulant and obtained several new
infinite families of classes of self-dual codes over
GF(2), GF(3), GF(4), GF(8), GF(9) [30]. Some of these
codes have better minimum weight than previously known
codes. In this paper, inspired by their methods, we con-
struct double circulant self-dual codes by by higher power
residues, especially eighth power residues. We give new
constructions of self-dual codes over GF(2) and GF(4) by
prime p of the form 16f + 9, and some of these codes
have good parameters. Examples of such codes are bi-
nary self-dual [82, 41, 14] code, quaternary self-dual [82,
41, 14] code and quaternary self-dual [84, 42, 12] code.
All computation have been done by MATLAB R2017b
and MAGMA V2.12 on a 2.50 GHz CPU.

The paper is organized as follows. In Section 2, we give
the relevant knowledge of double circulant codes and self-
dual codes. In Section 3, we describe the detailed process
of constructing linear codes by eighth power residues and
discuss the parameter conditions satisfying self-dual prop-
erty. Section 4 considers the constructions over GF(2) and
GF(4) respectively. A conclusion is given in Section 5.

2 Preliminaries

Self-Dual Codes. A linear [n, k] code C of length n
and dimension k over the Galois field with q ele-
ments GF(q) is a linear subspace of dimension k of
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GF(q)n, where q is a prime power. An element of
the code C is called a codeword of C. A generator
matrix of C is a matrix whose rows generate C. Let
x = (x1, x2, ..., xn) and y = (y1, y2, ..., yn) be two
codewords of GF(q)n. The Euclidean inner product
is defined by (x, y) =

∑n
i=1 xiyi. For a linear code C,

the code C⊥ = {x ∈ GF(q)n|(x, c) = 0 for all c ∈ C}
is called its Euclidean dual code. And we say C
is self-orthogonal if C ⊆ C⊥ and C is self-dual if
C = C⊥.

Definition 1. [30]: Let Pn(R) and Bn(R) be codes with
generator matrices of the form

(In R) (1)

and In+1

α 1 · · · 1
−1
... R
−1

 (2)

respectively, where α ∈ GF(q), I is the identity matrix
and R is an n× n circulant matrix. An n by n circulant
matrix has the form

r0 r1 r2 · · · rn−1
rn−1 r0 r1 · · · rn−2

...
...

...
...

r1 r2 r3 · · · r0

 (3)

so that each successive row is a cyclic shift of the previous
one. The codes Pn(R) and Bn(R) are called pure double
circulant and bordered double circulant, respectively.

The (Hamming) distance between two codewords x
and y denoted by d(x, y), is defined to be the num-
ber of places at which x and y differ. The Hamming
weight of a codeword is the number of non-zero compo-
nents. And the minimum distance d(C) of C is defined
by d(C) = min{d(x, y)|x 6= y ∈ C}, and it also equals to
the minimum weight of the codewords of C except for 0.

Let C be a self-dual code over GF(q) of length n and
minimum distance d(C). Then the following bounds are
known in [14,22,24,25]. For binary self-dual codes:

d(C) ≤
{

4[ n24 ] + 4, if n 6= 22 (mod 24),
4[ n24 ] + 6, if n = 22 (mod 24).

The minimum distance of a self-dual ternary code C
satisfies: d(C) ≤ 3[ n12 ] + 3 and for quaternary Euclidean
self-dual codes: d(C) ≤ 4[ n12 ] + 4. The code C is called
extremal if the equality holds. If a code has the highest
possible minimum weight for its length and dimension, we
call it optimal.

In this paper, we construct a circulant matrix R by
eighth power residue and get a necessary condition such
that the corresponding codes are self-dual. Further, under
this condition, we get two kinds of codes called pure eighth

power residue double circulant code and bordered eighth
power residue double circulant code, respectively. Some
codes have large minimum distances, and almost reach
the bounds of the minimum distance.

3 Generator Matrices of Eighth
Power Residue Double Circu-
lant Self-Dual Codes

Let p = Nf + 1 be a prime with a fixed primitive root
g over GF(q). We define the Nth cyclotomic classes
C0, C1, ..., CN−1 of GF(p) by

Ci =
{
gjN+i|0 ≤ j ≤ f − 1

}
,

where 0 ≤ i ≤ N − 1. Then we call C0 is the Nth power
residues modulo p, and Ci = giC0 where 0 ≤ i ≤ N − 1.
Define the cyclotomic number (i, j) of order N to be the
number of integers n (mod p) which satisfy

n ≡ g16s+i, 1 + n ≡ g16t+j(mod p),

where s, t in {0, 1, 2, ..., f − 1}.
In order to give the necessary conditions, we give the

eighth power residue cyclotomic numbers and derive the
relationships between them when p is an odd prime of the
form 16l + 9.

Lemma 1. [15]: Let p = ef + 1 be an odd prime. Then

1) (i, j)e = (i′, j′)e, when i ≡ i′(mod e) and j ≡
j′(mod e).

2) (i, j)e = (e− i, j − i)e
=

{
(j, i)e; if f even.
(j + e

2 , i+ e
2 )e; if f odd.

3)
∑e−1
i=0 (i, j)e = f − δj , where δj = 1 if j ≡

0 (mod e); otherwise δj = 0.

Let p be a prime of the form p = 16l + 9, where l is
a positive integer. From Lemma 1, the relationships of
cyclotomic numbers of order 8 are



(0, 0)8 = (4, 0)8 = (4, 4)8, (0, 1)8 = (3, 7)8 = (5, 4)8,
(0, 2)8 = (2, 6)8 = (6, 4)8, (0, 3)8 = (1, 5)8 = (7, 4)8,
(0, 4)8, (0, 5)8 = (1, 4)8 = (7, 3)8,
(0, 6)8 = (2, 4)8 = (6, 2)8, (0, 7)8 = (3, 4)8 = (5, 1)8,
(1, 0)8 = (3, 3)8 = (4, 1)8 = (4, 5)8 = (5, 0)8 = (7, 7)8,
(1, 1)8 = (3, 0)8 = (4, 3)8 = (4, 7)8 = (5, 5)8 = (7, 0)8,
(1, 2)8 = (2, 7)8 = (3, 6)8 = (5, 3)8 = (6, 5)8 = (7, 1)8,
(1, 3)8 = (1, 6)8 = (2, 5)8 = (6, 3)8 = (7, 2)8 = (7, 5)8,
(1, 7)8 = (2, 3)8 = (3, 5)8 = (5, 2)8 = (6, 1)8 = (7, 6)8,
(2, 0)8 = (2, 2)8 = (4, 2)8 = (4, 6)8 = (6, 0)8 = (6, 6)8,
(2, 1)8 = (3, 1)8 = (3, 2)8 = (5, 6)8 = (5, 7)8 = (6, 7)8.

(4)
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Remark 1. For simplicity, in the next we denote


A := (0, 0)8, B := (0, 1)8, C := (0, 2)8,
D := (0, 3)8, E := (0, 4)8, F := (0, 5)8,
G := (0, 6)8, H := (0, 7)8, I := (1, 0)8,
J := (1, 1)8, K := (1, 2)8, L := (1, 3)8,
M := (1, 7)8, N := (2, 0)8, O := (2, 1)8.

(5)

Let p ≡ 1(mod 8) be a prime. Its 8th cyclo-
tomic classes are C0, C1, C2, C3, C4, C5, C6 and C7.
Suppose m0,m1,m2,m3,m4,m5,m6,m7,m8 are the
elements of GF(q). Then we construct the matrix
Cp(m0,m1,m2,m3,m4,m5,m6,m7,m8) which is a p × p
matrix on GF(q). The component cij , 1 ≤ i, j ≤ p, defines



m0; if j = i,
m1; if j − i ∈ C0,
m2; if j − i ∈ C1,
m3; if j − i ∈ C2,
m4; if j − i ∈ C3,
m5; if j − i ∈ C4,
m6; if j − i ∈ C5,
m7; if j − i ∈ C6,
m8; if j − i ∈ C7.

(6)

Let In be the identity matrix and Jn be the all-one
square matrix, so that Cp(1, 0, 0, 0, 0, 0, 0, 0, 0) = Ip and
Cp(1, 1, 1, 1, 1, 1, 1, 1, 1) = Jp. Denote

A1 := Cp(0, 1, 0, 0, 0, 0, 0, 0, 0), A2 := Cp(0, 0, 1, 0, 0, 0, 0, 0, 0),
A3 := Cp(0, 0, 0, 1, 0, 0, 0, 0, 0), A4 := Cp(0, 0, 0, 0, 1, 0, 0, 0, 0),
A5 := Cp(0, 0, 0, 0, 0, 1, 0, 0, 0), A6 := Cp(0, 0, 0, 0, 0, 0, 1, 0, 0),
A7 := Cp(0, 0, 0, 0, 0, 0, 0, 1, 0), A8 := Cp(0, 0, 0, 0, 0, 0, 0, 0, 1).

(7)

And the construction of the n × n circulant matrix R
is given as follows:

R = m0Ip+m1A1 +m2A2 +m3A3 +m4A4+

m5A5 +m6A6 +m7A7 +m8A8

(8)

Lemma 2. Let p = 16l+ 9 be a prime, then the matrices

in equation (7) have the following relationships.

A1 = At5, A2 = At6, A3 = At7, A4 = At8,

A2
1 = AA1 + BA2 + CA3 +DA4 + EA5 + FA6 + GA7 +HA8,

A2
2 = HA1 + AA2 + BA3 + CA4 +DA5 + EA6 + FA7 + GA8,

A2
3 = GA1 +HA2 + AA3 + BA4 + CA5 +DA6 + EA7 + FA8,

A2
4 = FA1 + GA2 +HA3 + AA4 + BA5 + CA6 +DA7 + EA8,

A2
5 = EA1 + FA2 + GA3 +HA4 + AA5 + BA6 + CA7 +DA8,

A2
6 = DA1 + EA2 + FA3 + GA4 +HA5 + AA6 + BA7 + CA8,

A2
7 = CA1 +DA2 + EA3 + FA4 + GA5 +HA6 + AA7 + BA8,

A2
8 = BA1 + CA2 +DA3 + EA4 + FA5 + GA6 +HA7 + AA8,

A1A2 = A2A1 = IA1 + JA2 +KA3 + LA4 + FA5 +DA6 + LA7 +MA8,
A1A3 = A3A1 = NA1 + OA2 + NA3 +MA4 + GA5 + LA6 + CA7 +KA8,
A1A4 = A4A1 = JA1 + OA2 + OA3 + IA4 +HA5 +MA6 +KA7 + BA8,
A1A5 = A5A1 = (2l + 1)Ip + AA1 + IA2 + AA3 + JA4 + AA5 + IA6

+NA7 + JA8,
A1A6 = A6A1 = IA1 +HA2 +MA3 +KA4 + BA5 + JA6 + OA7 + OA8,
A1A7 = A7A1 = NA1 +MA2 + GA3 + LA4 + CA5 +KA6 + NA7 + OA8,
A1A8 = A8A1 = JA1 + AA2 + LA3 + FA4 +DA5 + LA6 +MA7 + IA8,
A2A3 = A3A2 = MA1 + IA2 + JA3 +KA4 + LA5 + FA6 +DA7 + LA8,
A2A4 = A4A2 = KA1 + NA2 + OA3 + NA4 +MA5 + GA6 + LA7 + CA8,
A2A5 = A5A2 = BA1 + JA2 + OA3 + OA4 + IA5 +HA6 +MA7 +KA8,
A2A6 = A6A2 = JA1 + AA2 + IA3 + NA4 + JA5 + AA6 + IA7 + NA8,
A2A7 = A7A2 = OA1 + IA2 + AA3 +MA4 +KA5 + BA6 + JA7 + OA8,
A2A8 = A8A2 = OA1 + NA2 +MA3 + GA4 + LA5 + CA6 +KA7 + NA8,
A3A4 = A4A3 = LA1 +MA2 + IA3 + JA4 +KA5 + LA6 + FA7 +DA8,
A3A5 = A5A3 = CA1 +KA2 + NA3 + OA4 + NA5 +MA6 + GA7 + LA8,
A3A6 = A6A3 = KA1 + BA2 + JA3 + OA4 + OA5 + IA6 +HA7 +MA8,
A3A7 = A7A3 = (2l + 1)Ip + NA1 + JA2 + AA3 + IA4 + NA5 + JA6

+AA7 + IA8,
A3A8 = A8A3 = OA1 + OA2 + IA3 +HA4 +MA5 +KA6 + BA7 + JA8,
A4A5 = A5A4 = DA1 +MA2 + LA3 + IA4 + JA5 +KA6 + LA7 + FA8,
A4A6 = A6A4 = LA1 + CA2 +KA3 + NA4 + OA5 + NA6 +MA7 + GA8,
A4A7 = A7A4 = MA1 +KA2 + BA3 + JA4 + OA5 + OA6 + IA7 +HA8,
A4A8 = A8A4 = (2l + 1)Ip + IA1 + NA2 + JA3 + AA4 + IA5 + NA6

+JA7 + AA8,
A5A6 = A6A5 = FA1 +DA2 + LA3 +MA4 + IA5 + JA6 +KA7 + LA8,
A5A7 = A7A5 = GA1 + LA2 + CA3 +KA4 + NA5 + OA6 + NA7 +MA8,
A5A8 = A8A5 = HA1 +MA2 +KA3 + BA4 + JA5 + OA6 + OA7 + IA8,
A6A7 = A7A6 = LA1 + FA2 +DA3 + LA4 +MA5 + IA6 + JA7 +KA8,
A6A8 = A8A6 = MA1 + GA2 + LA3 + CA4 +KA5 + NA6 + OA7 + NA8,
A7A8 = A8A7 = KA1 + LA2 + FA3 +DA4 + LA5 +MA6 + IA7 + JA8.

(9)

Proof. The proof is straightforward from the definition of
Ai and lemma 1.

Lemma 3. If p = 16l + 9 is a prime, then

RRt = α0Ip+α1A1 + α2A2 + α3A3 + α4A5+

α5A5 + α6A6 + α7A7 + α8A8

(10)

where

α0 = m2
0 + p−1

8 (m2
1 +m2

2 +m2
3 +m2

4 +m2
5 +m2

6 +m2
7 +m2

8),
α1 = α5 = (m0m1 +m0m5) + (m2

1 +m1m5 +m2
5)A

+(m1m2 +m4m8 +m5m6)B + (m1m3 +m3m7 +m5m7)C
+(m1m4 +m2m6 +m5m8)D +m1m5E
+(m1m6 +m2m5 +m4m8)F + (m1m7 +m3m5 +m3m7)G
+(m1m8 +m2m6 +m4m5)H
+(m1m2 +m1m6 +m2m5 +m2

4 +m5m6 +m2
8)I

+(m1m4 +m1m8 +m2
2 +m4m5 +m5m8 +m2

6)J
+(m2m3 +m2m8 +m3m8 +m4m6 +m4m7 +m6m7)K
+(m2m4 +m2m7 +m3m6 +m3m8 +m4m7 +m6m8)L
+(m2m7 +m2m8 +m3m4 +m3m6 +m4m6 +m7m8)M
+(m1m3 +m1m7 +m2

3 +m3m5 +m5m7 +m2
7)N

+(m2m3 +m2m4 +m3m4 +m6m7 +m6m8 +m7m8)O,
α2 = α6 = (m0m2 +m0m6) + (m2

2 +m2m6 +m2
6)A

+(m1m5 +m2m3 +m6m7)B + (m2m4 +m4m8 +m6m8)C
+(m1m6 +m2m5 +m3m7)D +m2m6E
+(m1m5 +m2m7 +m3m6)F + (m2m8 +m4m6 +m4m8)G
+(m1m2 +m3m7 +m5m6)H
+(m2

1 +m2m3 +m2m7 +m3m6 +m2
5 +m6m7)I

+(m1m2 +m1m6 +m2m5 +m2
3 +m5m6 +m2

7)J
+(m1m3 +m1m4 +m3m4 +m5m7 +m5m8 +m7m8)K
+(m1m4 +m1m7 +m3m5 +m3m8 +m4m7 +m5m8)L
+(m1m3 +m1m8 +m3m8 +m4m5 +m4m7 +m5m7)M
+(m2m4 +m2m8 +m2

4 +m4m6 +m6m8 +m2
8)N

+(m1m7 +m1m8 +m3m4 +m3m5 +m4m5 +m7m8)O,
α3 = α7 = (m0m3 +m0m7) + (m2

3 +m3m7 +m2
7)A

+(m2m6 +m3m4 +m7m8)B + (m1m5 +m1m7 +m3m5)C
+(m2m7 +m3m6 +m4m8)D +m3m7E
+(m2m6 +m3m8 +m4m7)F + (m1m3 +m1m5 +m5m7)G
+(m2m3 +m4m8 +m6m7)H
+(m2

2 +m3m4 +m3m8 +m4m7 +m2
6 +m7m8)I

+(m2m3 +m2m7 +m3m6 +m2
4 +m6m7 +m2

8)J
+(m1m6 +m1m8 +m2m4 +m2m5 +m4m5 +m6m8)K
+(m1m4 +m1m6 +m2m5 +m2m8 +m4m6 +m5m8)L
+(m1m2 +m1m4 +m2m4 +m5m6 +m5m8 +m6m8)M
+(m2

1 +m1m3 +m1m7 +m3m5 +m2
5 +m5m7)N

+(m1m2 +m1m8 +m2m8 +m4m5 +m4m6 +m5m6)O,
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α4 = α8 = (m0m4 +m0m8) + (m2
4 +m4m8 +m2

8)A
+(m1m8 +m3m7 +m4m5)B + (m2m6 +m2m8 +m4m6)C
+(m1m5 +m3m8 +m4m7)D +m4m8E
+(m1m4 +m3m7 +m5m8)F + (m2m4 +m2m6 +m6m8)G
+(m1m5 +m3m4 +m7m8)H
+(m1m4 +m1m8 +m2

3 +m4m5 +m5m8 +m2
7)I

+(m2
1 +m3m4 +m3m8 +m4m7 +m2

5 +m7m8)J
+(m1m2 +m1m7 +m2m7 +m3m5 +m3m6 +m5m6)K
+(m1m3 +m1m6 +m2m5 +m2m7 +m3m6 +m5m7)L
+(m1m6 +m1m7 +m2m3 +m2m5 +m3m5 +m6m7)M
+(m2

2 +m2m4 +m2m8 +m4m6 +m2
6 +m6m8)N

+(m1m2 +m1m3 +m2m3 +m5m6 +m5m7 +m6m7)O.

Proof. The result comes from Lemma 2, Lemma 3 and a
complex computation.

In order to facilitate, we denote

−→m := (m0,m1,m2,m3,m4,m5,m6,m7,m8) ∈ GF(q)9,
D0(−→m) := α0,
D1(−→m) := α1 = α5,
D2(−→m) := α2 = α6,
D3(−→m) := α3 = α7,
D4(−→m) := α4 = α8.

(11)

Theorem 1. Let p be an odd prime of the form 16l+9 and
q be a prime power. Suppose α ∈ GF(q), −→m ∈ GF(q)9.
Then

(1) pure eighth power residue double circulant code
Pp(
−→m) is self-dual over GF(q) when the following condi-

tions hold: 
D0(−→m) = −1,
D1(−→m) = 0,
D2(−→m) = 0,
D3(−→m) = 0,
D4(−→m) = 0.

(12)

(2) bordered eighth power residue double circulant code
Bp(α,

−→m) is self-dual over GF(q) when the following
conditions hold:

α2 + p = −1,

−α+m0 + p−1
8 (m1 +m2 +m3+

m4 +m5 +m6 +m7 +m8) = 0,
D0(−→m) = −2,
D1(−→m) = −1,
D2(−→m) = −1,
D3(−→m) = −1,
D4(−→m) = −1.

(13)

Proof. According to Lemma 3,

Pp(
−→m)Pp(

−→m)t = Ip +D0(−→m)Ip +D1(−→m)A1 +D2(−→m)A2

+D3(−→m)A3 +D4(−→m)A4 +D1(−→m)A5

+D2(−→m)A6 +D3(−→m)A7 +D4(−→m)A8,
(14)

and

Bp(
−→m)Bp(

−→m)t = (Ip+1 K)

(
Ip+1

Kt

)
= Ip+1 +KKt,

(15)

where

KK
t

=


α 1 · · · 1
−1

.

.

. R
−1

 ·


α − 1 · · · − 1
1

.

.

. Rt

1



=


α2 + p S · · · S
S

.

.

. X
S


(p+1)×(p+1)

(16)

and

X = Jp +D0(
−→m)Ip +D1(

−→m)A1 +D2(
−→m)A2 +D3(

−→m)A3

+D4(
−→m)A4 +D1(

−→m)A5 +D2(
−→m)A6 +D3(

−→m)A7 +D4(
−→m)A8,

S = −α+m0 +
p− 1

8
(m1 +m2 +m3 +m4

+m5 +m6 +m7 +m8).

(17)

The result can be obtained by the definition of self-dual
codes.

4 Eighth Power Residue Double
Circulant Self-Dual Codes Over
GF(2) and GF(4)

In this section, we give some constructions of self-dual
codes over GF(2) and GF(4) by MATLAB and MAGMA.
And the corresponding minimum hamming distances are
solved. Some codes have good minimum distances, even
almost satisfy the bounds.

Theorem 2. Let p be an odd prime of the form 16l + 9,
several pure eighth power residue double circulant self-
dual codes whose generator matrix satisfies the form of
Pp(m0,m1,m2,m3,m4,m5,m6,m7,m8) of length 2p over
GF(2) are abtained. The parameters that satisfy the con-
ditions are listed in the following table when p = 41 =
16× 2 + 9.

When p = 41, the length n of the code is 82, so that
the bound of the minimum hamming distance is 16. By
our method, the minimum hamming distance of the codes
has a maximum of 14, which almost satisfies the bound.
The self-dual [82, 41, 14] codes over GF(2) with a good
property are obtained.

Theorem 3. Let ξ be the fixed primitive element of GF(4)
satisfying ξ2+ξ+1 = 0 and p be an odd prime of the form
16l + 9, pure eighth power residue double circulant self-
dual codes Pp(

−→m) of length 2p over GF(4) and bordered
eighth power residue double circulant codes Bp(α,

−→m) of
length 2(p+ 1) over GF(4) can be obtained. Furthermore,
it is obvious that equation α2 + p = −1 holds if and only
if α = 0, because p is an odd prime. And the parameter
values except α that meet the conditions are listed in the
following table when p = 41 = 16 × 2 + 9 and p = 73 =
16× 4 + 9.
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Table 1: The parameters of Pp over GF(2) with p = 41

Serial number m0 m1 m2 m3 m4 m5 m6 m7 m8 Min-distance
1 0 0 0 1 1 1 0 1 1 10
2 0 0 1 1 0 0 1 1 1 10
3 0 1 0 0 1 1 1 0 1 10
4 0 1 1 0 1 1 0 0 1 10
5 1 0 0 0 1 0 1 1 1 14
6 1 0 0 1 0 1 1 1 0 14
7 1 0 0 1 1 0 1 0 1 12
8 1 0 1 0 1 0 0 1 1 12
9 1 0 1 1 1 0 0 0 1 14
10 1 1 1 0 1 0 1 0 0 12

Table 2: The parameters of Pp over GF(4) with p = 41

Serial number m0 m1 m2 m3 m4 m5 m6 m7 m8 Min-distance
1 1 1 1 1 ξ 1 1 1 ξ2 14
2 1 1 ξ 1 ξ2 0 0 ξ2 ξ 12
3 1 1 0 0 0 1 0 1 1 14
4 ξ 1 ξ 1 0 0 1 ξ2 ξ2 14
5 0 ξ 0 ξ ξ2 ξ ξ2 ξ2 0 14

Table 3: The parameters of Bp over GF(4) with p = 41

Serial number m0 m1 m2 m3 m4 m5 m6 m7 m8 Min-distance
1 1 1 1 ξ 1 0 ξ ξ ξ 12
2 1 1 ξ 1 ξ2 ξ2 ξ ξ2 ξ 8
3 1 1 ξ2 1 0 ξ2 ξ2 ξ2 1 8
4 ξ2 1 0 0 ξ ξ2 ξ 1 0 12
5 0 1 ξ2 ξ 0 ξ 0 ξ2 1 12

Table 4: The parameters of Pp over GF(4) with p = 73

Serial number m0 m1 m2 m3 m4 m5 m6 m7 m8 Min-distance
1 1 1 ξ ξ 0 1 ξ2 ξ2 0 12
2 1 1 ξ 0 ξ2 1 ξ2 0 ξ 12
3 0 ξ ξ ξ2 0 ξ2 ξ2 ξ 0 6
4 1 1 0 ξ2 ξ 1 0 ξ ξ2 12
5 1 ξ2 ξ2 ξ2 ξ2 ξ ξ ξ ξ 12

Table 5: The parameters of Bp over GF(4) with p = 73

Serial number m0 m1 m2 m3 m4 m5 m6 m7 m8 Min-distance
1 1 1 ξ2 ξ2 ξ 1 ξ ξ ξ2 8
2 0 1 ξ 0 ξ 1 ξ2 0 ξ2 12
3 0 1 0 ξ ξ 1 0 ξ2 ξ2 12
4 0 ξ2 1 0 ξ2 ξ2 1 0 ξ 12
5 0 ξ ξ 1 0 ξ2 ξ2 1 0 12
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The pure double circulant self-dual codes [82, 41, 14]
codes and bordered double circulant self-dual codes self-
dual [84, 42, 12] codes over GF(4) which have good
property are listed, especially the values of parame-
ters m0,m1,m2,m3,m4,m5,m6,m7,m8. Besides, we get
some other codes when p = 73.

5 Conclusion

In this paper, we construct double circulant self-dual
codes by higher power residues, especially eighth power
residues.

First of all, the relationship of the eighth power residue
cyclotomic numbers is given. Suppose that there are eight
matrices with nine parameters on the GF(q), and the ex-
pression for multiplying any two matrices is represented
by the cyclotomic numbers. From the linear combination
of eight circulant matrices, we can construct the circu-
lant matrix R. Two kinds of codes are represented by R.
One is pure circulant codes, and the other is bordered cir-
culant codes. Combined with the necessary condition of
self-dual code (GGT = 0), parameters can be determined
to satisfy the condition of self-dual code, which renders
the pure double circulant self-dual codes and bordered
circulant self-dual codes can be obtained. By program-
ming, the parameters that satisfy the conditions and the
minimum hamming distance are given.

We exploit a new way to construct self-dual codes over
GF(2) and GF(4) by prime p of the form 16f+9, and some
codes have good properties. Examples of such codes are
binary self-dual [82, 41, 14] code, quaternary self-dual [82,
41, 14] code and quaternary self-dual [84, 42, 12] code.
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