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Abstract

At Eurocrypt’06, Groth et al. have proposed one non-
interactive zero-knowledge (NIZK) proof system for plain-
text being 0 or 1 [its revision published by J. ACM,
59(3), 1-35, 2012]. Based on the system, they presented
the first perfect NIZK argument system for any NP lan-
guage and the first secure NIZK argument with univer-
sal composability for any NP language in the presence of
a dynamic/adaptive adversary. In this note, we remark
that in the scheme the prover is not compelled to invoke
any trapdoor key to generate witnesses. The mechanism
is dramatically different from the previous works, such
as Blum-Feldman-Micali proof system and Blum-Santis-
Micali-Persiano proof system. We find if the trapdoor key
is available to the prover then he can cheat the verifier to
accept a false claim. The characteristic is essentially in-
compatible with the general primitive of zero-knowledge
proof, which does not require any extra trust.
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1 Introduction

Non-interactive zero-knowledge (NIZK) proof in the com-
mon random string model, introduced by Blum et al. [4],
plays a key role in many constructions, including digital
signatures [11, 25], E-voting [14], Shuffle [2, 27], polyno-
mial evaluation [3], arithmetic circuits [7,8] and multiple-
party computation [1, 9, 20, 26]. In 1988, Blum et al. [4]
constructed some computational NIZK proof systems for
proving a single statement about any NP language. In
1991, they [5] presented the first computational NIZK
proof system for multiple theorems. These systems are
based on the hardness of deciding quadratic residues mod-
ulo a composite number. In 1998, Kilian and Petrank [21]

designed an efficient noninteractive zero-knowledge proof
system for NP with general assumptions.

In 1999, Feige et al. [10] developed a method to con-
struct computational NIZK proof systems based on any
trapdoor permutation. Goldreich et al. [13] discussed
the possibility of converting a statistical zero knowledge
(SZK) proof into a NIZK proof. In 2001, Santis et
al. [23, 24] investigated the robustness and randomness-
optimal characterization of some NIZK proof systems.
In 2003, Sahai and Vadhan [22] presented an interesting
survey on SZK. Groth et al. [15,16,19] designed some lin-
ear algebra with sub-linear zero-knowledge arguments and
short pairing-based NIZK arguments. In 2015, Gentry et
al. [12] discussed the problem of using fully homomorphic
hybrid encryption to minimize NIZK proofs.

At Eurocrypt’06, Groth, Ostrovsky and Sahai [17] de-
signed a popular NIZK proof system for plaintext being 0
or 1 using bilinear groups with composite order. The
refined version [18] was published by Journal of ACM
in 2012. The behind intractability of this work is the sub-
group decision problem introduced by Boneh et al. [6].
Based on the basic NIZK proof system, they presented
one NIZK proof for circuit satisfiability. Furthermore,
they constructed the first perfect NIZK argument system
for any NP language and the first secure NIZK argument
with universal composability for any NP language in the
presence of a dynamic/adaptive adversary. They claimed
it has resolved a central open problem concerning NIZK
protocols.

In this note, we show that in Groth-Ostrovsky-Sahai
proof system the prover is not compelled to invoke any
trapdoor key to generate witnesses. The mechanism was
dramatically different from the previous works, such as
Blum-Feldman-Micali proof system [4] and Blum-Santis-
Micali-Persiano proof system [5]. They did adopt a differ-
ent security model although it was not specified explicitly.
We also find that if the trapdoor key is available to the
prover then he can cheat the verifier to accept a false
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claim. The characteristic is radically incompatible with
the general primitive of zero-knowledge proof. That is,
the popular NIZK proof system requires extra trust to
set its parameters. This shortcoming renders itself vul-
nerable to inner attacks.

2 Review of Groth-Ostrovsky-
Sahai NIZK Proof System

The system [17] can be described as follows.

• Common reference string. Let G,G1 be two cyclic
groups of order n, where n = pq and p, q are primes
such that it is difficult to factor n. ê : G×G→ G1 is a
bilinear map. We require that ê(g, g) is a generator of
G1 if g is a generator of G. Pick a generator h ∈ Gq,
where Gq ⊂ G is of order q. The common reference
string is σ = (n,G,G1, ê, g, h).

• Statement. The statement is an element c ∈ G. The
claim is that there exists a pair (m,w) ∈ Z2 so m ∈
{0, 1} and c = gmhw.

Proof. Given (σ, c,m,w), check m ∈ {0, 1} and c =
gmhw. Return failure if check fails. It proceeds as
follows. Pick r ∈ Z∗n, compute

π1 = hr

π2 = (g2m−1hw)wr
−1

π3 = gr.

Return π = (π1, π2, π3).

• Verification. Given the parameter σ and c, π, check
c ∈ G, π ∈ G3, and verify that

ê(c, cg−1) = ê(π1, π2)

ê(π1, g) = ê(h, π3).

Correctness . It is easy to check that

ê(c, cg−1) = ê(gmhw, gm−1hw)

= ê(g, g)m(m−1)ê(g, h)(2m−1)wê(h, h)w
2

ê(π1, π2) = ê(hr, (g2m−1hw)wr
−1

)

= ê(g, h)(2m−1)wê(h, h)w
2

If m ∈ {0, 1}, then ê(c, cg−1) = ê(π1, π2).

If m 6∈ {0, 1}, it seems that Alice has to solve the dis-
crete logarithms among ê(g, h), ê(g, g), ê(h, h), which are
reduced to the discrete logarithm of h to g. This possi-
bility can be eradicated in advance by asking Alice and
Bob agree to a random seed to a pseudorandom generator
for generating g. Based on the observations, Groth et al.
concluded that the scheme was secure against either the
prover’s attack or the verifier’s attack.

3 Analysis of Groth-Ostrovsky-
Sahai NIZK Proof System

For convenience, we will call the prover, Alice, and the
verifier, Bob. We now consider the following problems.

3.1 What is the True Statement

Give c ∈ G, Alice claims that c is of the form gmhw for
some (m,w) ∈ {0, 1}×Zn. This is equivalent to checking
whether c or c/g is in the subgroup Gq.

If the trapdoor key q is available, then it suffices to
check that

cq = 1, or (c/g)q = 1.

However, the trapdoor key cannot be directly shown to
Bob. Hence, Alice has to produce some witnesses to con-
vince Bob of that c or c/g is indeed in the subgroup Gq.

3.2 How to Understand the Phrase of
“Common Reference String”

The notion of “common reference string” used in NIZK
model can be traced back to [5]. It had stressed that

The moral is that one must be careful when
using the same set-up, i.e., common reference
string, and the same pair (x, y), to prove an “un-
limited” number of formulae to be satisfiable.

Apparently, “common reference string” represents the
same set-up known to the prover and the verifier. But
it does not specify whether or not there is any trapdoor
key related to the common reference string.

Recalling Blum-Santis-Micali-Persiano proof system [5]
and its like, we find they have not any trapdoor key at
all. For readers’ convenience, we now briefly relate Blum-
Santis-Micali-Persiano proof system as follows.

Common reference string. The random string is ρ =
ρ1ρ2 · · · ρn2 , each ρi has length n.

Statement. The odd number x < n is a composite of
two different primes p, q. Assume that |J+1

x | = |J−1x |,
where

J+1
x =

{
y ∈ Z∗x | Jacobi symbol

(
y

x

)
= 1

}
,

J−1x =

{
y ∈ Z∗x | Jacobi symbol

(
y

x

)
= −1

}
and Z∗x = {1, 2, · · · , x − 1}. Alice knows p, q and
wants to convince Bob of this fact while preventing
Bob from knowing p, q.

Proof. Alice picks y < x such that
(
y
x

)
= 1 and y is not

a quadratic residue of x. She then computes
(
ρi
x

)
for

i = 1, 2, · · · , n2. If
(
ρi
x

)
= 1, compute si such that

s2i = ρi mod x or s2i = yρi mod x. Send these si and
x, y to Bob.



International Journal of Network Security, Vol.22, No.4, PP.681-685, July 2020 (DOI: 10.6633/IJNS.202007 22(4).17) 683

Verification. Bob checks that x is not a perfect square.
Verify that

(
y
x

)
= 1 and the number of si is greater

than 3n. He then checks that each
(
ρi
x

)
= 1 and

s2i = ρi mod x or s2i = yρi mod x.

It is easy to find that in [5] there is not any trapdoor key
related to the setup. We refer to Table 1 for the big differ-
ences between Blum-Santis-Micali-Persiano proof system
and Groth-Ostrovsky-Sahai proof system.

Clearly, Blum-Santis-Micali-Persiano proof system
needs only a very simple common reference string, and
Alice has to make use of her private key (the factors of x)
to generate witnesses. To the contrary, Groth-Ostrovsky-
Sahai proof system needs a very complicated common ref-
erence string associated with a trapdoor key.

The model introduced by Blum et al. is more suitable
to practical applications because it does not require any
extra trust. But the model considered by Groth et al.
entails the verifier to trust that the related trapdoor key
cannot be accessed to the prover (see the discussion in the
following sections). The requirement does contradict the
general assumptions for zero-knowledge proof.

3.3 Alice is not Compelled to Invoke Any
Trapdoor Key

It is easy to find that Alice does not invoke the trapdoor
key (p, q) to generate witnesses. Besides, the system does
not specify who is responsible for generating the common
reference string. So, it is reasonable to assume that there
is a third-party, Cindy, who generates the common refer-
ence string. Note that Cindy is not fully trustable and
she knows the trapdoor key. Otherwise, the presence of
a fully trustable party is indeed incompatible with the
primitive of zero-knowledge proof system.

3.4 Alice and Cindy Can Conspire to
Cheat Bob

Can Cindy form an alliance with Alice? If so, we now
show that Alice and Cindy can conspire to cheat Bob to
accept a false claim.

Suppose that Alice picks an integer r and sets

π1 = hr

π3 = gr

c = gα1hα2

π2 = gβ1hβ2 ,

where α1, α2, β1, β2 are to be determined. Since

ê(c, cg−1) = ê(gα1hα2 , gα1−1hα2)

= ê(g, g)α1(α1−1)ê(g, h)α1α2+α2(α1−1)

·ê(h, h)α
2
2 ,

ê(π1, π2) = ê(hr, gβ1hβ2)

= ê(h, g)rβ1 ê(h, h)rβ2 ,

it suffices for Alice to solve the following equations α1(α1 − 1) = 0 mod n
2α1α2 − α2 = rβ1 mod n (1)

α2
2 = rβ2 mod n

for those exponents. The authors [17] mistakenly thought
that α1 in the equations (1) has to take 0 or 1.

In fact, armed with the trapdoor key p, q, Alice can
obtain k, ` using extended Euclid algorithm such that

kq − `p = 1.

She sets α1 = kq. Clearly,

α1(α1 − 1) = kq(kq − 1) = kq`p ≡ 0 mod n.

She then picks β1 < n and computes

α2 = rβ1(2kq − 1)−1 mod n

β2 = α2
2r
−1 mod n.

It is easy to check that the above values c, π1, π2, π3 pass
the original verification.

Obviously, α1 = kq 6= 0, 1. Besides,

(gα1)q = (gkq)q = (g`p+1)q = gq 6= 1, i.e., gα1 6∈ Gq.

Thus, there does not exist an integer α′ such that

gα1 = hα
′
.

That means c = gα1hα2 cannot be eventually expressed as
hw1 or ghw2 . Therefore, the adversary can cheat Bob to
accept the false claim c = gα1hα2 , where α1 6= 0 or 1.

4 Conclusion

We remark that the Groth-Ostrovsky-Sahai proof system
adopts an artificial security model due to the existence
of trapdoor key related to the common reference string.
Under the strong assumption that the adversary cannot
access to the trapdoor key, the proof system seems secure.
But the assumption is ultimately incompatible with the
general primitive of zero-knowledge proof which does not
require any extra trust, and makes the system itself un-
suitable to more broader applications.

We would like to stress that the first thing for design-
ing a cryptographic scheme is to consider what is trusted
or untrusted. Otherwise, an assumption for extra trust
suffices to ruin the whole system.
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Table 1: Two kinds of common reference strings

Blum-Santis-Micali-Persiano Groth-Ostrovsky-Sahai

Common reference string A random string ρ = ρ1ρ2 · · · ρn2 , (n,G,G1, ê, g, h)

where each ρi is of length n. where n = pq.

[trapdoor key] NO (p, q)

Statement Knowing the factors c is of the structure gmhw

of the integer x. with (m,w) ∈ {0, 1} × Z.

Proof x; y, {si} c;π1, π2, π3

Verification
(
ρi
x

)
= 1, and s2i = ρi mod x ê(c, cg−1) = ê(π1, π2),

or s2i = yρi mod x and ê(π1, g) = ê(h, π3)
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