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Abstract

The security of the BLS signature scheme is based on the
random oracle model. Hence, there is a question that
how to instantiate BLS scheme without random oracles.
In this work, by using a powerful tool multilinear map,
we answer this question. The main contributions of this
work are as follows. First of all, we describe the BLS
scheme in the setting of multilinear group and prove its
security in the standard model. Then, we design a ring
signature scheme based on the multilinear BLS scheme.
In the proposed scheme, ring signatures consist of a single
multilinear group element.

Keywords: BLS Signatures; Multilinear Map; Ring Sig-
natures; Standard Model

1 Introduction

Digital signatures are one of the most fundamental and
well studied cryptographic primitives. The research of
digital signatures has two aspects: practicability and se-
curity. As for the aspect of practicability, we mainly con-
sider the efficiencies of the signing and verification algo-
rithms, the storage space of the state information, and
the properties that the scheme can provide, such as ag-
gregate signatures [17], ring signatures [23], blind signa-
tures [16,19,20] and so on. As for the aspect of the secu-
rity, we mainly focus on the assumptions that the scheme
based on, such as one-way function, and whether in the
random oracle model or standard model.

At ASIACRYPT 2001, Boneh, Lynn, and Shacham [6]
designed a short signature scheme based on bilinear
group, the so called BLS scheme. The BLS scheme
has shown to be very useful to construct other crypto-
graphic primitives, such as threshold signature scheme [7],
blind signature scheme [7], signcryption scheme [10], key-
generation algorithm of identity-based encryption (IBE)
scheme [4]. The main reason of the BLS scheme is so
useful is that it has a relatively simple structure. The

security of the BLS scheme is rely on the random ora-
cle model. However, it is well known that random oracle
is an ideal model. After BLS scheme, there has several
works that presented some signature schemes which se-
cure in the standard model, such as [3]. However, all of
these schemes do not preserve the BLS scheme’s simple
structure. This leads us to a question: Can we instan-
tiate the BLS signature scheme without random oracles?
In this work, by using a powerful tool multilinear map,
we answer this question.

The notion of multilinear maps was introduced (but
without concrete instantiation) by Boneh and Silver-
berg [8]. Until 2013, Garg, Gentry, and Helevi [12]
gave the first approximate candidate. Then there has
many multilinear map schemes been proposed or ana-
lyzed, e.g., [9, 15,21] et al.

There are several relevant works answered the above
question. Hohenberger et al. [18] instantiated the ran-
dom oracle with an actual family of hash functions for
the BLS scheme by using a more powerful tool indis-
tinguishability obfuscation [13]. Freire et al. [11] took
advantage of multilinear maps to realize programmable
hash functions and construct IBE, BLS signature, and
SOK non-interactive key exchange schemes. In addi-
tion, Hohenberger et al. [17] made use of the multilinear
BLS scheme to construct an (identity-based) aggregate
signature scheme which admits unrestricted aggregation.
In [17], Hohenberger et al. followed in the Waters [25]
framework and proved the adaptive security of the mul-
tilinear BLS signature scheme.1 However, their proof is
based on a strong new assumption, (n, k)-modified mul-
tilinear computational Diffie-Hellman exponent where n
is a polynomial of the number of queries made by the
adversary.

In this work, we also give an adaptive proof for the
multilinear BLS scheme. However, our proof which takes
advantage of the technique of admissible hash function [2]
is based on a weaker assumption, multilinear computa-

1Their adaptive proof of the aggregate signature scheme implies
this result. (Please refer to Appendix D.2 of [17] for details.)
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tional Diffie-Hellman assumption [12]. In addition, we
consider the applications of the multilinear BLS signature
scheme. It can be served as the key-generation algorithm
of the multilinear IBE scheme [11]. It also can be used
to construct aggregate signature [17], threshold signature
scheme [7] and so on. In this work, we take advantage of
the structure of the multilinear BLS scheme to construct
a ring signature scheme in the standard model. In a ring
signature scheme [23], a signer can generate signatures on
behalf of a group of users (i.e., ring) if and only if he is a
member of the ring. Then, any verifier can confirm that
the message has been signed by one of the members in
the ring, but he cannot know who is the real signer. Our
ring signature scheme has an attractive feature that for n
members of a ring the signatures consist of just a single
group element.

2 Preliminaries

2.1 Notations

The following notations will be used in this paper. Let Z
be the set of integers and Zp be the ring modulo p. 1λ

denotes the string of λ ones for λ ∈ N. |x| denotes the
length of the bit string x. [k] is a shorthand for the set
{1, 2, . . . , k}. Finally, we write PPT for the probabilistic
polynomial time.

2.2 Multilinear Maps

Let (G1, . . . ,Gk) be a sequence of groups each of large
prime order p, and gi be a generator of group Gi, where
we let g = g1. There exists a set of bilinear maps {ei,j :
Gi ×Gj → Gi+j |i, j ≥ 1 ∧ i+ j ≤ k}, which satisfy:

ei,j(g
a
i , g

b
j) = gabi+j : ∀a, b ∈ Zp.

When the context is obvious, we omit the indexes i
and j, i.e., e(gai , g

b
j) = gabi+j . It also will be conve-

nient to abbreviate e(h1, h2, . . . , hj) = e(h1, e(h2, . . .,
e(hj−1, hj) . . .)) ∈ Gi for hj ∈ Gij and i1+i2+. . .+ij ≤ k.

Let MulGen(1λ, k) be a PPT multilinear group genera-
tor algorithm which takes as input a security parameter λ
and an integer k, where k is the number of allowed pair-
ing operations, then it outputs the multilinear parameters
MP = (G1, . . ., Gk, p, g = g1, g2, . . . , gk, ei,j) to satisfy the
above properties.

In recent years, there has many multilinear maps been
proposed, e.g., [9,12,14,22]. However, some of them have
been shown to be insecure, e.g., [15, 21]. Fortunately,
there still has several multilinear maps are beyond the
existing cryptanalysis, e.g., [1,14]. Therefore, we also can
use this tool to design cryptographic schemes. For exam-
ple, [26,28,29] take advantage of the multilinear maps to
design different cryptographic schemes.

2.3 Complexity Assumption

We assume that the following assumption holds in the set-
ting described above: Multilinear Computational Diffie-
Hellman (MCDH) assumption.

Definition 1. For any PPT algorithm B, any polynomial
p(·), any integer k, and all sufficiently large λ ∈ N,

Pr

 MP← MulGen(1λ, k);

c1, . . . , ck
R← Zp; : v = g

∏
i∈[k] ci

k−1

v ← B(MP, gc1 , . . . , gck)

 < 1

p(λ)
.

This assumption can be viewed as an adaptation of the
Bilinear Computational Diffie-Hellman (BCDH) assump-
tion [4] in the setting of multilinear groups.

3 Digital Signatures

3.1 Definitions

For ease of description, we define digital signature
schemes with four algorithms: Setup, KeyGen, Sign, and
Vrfy. Formally, given a security parameter λ, the PPT
algorithm Setup, run by a trusted authority, generates
public parameters PP. The public parameters will be
used in all of the following three algorithms, for simplicity,
we omit this fact. The PPT algorithm KeyGen outputs
a signing/verification key pair (SK, V K) for the signer.
The PPT algorithm Sign takes as input a signing key SK
and a message M , then outputs a signature σ. Finally,
the deterministic algorithm Vrfy processes a purported
signature σ with respect to a message M and verification
key V K, accordingly, it outputs 1 to indicate a successful
verification and 0 otherwise.

3.2 Existential Unforgeability

The security model for signature schemes is Existential
Unforgeability against adaptive Chosen-Message Attacks
(EU-CMA) which is defined by the following game.

1) Setup: Challenger runs Setup and KeyGen algo-
rithms to generate the public parameters and chal-
lenge keys (SK∗, V K∗). Adversary A is given the
public parameters and V K∗.

2) Signing queries: Adversary A is allowed to adap-
tively queries the signing oracle at most q times on
messages M1, . . . ,Mq. In its i-th query, it receives
back a signature σi ← Sign(SK∗,Mi).

3) Output: Finally, adversary A outputs a tuple of
(M∗, σ∗), where M∗ 6= Mi for all i ∈ [q]. A wins the
game if Vrfy(V K∗,M∗, σ∗) = 1.

We denote the success probability of a PPT adversary
A (taken over the random choices of the challenger and
adversary) to win the game as Adveu−cmaA .
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Definition 2. We say that a signature scheme is EU-
CMA secure, if for any PPT adversary A, it cannot win
the above game with non-negligible advantage.

Selective security. The model of selective security is a
weaker notion of the model of EU-CMA. In such
model, we require that the adversary gives its chal-
lenge message M∗ before the setup phase, then it
cannot make signing query for M∗.

Definition 3. We say that a signature scheme is selec-
tively secure, if for any PPT adversary, it cannot win the
selective game with non-negligible advantage.

4 Multilinear BLS Scheme

In this section, we describe the multilinear BLS signature
scheme and its security.

4.1 Construction

We specify the message space M := {0, 1}`, more gener-
ally, a collision resistant hash function can be used to hash
messages to this size. The construction of the multilinear
BLS signature scheme is as follows:

• Setup(1λ, `): Trusted authority takes as input a secu-
rity parameter λ and the length ` of messages to runs
this algorithm to generate the public parameters.
It first runs MP = (G1, . . . ,Gk, p, g, . . . , gk, e) ←
MulGen(1λ, k = `+1). Next, it chooses 2` random in-
tegers (a1,0, a1,1), . . . , (a`,0, a`,1) ∈ Z2

p and computes
Ai,β = gai,β ∈ G1, for i ∈ [`] and β ∈ {0, 1}. The
public parameters PP contain the group descriptions
MP and (A1,0, A1,1), . . . , (A`,0, A`,1).

• KeyGen(PP): Each user chooses a random element
x ∈ Zp as his signing key SK. The corresponding
verification key is V K = gx ∈ G1.

• Sign(SK,M): Given a message, M , of length `, let
m1, . . . ,m` be the bits of this message, the signer
computes the signature as:

σ = e(A1,m1
, . . . , A`,m`)

x = (g
∏`
i=1 ai,mi

k−1 )x ∈ Gk−1.
2

• Vrfy(V K,M, σ): Given a verification key V K and
a purported signature σ on message M , verify the
following equation:

e(σ, g)
?
= e(A1,m1

, . . . , A`,m` , V K).

2In the bilinear BLS signature scheme [6], signer computes a
signature as σ = H(M)x, where H(·) is a collision-resistant hash
function that will be treated as a random oracle in the proof.
In the multilinear BLS signature scheme, H(M) is defined as
e(A1,m1 , . . . , A`,m` ) which can be computed from the public pa-
rameters of the (leveled) multilinear maps.

Correctness. To see the correctness, a signature σ

on message M is (g
∏`
i=1 ai,mi

k−1 )x, and thus we have

e(σ, g) = e((g
∏`
i=1 ai,mi

k−1 )x, g) = e((g
∏`
i=1 ai,mi

k−1 ), gx) =
e(A1,m1

, . . ., A`,m` , V K).

4.2 Security of Multilinear BLS Scheme
in the Standard Model

We now prove the security of the multilinear BLS scheme
in the standard model based on the MCDH assumption.
Our proof needs an admissible hash function h which can
be used to partition the message space to two subsets
with probability 1/θ(q) (where q is the upper bound of
the adversary’s queries) so that: the adversary’s query
messages Mi fall in one subset where we know a trap-
door that allows us to answer its queries, and the adver-
sary’s challenge message M∗ falls in the other set where
we do not know any trapdoor but hope to embed a chal-
lenge element. We show that we can leverage the struc-
ture of the multilinear BLS signature scheme to prove
adaptive security. For simplicity of exposition, we as-
sume that there is a polynomial s(λ) which denotes the
length of messages space to be signed. We use a function
h : {0, 1}s(λ) → {0, 1}`(λ) maps the messages to ` bits,
and an efficient randomized algorithm Sample that is θ-
admissible. The following definition of admissible hash
functions is from [17] which is a slight variant of the sim-
plified definition in [11].

Definition 4. Let s, ` and θ be efficiently computable
univariate polynomials. We say that a function h :
{0, 1}s(λ) → {0, 1}`(λ), and an efficient randomized algo-
rithm Sample, are θ-admissible if the following properties
hold:

• For any u ∈ {0, 1,⊥}`, define Pu : {0, 1}s → {0, 1} as
follows: Pu(X) = 0 iff ∀i : h(X)i 6= ui, and otherwise
(if ∃i : h(X)i = ui) we have Pu(X) = 1.

• We require that for any efficiently computable poly-
nomial q(λ), for all X1, . . ., Xq, Z ∈ {0, 1}s, where
Z 6∈ {Xi}, we have Pr[Pu(X1) = . . . = Pu(Xq) =
1 ∧ Pu(Z) = 0] ≥ 1/θ(q), where the probability is
taken only over u← Sample(1λ, q).

Theorem 1. For any efficiently computable polynomials
s, `, there exists an efficiently computable polynomial θ
such that there exists θ-admissible function families map-
ping s bits to ` bits.

The construction is identical to the multilinear BLS
scheme with the exception of the Setup algorithm cre-
ates the admissible hash functions. Then the signing and
verification algorithms take as input h(M) instead of M .

Theorem 2. If h is a θ-admissible function and the k-
MCDH problem is hard in the multilinear groups, then
the multilinear BLS signature scheme with an admissible
hash is adaptively secure.
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Proof. If there exists a PPT adversary A who can break
the security of the multilinear BLS signature scheme with
an admissible hash in the EU-CMA game with advantage
ε for message length s, level k of the multilinear maps,
and security parameter λ, then we can construct a PPT
challenger B to break the k-MCDH assumption with prob-
ability ε′ ≥ ε/θ(q). The challenger B takes as input a
k-MCDH instance (gc1 , . . . , gck) together with the group
descriptions MP to interactive with the adversary. The

challenger’s goal is to compute g
∏
i∈[k] ci

k−1 .

We describe the proof as a sequence of hybrid games
where the first hybrid corresponds to the original EU-
CMA game. Then in the first hybrid step we do a “par-
titioning” of the space of the messages. After the first
proof step, we prove that any PPT adversary’s advan-
tage must be close with negligible gap at most between
each successive hybrid games. We finally show that any
PPT adversary in the final game that succeeds with non-
negligible advantage can be used to break the k-MCDH
assumption.

• Game0 is the original EU-CMA game.

1) Setup: Challenger B runs MulGen(1λ, k) to
produce group parameter MP. It then chooses
a random exponent x ∈ Zp for the secret
key and sets the challenge verification key
as V K∗ = gx. It also randomly chooses
(a1,0, a1,1), . . . , (a`,0, a`,1) from Zp and com-
putes Ai,β = gai,β for i ∈ [`], β ∈ {0, 1}. Finally,
it sets PP = (MP, {Ai,β |i ∈ [`], β ∈ {0, 1}}) and
gives PP and V K∗ to the adversary A.

2) Signing queries: Adversary A adaptively
queries the signing oracle at most q times on
messages M1, . . . ,Mq. In its i-th query, it re-
ceives back e(A1,mi1

, . . . , A`,mi` )
x from chal-

lenger B.

3) Output: At some point A outputs a forgery
σ∗ with respect to the challenge key V K∗ and
message M∗, it wins the game if Vrfy(V K∗,M∗,
σ∗) = 1 and M∗ 6= Mi for i ∈ [q].

• Game1 is the same as Game0 except that the chal-
lenger begins by sampling a string u ∈ {0, 1,⊥}` by
revoking u← Sample(1λ, q). At the end of the game,
the adversary is only considered to be successful if
both its output satisfies the winning conditions and
for the challenge message M∗ we have Pu(M∗) = 0
and for all messages Mi queried Pu(Mi) = 1.

• Game2 is the same as Game1 except that the follow-
ing modification. The challenger sets the parameters
(A1,0, A1,1), . . . , (A`,0, A`,1) in the following way: for
i ∈ [`] and β ∈ {0, 1} it chooses random bi,β ∈ Zp
and sets

Ai,β =

{
gbi,β , if β = ui
(gci)bi,β , if β 6= ui.

Lemma 1. Assume an adversary that makes at most a
polynomial of signing queries q = q(λ) in Game0. If the
advantage of an adversary in Game0 is ε, then the advan-
tage of the adversary in Game1 will be at least ε/θ(q). In
particular, any PPT adversary with non-negligible advan-
tage in Game0 will also have non-negligible advantage in
Game1.

Proof. The lemma follows immediately from the property
of function h satisfies the definition of a θ-admissibility,
since the only independent choice of u ← Sample(1λ, q)
determines whether or not the game aborts.

Lemma 2. The advantage of any PPT adversary in
Game2 is the same as its advantage in Game1.

Proof. The two games are equivalent as all Ai,β ∈ G1 are
still set to uniformly at random in both games.

Lemma 3. If the k-MCDH assumption holds, then the
advantage of any PPT adversary in Game2 is negligible.

Proof. We prove this lemma by giving a reduction to the
k-MCDH assumption. To do so, we construct an algo-
rithm B.
B takes as input a k-MCDH problem instance

(MP, gc1 , . . . , gck). Next, B runs u ← Sample(1λ, q). It
sets the challenge key as V K∗ = gck . All these steps
together simulate the Setup phase of the Game2. Now,
it plays the game with the adversary A by using pub-
lic parameters PP = (MP, {Ai,β |i ∈ [`], β ∈ {0, 1}}) and
challenge key V K∗.

The adversary A will then adaptively make
at most q signing queries each for message Mi.
If Pu(Mi) = 0, B aborts and quits. Other-
wise, Pu(Mi) = 1 and there exists an γ we have
h(Mi)γ = uγ . Thus, B can compute the signature as
σ = e(A1,h(Mi)1 , . . . , Aγ−1,h(Mi)γ−1

, Aγ+1,h(Mi)γ+1
, . . .,

A`,h(Mi)` , V K
∗)bγ,h(Mi)γ by knowing the exponent

bγ,h(Mi)γ of the parameter Aγ,h(Mi)γ .
Finally, the adversary A outputs an attempted forgery

σ∗ with respect to the challenge verification V K∗ on
some message M∗. B first checks the signature ver-
ification Vrfy(V K∗,M∗, σ∗) and aborts if it returns 0.
Next, it checks if Pu(M∗) = 1 and aborts if that is the
case. Otherwise, Pu(M∗) = 0 and for all i we have
h(M∗)i 6= ui. This means that the hash of M∗ will

be g
∏
i∈[k−1] ci

k−1 raised to some known product of bi,β val-

ues. The signature therefore contains g
∏
i∈[k] ci

k−1 raised to
some known product of bi,β values. This value can be re-
covered by taking the proper root of the signature, i.e.,

(σ∗)1/
∏
i∈[`] bi,h(M∗)i = g

∏
i∈[k] ci

k−1 , and thus if σ∗ is a suc-
cessful forgery, then this root of the signature is a solution
to the challenge instance of the k-MCDH problem.

By construction of the algorithm B, the probability of
B succeeds is exactly the advantage that the adversary A
succeeds in Game2. Whenever B aborted, the adversary
by the rules of Game2 was not considered to be successful



International Journal of Network Security, Vol.22, No.5, PP.728-735, Sept. 2020 (DOI: 10.6633/IJNS.202009 22(5).02) 732

since its queries or forgery violated the partition. The
lemma follows.

These three lemmas together yield the main theorem
that the multilinear BLS signature scheme with an ad-
missible hash is adaptively secure.

5 Ring Signatures from Multilin-
ear BLS Scheme

In this section, we show the applications of the multilin-
ear BLS signatures. It can be served as the key-generation
algorithm of the multilinear IBE scheme [11], it also can
be used to construct aggregate signature [17]. In addi-
tion, based on Boldyreva’s [7] work, we can easily obtain
a threshold signature, a multi-signature, and a blind sig-
nature scheme, respectively, based on the multilinear BLS
scheme in the standard model. Here, we take advantage
of the multilinear BLS scheme to construct a ring signa-
ture scheme in the standard model. The resultant scheme
has an attractive feature that for n members of a ring our
signatures consist of just a single group element.

5.1 Definition of Ring Signatures

For convenience, we define an algorithm Setup, run by
trusted authority, to generate public parameters and build
the system of the ring signature scheme. The public pa-
rameters will be used in all of the following three algo-
rithms. In addition, we refer to an ordered set R =
{V K1, . . . , V Kn} of verification keys as a ring, and let
R[i] = V Ki. We will also freely use set notation, e.g.,
V K ∈ R if there exists an index i such that R[i] = V K.

Definition 5. A ring signature scheme contains the fol-
lowing four algorithms:

• Setup(1λ) → PP: The system setup algorithm takes
as input a security parameter λ to produce the sys-
tem public parameters PP.

• KeyGen() → (SK, V K): The key generation algo-
rithm generates users’ signing and verification keys
(SK, V K).

• Sign(SKs, R,M) → σ: The signing algorithm takes
as input a message M to be signed, a set of verifica-
tion keys R (i.e., the ring), and an user’s signing key
SKs. It is required that V Ks ∈ R meanings that the
signer is a member of the signing ring. The algorithm
outputs a signature σ.

• Vrfy(R,M, σ) → 0/1: The verification algorithm
takes as input a purported signature σ on a ring R
and a message M . It outputs 1 if σ is valid. Other-
wise, it outputs 0.

5.2 Security Models of Ring Signatures

Security models of the ring signature scheme contains two
parts: unforgeability and anonymity.

5.2.1 Ring Unforgeability

This security guarantees that an adversary can compute
a valid signature on behalf of a ring only if he knows a
secret key corresponding to one of them. In this work, we
use Bender et al.’s [5] model: unforgeability with respect
to insider corruption3 which is defined by the following
game:

1) Setup: The challenger runs Setup and KeyGen al-
gorithms to generate public parameters and users’

keys {(SKi, V Ki)}n(λ)
i=1 . Then it gives the adver-

sary A the system parameters and verification keys

S = {V Ki}n(λ)
i=1 . In addition, the challenger main-

tains a set C to record the corrupted users, initially,
C ← ∅.

2) Signing queries: The adversary A can adaptively
make singing queries on inputs (M,R, s), where M
is the message to be signed, R ⊆ S is a ring of veri-
fication keys and s is an index such that V Ks ∈ R.
The challenger returns back a ring signature σ ←
Sign(SKs, R,M) to A.

3) Corruption queries: The adversary A also can
adaptively make some corruption queries on input
s ∈ [n(λ)]. The challenger returns back SKs to A
and adds V Ks into the set C.

4) Output: Finally, the adversary A outputs a tuple
of (M∗, σ∗, R∗). We say that A wins the game if the
following conditions hold: (1) Vrfy(R∗,M∗, σ∗) = 1;
(2) R∗ ⊆ S\C; (3) it never made a singing query
(M∗, R∗, s) for any s.

We denote the success probability of a PPT adversary
A (taken over the random choices of the challenger and

adversary) to win the above game as AdvUnfA .

Definition 6. We say that a ring signature scheme has
the property of unforgeability with respect to insider cor-
ruption, if for any PPT adversary A, it cannot win the
above game with non-negligible advantage.

Selective security. We define a weaker notion, selective
security, to the above model. In the game of selec-
tive security, the adversary A is required that to give
a forgery ring/message pair (R∗,M∗)4 to the chal-
lenger before the setup phase, then it cannot make

3We make use of a weaker notion of this security model in which
corruptions of honest users are allowed but adversary-chosen public
keys are not allowed. This weaker notion has been used in [24,27].

4In the beginning, A does not given the keys S = {V Ki}
n(λ)
i=1 .

In order to obtain the forgery ring R∗, we require that A out-
puts a set of index IR∗ = {i1, . . . , i|R∗|} ⊆ [n(λ)]. Then, after

the keys S = {V Ki}
n(λ)
i=1 be generated, the forgery ring R∗ =

{V Ki1 , . . . , V Ki|R∗|} ⊆ S also be defined.
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signing query on inputs (M∗, R∗, s) for any s, it also
cannot make corruption query on input s for which
V Ks ∈ R∗.

Definition 7. We say that a ring signature scheme is
selectively unforgeable with respect to insider corruption,
if for any PPT adversary A, it cannot win the selective
game with non-negligible advantage.

5.2.2 Ring Anonymity

This security guarantees that any verifier can be con-
vinced that someone in the ring has generated a valid ring
signature, but the real signer remains unknown. In this
paper, we make use of the notion of perfect anonymity.
We say that a ring signature scheme is perfectly anony-
mous, if a signature on a message M∗ under a ring R∗

and key V Ki0 looks exactly the same as a signature on
the same message M∗ under the same ring R∗ and a dif-
ferent key V Ki1 . This means that the signer’s key is hid-
den among all the honestly generated keys in the ring.
Formally, it is defined by the following game:

1) Setup: The challenger runs Setup and KeyGen algo-
rithms to generate public parameters and users’ keys

{(SKi, V Ki)}n(λ)
i=1 . Then it returns back the public

parameters and all keys {(SKi, V Ki)}n(λ)
i=1 to the ad-

versary A.

2) Challenge: The adversary A gives a tuple of
(M∗, R∗, i0, i1), where M∗ is the challenge message,
R∗ is the challenge ring, i0 and i1 are two indices
such that {V Ki0 , V Ki1} ⊆ R∗, to the challenger.
The challenger chooses random b ∈ {0, 1}, computes
σ∗ ← Sign(M∗, SKib , R

∗), and sends σ∗ to the ad-
versary.

3) Guess: Finally, the adversary outputs b′, indicating
his guess for b.

We denote the advantage of an unbounded adversary A
(taken over the random choices of the challenger and the
adversary) to win the above game as AdvAnoA = |Pr[b′ =
b]− Pr[b′ 6= b]|.

Definition 8. A ring signature scheme has the property
of perfect anonymity, if even an unbounded adversary can-
not win the above game with non-negligible advantage.

5.3 Construction

We now construct a ring signature scheme based on the
multilinear BLS scheme. We specify the message space
M := {0, 1}`, more generally, a collision resistant hash
function can be used to hash messages to this size. Let
m1, . . . ,m` be the bits of the message M ∈ M. The
following construction is an n-user ring signature scheme,
means that |R| = n.

• Setup(1λ, n, `): Trusted authority takes as input
a security parameter λ, the length ` of messages
and ring size n to runs this algorithm to gen-
erate public parameters. It first runs MP =
(G1, . . . ,Gk, p, g, . . . , gk, ei,j) ← MulGen(1λ, k = n +
`). Next, it chooses 2` random values (a1,0, a1,1), . . .,
(a`,0, a`,1) ∈ Z2

p and computes Ai,β = gai,β ∈ G1, for
i ∈ [`] and β ∈ {0, 1}. The public parameters PP con-
tain the group descriptions MP and group elements
(A1,0, A1,1), . . . , (A`,0, A`,1).

• KeyGen(PP): Each user i chooses a random value
xi ∈ Zp as his signing key SKi. The corresponding
verification key is V Ki = gxi ∈ G1.

• Sign(M,SKs, R = {V K1, . . . , V Kn}): Given a ring
of n verification keys, the holder of signing key SKs

with s ∈ [n] can sign some message M ∈ M as σ =
e(A1,m1

, . . . , A`,m` , V K1, . . . , V Ks−1, V Ks+1, . . .,
V Kn)xs . The signature consists of just a single group

element. In fact, σ = g
(
∏`
i=1 ai,mi )·(

∏n
j=1 xj)

k−1 ∈ Gk−1.

• Vrfy(M,σ,R = {V K1, . . . , V Kn}): Given a ring of n
verification keys and a purported signature σ on a

message M , check the following equation: e(σ, g)
?
=

e(A1,m1
, . . . , A`,m` , V K1, . . . , V Kn).

Correctness. To see the correctness, a signature σ on

message M and ring R is g
(
∏`
i=1 ai,mi )·(

∏n
j=1 xj)

k−1 , and

thus we have e(σ, g) = e(g
(
∏`
i=1 ai,mi )·(

∏n
j=1 xj)

k−1 , g) =

e(g
∏`
i=1 ai,mi

k−1 , g
∏n
j=1 xj ) =

e(A1,m1
, . . . , A`,m` , V K1, . . . , V Kn).

In the setting of the multilinear maps, the space to repre-
sent a group element might grow with k (which is n+ `),
because this happens in the GGH [12] framework. To mit-
igate this problem, we can use the method in [17], which
differs the message alphabet size in a tradeoff between
computation and storage. The above construction uses a
binary message alphabet. If it uses an alphabet of 2d sym-
bols, then the ring signature could resident in the group
G`/d+n with `/d+ n− 1 pairings required to compute it,

at the cost of the public parameters requiring 2d · ` group
elements in G1.

5.4 Security

Theorem 3. The ring signature scheme with message
length ` and ring size n in the above is selectively unforge-
able with respect to insider corruption under the (n+ `)-
MCDH assumption.

Proof. If there exists a PPT adversary A who can break
the selective security of the ring signature scheme with ad-
vantage ε for message length `, ring size n, level k = n+ `
of multilinear maps, and security parameter λ, then we
show that we can construct a PPT challenger B to break
the k-MCDH assumption for security parameter λ with
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probability ε. Initially, A gives (M∗ ∈ {0, 1}`, IR∗ =
{i1, . . . , in} ⊆ [n(λ)]) to B who is given an instance,
(MP, gc1 , . . . , gck), of the k-MCDH assumption.

1) Setup: The challenger B first sets signing and
verification keys for the challenge ring (SKi1 =
c`+1, V Ki1 = gc`+1), . . . , (SKin = ck, V Kin = gck)
(it does not know these ci). For indices i 6∈ IR∗ , it
chooses random xi ∈ Zp and sets SKi = xi, V Ki =
gxi . It then generates parameters as follows:

• Choose random integers a1, . . . , a` ∈ Zp.
• For i ∈ [`], set Ai,m∗i = gci and compute
Ai,m̄∗i = gai .

Note that these parameters are distributed uniformly
at random as in the real ring signature scheme. Then
B sets the public parameters PP = (MP, {Ai,β |i ∈
[`], β ∈ {0, 1}}). Finally, it gives PP and {V Ki}n(λ)

i=1

to A.

2) Signing queries: Conceptually, the challenger B
can generate signatures for the adversary, because
the adversary’s requests and the challenge ring or
message will be different in at least one bit. Specifi-
cally, when A makes a query to the signing oracle on
input (M,R = {V K1, . . . , V Kn}, s). If R 6= R∗, we
assume that V Kj ∈ R but 6∈ R∗, then B ignores the
index s and signs M with SKj in the usual way since
B knows V Kj ’s singing key xj . If R = R∗, then we
know M 6= M∗ and assume that mγ 6= m∗γ , where mγ

and m∗γ are the γ-th bit of the message M and M∗,
respectively. Hence B can compute σ = e(A1,m1 , . . .,
Aγ−1,mγ−1

, Aγ+1,mγ+1
, . . . , A`,m` , V K1, . . . , V Kn)aγ

by knowing the exponent aγ of the parameter Aγ,m̄∗γ .
Finally, it returns σ to the adversary A.

3) Corruption queries: When Amakes a query to the
corruption oracle with input an index i for i 6∈ IR∗ ,
B gives SKi to A and adds V Ki to the set C of the
corrupted users.

4) Output: Finally, A outputs a forgery σ∗ with re-
spect to the challenge ring R∗ = {V Ki1 , . . . , V Kin}
and message M∗. Then B outputs σ∗ as the so-
lution to the given instance of the k-MCDH as-
sumption. According to the setting of the public
parameters and the verification keys of the chal-
lenge ring in the setup phase, and the assumption
that σ∗ is valid, we know that σ∗ should be equal
to e(A1,m∗1

, . . . , A`,m∗` , V K1, . . . , V Kj−1, V Kj+1, . . .,

V Kn)c`+j = g
∏
i∈[1,k] ci

k−1 , where c`+j is a certain sign-
ing key A uses. It implies that σ∗ is a solution for the
given instance to the k-MCDH problem, and thus B
breaks the k-MCDH assumption.

It is clear that B succeeds whenever A does.

Theorem 4. The ring signature scheme with message
length ` and ring size n in the above is anonymous against
any unbounded adversary.

Given a ring signature, we show that any ring member
could possibly have created it. Consider a signature σ∗

on ring R∗ = {V K1, . . . , V Kn} and message M∗, that has
been created using key SKi0 . We will show that with the
same probability it could have been created using SKi1

with i1 6= i0. The proof is straight-forward.

Proof. For any tuple (M∗, R∗, i0, i1) which are chosen
by an unbounded adversary A, the signatures created
by the member i0 and i1 are σ∗i0 = e(A1,m∗1

, . . .,
A`,m∗` , V K1, . . . , V Ki0−1, V Ki0+1, . . . , V Kn)xi0

and σ∗i1 = e(A1,m∗1
, . . . , A`,m∗` ,

V K1, . . . , V Ki1−1, V Ki1+1, . . . , V Kn)xi1 , respectively.

However, σ∗i0 = σ∗i1 = g
(
∏`
i=1 ai,m∗i

)·(
∏n
i=1 xi)

k−1 since the
signing algorithm is deterministic. Therefore, any mem-
ber of a ring can compute a same signature on a given
message and ring. The perfect anonymity follows easily
from this observation.

6 Conclusion

In this work, we consider the BLS signature scheme in the
setting of multilinear groups. First of all, we present a
proof of adaptive security for the multilinear BLS scheme
based on MCDH assumption. Then, we construct a
ring signature scheme that, based on the multilinear BLS
scheme, has an attractive feature that for n members of a
ring the signatures consist of just a single group element.
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