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Abstract

Cloud Computing has been envisioned as the next-wave
system architectures of IT. Cloud storage service brings
benefit of not only low cost and scalability, but also great
appropriateness for group sharing, such as e-learning re-
source storage. In this paper, a scalable and efficient
group sharing method for public cloud is proposed. It
is based on the key tree approach and the well-known
Diffie-Hellman cryptographic protocol. Security and per-
formance analysis shows that our proposed scheme is se-
cure and highly efficient for public cloud based secure stor-
age.
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1 Introduction

With the development of cloud services and social net-
works, a group can be easily organized between some peo-
ple over Internet due to the same interests, so that group
applications with the aid of cloud servers become possible
and attract more and more attentions [4, 8, 11,18].

Cloud storage is an extensive new service in the field of
cloud computing, which is a distributed file system that
using software integrate various types storage to supply
users with data storage and access service. Users can
easily share their data and reduce the overhead of building
and maintaining their data center.

Despite of the advantages of cloud storage, there are
various challenges on the privacy and security of users’
data. For example,

1) The cloud is usually maintained and managed by a
semi-trusted third party (cloud provider).

2) While it is desirable for the data owner to share
his/her private data with intended recipients, it
presents an even more challenging problem since we
have to make sure that except the intended recipi-

ents, nobody, including the cloud providers, can ob-
tain any useful information from the encrypted data.

In order to ensure that only authorized users can access
the shared data, the data are encrypted using a crypto-
graphic key known as the group key. Data are encrypted
with the group key and stored in the cloud. The group
key should only be known by authenticated and autho-
rized members of a group. Authorized users can download
the encrypted file and decrypt them with the group key.
But how to distribute and update group keys is an im-
portant problems. We can use digital envelope to address
this problem. A digital envelope is a secure electronic
data container that is used to protect a message through
encryption and data authentication. A digital envelope
allows users to encrypt data with the speed of secret key
encryption and the convenience and security of public key
encryption. For example, when Bob wants to send a con-
fidential message M to Alice, she can generate a digital
envelop for M and send the envelop to Alice. On the
sender’s side the procedure is as follows:

1) Bob randomly generates a secret key K.

2) Bob encrypts M with K, E(K,M).

3) Bob encrypts K with Alice’s public key E(PubA,K).

4) Bob concatenates E(K,M) with E(PubA,K) and
sends the result to Alice as digital envelop.

Upon receipt of E(K,M) and E(PubA,K), Alice uses her
private key PRA to decrypt the message. The procedure
is as follows:

1) Alice decrypts E(PubA,K),K) with PRA.

2) Alice decrypts E(K,M) with K. The result is M.

Before uploading a file to cloud servers, the data owner
symmetrically encrypts the file with a randomly chosen
session key. The data owner also uploads a digital enve-
lope. Group members should timely get the updated key
from cloud servers to get the group private key. When a
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group member requests to download a file, he/she sends
a request to cloud servers. Cloud servers respond with
a random number. The group member uses the cur-
rent agreed group private key to sign the number. Cloud
servers use the agreed group public key to verify the sig-
nature. If passed, they send the encrypted file and the
specific digital envelope to the member. Mi open the en-
velop and get the requested file [15].

The architecture of secure shared cloud storage is
shown in Figure 1 [15] where the group leader opens up
a sharing area in the cloud to form a group application.
Then, he/she grants the group members the right to im-
plement data management. All the data in this group
are available to all the group members, while they remain
private towards the outsiders of the group including the
cloud provider. To prevent the cloud provider to access
the original date, proxy re-encryption is used to provide
ciphertext updating in cloud environment. By this way,
most computational intensive operations of ciphertext up-
dating can be transferred to cloud servers, without reveal
any content of ciphertext to the cloud provider.

Proxy re-encryption is a technique which allows a semi-
trusted server transform the ciphertexts encrypted by one
party’s public keys into proxy ciphertexts encrypted by
another party’s public keys [2,3,5,10]. Under this circum-
stance, the two parties can conduct secure data sharing
over the same plaintext without exchanging their private
keys or worrying about sensitive data leakage in the semi-
trusted server. Proxy re-encryption is an cryptographic
primitive in which one person (Take the user A for ex-
ample) allows a semi-trusted cloud provider to reencrypt
his/her message that will be sent to another designated
person (Take the user B for example). A should gener-
ate a proxy re-encryption key by combining his/her secret
key with B’s public key. This re-encryption key is used by
the proxy as input of the re-encryption function, which is
executed to convert a ciphertext encrypted under A’s pub-
lic key into another ciphertext that can be decrypted by
B’s private key. Except for converting, the proxy (cloud
provider) cannot see the underlying data contents.

Figure 1: Network model

There are two kinds of users:

1) Group Leader: Only one group leader in a group,
who is the group creator. The group leader buys
or obtains storage and computing resource from the
cloud provider.

2) Group member: Each group member can implement
file download and upload operations in the group.

Each group member can get some related public informa-
tion from cloud servers and compute the group key pair.
The group membership can change overtime: each group
member except the group leader can leave or apply to
join the group at his/her will. All group members can
negotiate a group key pair (the group public key and the
group private key) with the help of cloud servers. This
group key pair is used to protect the data shared in the
group. Group members’ leaving and joining can launch
key updating process. Every time a membership change
occurs, the group key must be changed to ensure back-
ward and forward secrecy. Backwards secrecy guarantees
that a new member joining the group does not have access
to any old group keys. This ensures that a member cannot
decrypt messages sent before it joins the group. Forward
secrecy requires that a member leaving the group does not
have access to any future group keys. This ensures that
a member cannot decrypt future messages after it leaves
the group.

Some researchers have emphasized the integrity and
availability of outsourced data. Wang proposed a homo-
morpic distributed verification protocol using pseudoran-
dom data to ensure cloud storage security [13]. The pro-
tocol focuses on the storage correctness as well as veri-
fies misbehaving servers. However, Pseudorandom data
does not cover the entire data while identifies the cloud
servers, some data corruptions maybe missing such that
the protocol do not provide full protection for cloud stor-
age. Kamara proposed a framework of a cryptographic
storage service which considers the issue of building a se-
cure cloud storage service on cloud infrastructure where
the service provider is not fully trusted by the user [6].
It is made up of three basic components and realizes en-
cryption storage and integrity validation by a group of
protocols. However, this method is hard to build since it
considers at a high level, needs to modify lots of the source
code of cloud storage platform. In addition, users have to
query data owner to access the shared data, which will
make a communication bottleneck as the number of users
increases rapidly. Yeh proposed a secure group communi-
cation and data sharing scheme using public key cryptog-
raphy [17]. However, using such asymmetric cryptogra-
phy in group needs a PKI infrastructure and the trusted
Certificate Authority in the system and each entity need
to query the public key of other entity, which will be a
overhead as large amount of group members.

Ateniese [1] proposed a proxy re-encryption scheme to
manage distributed file systems that attempt to achieve
secure data storage in the semi-trusted party. Based on
bilinear maps, the scheme offers improved security guar-
antees. An example of group data sharing in cloud com-
puting was proposed by Liu [9]. In [9], a secure scheme
was proposed to support anonymous data sharing in cloud
computing. In this paper, we proposed a scheme named
CTDH, Our scheme supports the updating of the group
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key pair whenever group members joining or leaving. Our
approach transfers most of the computational complex-
ity and communication overhead of group key updates to
cloud servers without leaking their privacy.

The remainder of this paper is organized as follows. In
Section 2, we proposed the group sharing method. The
security proof of the scheme is also provided. We ana-
lyze the performance of the proposed scheme in Section
3. Section 4 summarizes the paper.

2 Our Proposed Group Sharing
Method

The group is composed of the entity with similar inter-
est or common purpose such as society, work-group, or
e-learning team. Initially, the group manager as group
leader takes charge of key management activities includ-
ing key generation and key updating. We assume that the
group key creation and updates are proceeded in secure
channel.

Our scheme uses the key tree structure for scalability
and minimal key computation and distribution. It em-
ploys the Diffie-Hellman (DH) cryptographic algorithm
to avoid the need of setting up a shared key between a
member and its group leader. Although each member con-
tributes to the group key, the group leader is responsible
for generating and distributing partial keys.

Our scheme is similar to TGDH [7,12] with respect to
the use of the key tree structure and the DH algorithm.
They differ in several aspects, as follows:

• In our scheme, the group leader is responsible for
computing and distributing the partial keys to the
group when a new member joins or an existing mem-
ber leaves. In TGDH, when a new member joins the
group, the current right-most member in the logical
key tree is responsible for computing and distributing
the partial keys to the other members of the group.

• In TGDH, each member in the group needs to store
the entire key tree. In our scheme, only the group
leader needs to store the key tree. Each member
needs to store only the partial keys of the nodes on
the path from itself to the root of the key tree.

• Because the group key updates are now done by the
group leader in our scheme instead by the right-most
member, each intermediate node in the logical key
tree requires two secret keys. These secret keys are
changed whenever the partial key associated with the
intermediate node needs to be updated upon a join
or leave event. The use of these secret keys at inter-
mediate nodes is described in Section 2.1.2.

• It has been shown that the key tree approach gives
best performance with 4-ary trees [14, 16]. However,
TGDH must work only on binary trees in order to
maintain the optimal number of rekeying computa-
tions and messages. Our scheme, on the other hand,

can support trees of any degree without affecting the
complexity of key computation and communication.

In the following sub-sections, we discuss how the group
key is computed and updated upon join and leave opera-
tions.

2.1 Group Key Generation

2.1.1 Key Tree

The key tree is a logical data structure.

The nodes are numbered as follows. Ki,j denotes the
content of node < i, j >.

Each leaf node < i, j > is associated with a group
member and contains the member’s secret key (which is
generated by the member himself) denoted by si,j .

Ki,j = si,j . (1)

In the logical key tree displayed by Figure 2, the leaf nodes
contain the secret keys s3,0, ...s3,3, s2,2 and s2,3 of the six
group members.

The content of each non-leaf node < i, j > is called
a proper key and computed from the contents of its two
children < i+ 1, 2j > and < i+ 1, 2j + 1 > in a recursive
manner:

Ki,j = f(Ki+1,2j ,Ki+1,2j+1). (2)

For example, K1,1 = f(s2,2, s2,3).

By this recursive definition, the proper key Ki,j of a
non-leaf node < i, j > is made up of the secret keys of the
group members in the subtree rooted at node < i, j >.
For instance, K1,0 is the result of s3,0, ..., s3,3.

The content of the root node < 0, 0 > is the group
key used by the data source to encode a message and by
the group members to decode the message. The group
key K0,0 is made up of the secret keys of all the group
members (i.e., the leaf nodes).

M4 

<2,1> 

<1,1> <1,0> 

<0,0> 

M5 

<2,2> <2,3> 

M1 M2 M0 

<3,0> <3,1> 

M3 

<3,2> <3,3> 

<2,0> 

Figure 2: A logical key tree

In the logic key tree, we denote the group key K(0, 0)
and gK(0, 0) as the group private key PrKG and group
public key PuKg. The established group key pair is
shared by all group members: PrKG = K0,0 and PuKG
= gK(0, 0).
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2.1.2 Group Key Generation

Each member contributes a share to the group key, but
the group leader computed required partial keys and dis-
tribute to the whole group. Each member extracts the
necessary partial keys from the leader’s broadcast mes-
sage, then combines with his own secret key to compute
the group key as follows.

The required variable for each leaf node is following:

• Each member < i, j > generates its own secret key
si,j to contribute towards the group key. It sends
gsi,j to the leader only.

Each non-leaf node < i, j > requires the following vari-
ables:

• a proper key Ki,j computed by the leader. The
computation of Ki,j is different from that in TGDH
though, as will be shown shortly.

• a secret key Si,j generated by the leader for node
< i, j >. The leader generates a new key Si,j when
Ki,j needs to be updated (i.e., node < i, j > is on the
path from the root to the joining/leaving member in
the key tree).

• a hidden key Ri,j , also generated by the leader for
node < i, j >. The hidden key Ri,j is updated along
with the secret key Si,j .

Each member < i, j > also has a proper key Ki,j , where
Ki,j = si,j , the secret key created by the member himself.

If node < i, j > is a non-leaf node, its proper key Ki,j

is computed from Si,j , Ri,j and the two proper keys of
the two children of nodes < i, j > as follows:

Ki,j = (gRi,j × gKi+1,2j )Si,j × (gSi,j )Ki+1,2j+1

= (gRi,j × gKi+1,2j+1)Si,j × (gSi,j )Ki+1,2j .

The group key K0,0 is computed recursively using Equa-
tions (1) and (2).

Note that the proper key Ki,j of node < i, j > contains
the proper keys of its two children Ki+1,2j and Ki+1,2j+1.
In addition, it contains the secret key Si,j and hidden key
Ri,j generated by the leader.

If we would like to use the concept of blinded keys as
in TGDH, we can re-write Ki,j as follows:

Ki,j = Bi+1,2j × (gSi,j )Ki+1,2j+1

= Bi+1,2j+1 × (gSi,j )Ki+1,2j ,

where

Bi+1,2j = (gRi,j × gKi+1,2j )Si,j ,

and

Bi+1,2j+1 = (gRi,j × gKi+1,2j+1)Si,j

The secret key Si,j and the hidden key Ri,j generated
by the leader are used to assure that as long as the leader’s
contribution is chosen at random, even a coalition of all

other parties will not be able to have any means of con-
trolling the final value of the group key. Therefore, the
protocol are fairer and more secure in order to prevent
some parties having any kind of advantage over the oth-
ers.

Group key pair will then be calculated as the group
public key PrKG = K0,0 and the group private key PuKg
= gK(0, 0). The group leader generates a shared secret
key K, encrypts shared data with K. The group leader
then encrypt K with the group public key PrKG and up-
load the digital envelop and the encrypted data to the
cloud.

2.2 CTDH Implementation

2.2.1 Group Key Refresh/Reinforce

The group key may need to change periodically and may
not be related to any change of group membership. The
purpose of refreshing the group key periodically is to pre-
vent an adversary from having a sufficient time or re-
sources to break the key. This process is initiated and
performed by the group leader which generates a new se-
cret key and a new hidden key, computes and multicasts
the blinded value to the whole group. We show the group
key refresh/reinforce operation below.

• Randomly choosing a non-leaf node < i, j > and gen-
erating a new secret key S′i,j and a new hidden key
R′i,j to replace Si,j and Ri,j .

• Updating the proper keys and partial keys as a result
of the above secret key and hidden key changes.

• Broadcasting the updated partial keys and gS
′
i,j to

all members in the group.

• Each member re-computes the group key using the
algorithm described in Section 2.1.2.

2.2.2 Join

When a new member joins the group, the member will
sends a join request to the group leader. The join request
triggers the rekeying procedure. The leader determines
the insertion point in the key tree. It then adds a new
member node and a new internal node. Once the key
tree is updated, the leader generates a secret key Si,j and
a hidden key Ri,j for the new internal node < i, j >.
Next, the leader computes all blinded keys and broadcast
them with gSi,j (Si,j is the secret key of new internal node
< i, j >). All members can then compute the new group
key.

Group members do not need to maintain a copy of
the key tree like in TGDH as they only need to know the
blinded keys of its sibling along the path to the root node.
Also the future rekeying does not require member having
addition information about the key tree. Thus, CTDH
only requires member to know the least information to
compute the group key.
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Figure 3: An example of CTDH implementation

Following is an example that illustrates the rekeying
operations.

In Figure 3, when member M3 wishes to join the group
by sending its own blinded key to the group leader. The
group leader performs the following operations to update
the group key:

• Creating two new nodes as children of node <1, 1>.

• Moving M2 and its proper key from node <1, 1> to
node <2, 2>.

• Assigning node <2, 3> to the new member M3.
Member M3 generates its own secret key s2,3 and
sends gs2,3 to the group leader.

• In general, the proper keys of the nodes on the path
from the new member to the root are updated. Since
node <1, 1> becomes a non-leaf node, the group
leader needs to assign it with a secret key S1,1 and a
hidden key R1,1.

• Updating the following blinded keys as a result of the
above secret key and hidden key changes and tree
restructuring: B2,2, B2,3 (two newly created partial
keys) and B1,1. Note that the blinded keys B2,0,
B2,1, B1,0 are not changed. The new blinded keys
B2,2, B2,3 and B1,1 are computed as follows:

B2,2 = (gR1,1 × gs2,2)S1,1

B2,3 = (gR1,1 × gs2,3)S1,1

B1,1 = (gR0,0 × gK1,1)S0,0 .

• Broadcasting the updated blinded keys B2,2,
B2,3,B1,0, B1,1 and gS1,1 to all members in the group.
Each member re-computes the group key using the
algorithm described in Section 2.1.2.

For example, member M0 and M1 can compute the
new group key as follows:

K0,0 = B1,1 × (gS0,0)K1,0

Member M2 and M3 can compute K1,1, K0,0 as fol-
lows:

K1,1 = B2,3 × (gS1,1)s2,2

= B2,2 × (gS1,1)s2,3

K0,0 = B1,0 × (gS0,0)K1,1

The group key pair shared by all group members will
then be updated as the group private key PrKG = K0,0

and the group public key PuKg = gK(0, 0).

2.2.3 Leave

When an existing member leaves the group, the group key
needs to be changed as well. We start with n member
and assume member Ml leaves the group. The leader in
this case first update the key tree by deleting the leaf
node corresponding to Ml. The former sibling of Ml is
promoted to replace Ml’s parent node. That is to say that
an internal node, the parent of Ml, is also deleted. Once
the key tree is updated, the leader generates a new secret
key Si,j and a new hidden key Ri,j for the new parent
node < i, j > of Ml’s former sibling. Next, the leader
computes all blinded keys and broadcast them with gSi,j

.
This allows all members to compute the new group key.

Looking at the setting that Figure 3 shows, if member
M3 leaves the group, the leader performs the following
rekeying procedures.

First, node < 1, 1 >, < 2, 3 > are deleted. After up-
dating the key tree, the leader picks a new secret key S0,0

and a new hidden key R0,0 for node < 0, 0 >.

• Removing node < 2, 3 >.

• Replace internal node < 1, 1 > with member M2’s
node.

• Generate a new secret key S′0,0 and a new hidden key
R′0,0 for node < 0, 0 >. As node < 1, 1 > becomes
a leaf node, no secret key generated by the leader
are needed for this node. Thus, previously generated
secret key R<1,1> and S<1,1> by the group leader are
discarded.

• Updating the proper keys K<0,0> (the group key) as
a result of the above tree restructuring. In general,
the proper keys of the nodes on the path from the
new member to the root are updated.

• Updating the partial keys B<1,0>, B<1,1> as a result
of the above secret key changes and tree restructur-
ing.

B1,0 = (gR
′
0,0 × gK1,0)S

′
0,0

B1,1 = (gR
′
0,0 × gs1,1)S

′
0,0

• Broadcasting the updated partial keys B1,0, B1,1,

and gS
′
0,0 to all members in the group. Each mem-

ber re-computes the group key using the algorithm
described in Section 2.1.2.

For example, member M0 and M1 can compute the
new group key as follows:

K<0,0> = B<1,1>(gS
′
<0,0>)K<1,0>

Member M2 can compute the new group key as fol-
lows:

K<0,0> = B<1,0>(gS
′
<0,0>)s<1,1>
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The group key pair shared by all group members will then
be updated as the group public key PuKg = gK(0, 0) and
the group private key PrKG = K0,0.

2.2.4 Updates on the Cloud Server

When a group member joins or leaves, all digital en-
velopes related to the sharing data in this group should
be also updated and encrypted by the new group pub-
lic key. After the group public key and the group pri-
vate key are updated, the group leader will re-compute a
proxy re-encryption key from the version of group public
key (PuKG) used in the existing digital envelopes to the
new updated version (PuKG1). The leader then uploads
the updated information into the cloud. With this proxy
re-encryption key, cloud servers can update all existing
digital envelopes to be encrypted under the new updated
group public key PuKG1. This method can delegate most
of the computation intensive operations to cloud servers
without disclosing the encrypted data contents and keys
in all digital envelopes.

2.2.5 Upload and Download Data

Before uploading a file to cloud servers, the data owner
encrypts the file with a randomly chosen session key K.
Together with uploading the encrypted sharing file the
data owner also uploads a digital envelope (asymmetri-
cally encrypt the session key K with the group public key
PuKG), which is currently used.

When a group member requests to download a file
he/she sends a request to cloud servers. Cloud servers
send the encrypted file and the specific digital envelope
to the group member. The group member decrypts the
digital envelop to get key K and then decrypts the request
file using key K.

2.3 Security Proof

Assuming the DH algorithm is secure, we show that
CTDH is secure using a binary tree as an example. In
this proof, all operations are assumed to be performed
mod p.

Theorem 1. Let T be a key tree of height m. l be the level
of T . Let s0, . . . , sn be secret keys of the members of the
group. The shared group key K derived by any member
in the application of CTDH is secure.

Proof. The proof is based on induction over level l (1 ≤
l ≤ m).

Base Case: l = 1. Let member M0 and M1 be rooted at
node < m− 1, 0 > as shown in figure 4. Denote the
secret keys of M0 and M1 as sm,0 = s0 and sm,1 = s1
respectively. Let Sm−1,0 and Rm−1,0 be the secret
key and hidden key of the node < m− 1, 0 > gener-
ated by the group leader. We show that the shared
key K derived by any member in the group is secure.
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Figure 4: An example of group key calculation

The group leader computes the blinded key for member
M0 and M1 as follows.

Bm,0 = (gRm−1,0 × gsm,0)Sm−1,0 ,

and
Bm,1 = (gRm−1,0 × gsm,1)Sm−1,0 .

After receiving Bm,0, Bm,1 and gSm−1,0 broadcast by the
group leader, member M0 can derive the shared key as
K = Km−1,0 = Bm,1 × (gSm−1,0)sm,0 .

Since the shared key Km−1,0 requires member Mm,0’s
secret key, any passive adversary who gets the broadcast
message cannot derive the group key without knowing
that secret key.

In case the broadcast message is captured, the adver-
sary tries to use Bm,0, Bm,1 and gSm−1,0 to derive the
shared key Km−1,0. Since (gSm−1,0)sm,0 is the result of
the two party Diffie-Hellman key exchange, which is as-
sumed to be indistinguishable in polynomial time from a
random number.

Moreover, from the public known information of Bm,0,
Bm,1 and gSm−1,0 , the adversary also cannot derived the
shared key Km−1,0 because the hidden key Rm−1,0 has
never been released to anyone, even the group member.
Only the group leader knows what the hidden key it fac-
tors into the shared key. Thus, from the broadcast infor-
mation itself, the adversary cannot derive the shared key.
Therefore, the shared key Km−1,0 is secure.

Induction hypothesis: The shared key K derived by
any member in the application of CTDH, at level
l = n− 1 (n ≥ 2)is secure.

Induction step: At level l = n, Km−n+1,0 and
Km−n+1,1 are the shared values of two subtrees
rooted at node < m−n+1, 0 > and < m−n+1, 1 >,
respectively.
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The group leader computes the blinded key for node <
m− n + 1, 0 > and < m− n + 1, 1 > as follows

Bm−n+1,0 = (gRm−n,0 × gsm−n+1,0)Sm−n,0 ,

and

Bm−n+1,1 = (gRm−n,0 × gsm−n+1,1)Sm−n,0

respectively.

After receiving Bm−n+1,0, Bm−n+1,1 and gSm−n,0

broadcast by the group leader, any member (such as M0)
who belongs to the subtree rooted at node < m−n+1, 0 >
can derive the shared key at level n as follows:

K<m−n,0> = Bm−n+1,1 × (gSm−n,0)Km−n+1,0 .

From the induction hypothesis above, we know that
Km−n+1,0 is secure and only known by the member who
are the children of this subtrees. Thus, the shared group
key K<m−n,0> at level n is secure. We can conclude that
the shared key of any level l (1 ≤ l ≥ m) is secure. There-
fore, the shared group key K = K0,0 of level m derived by
any member in the application of CTDH is secure. Fur-
thermore, if extending the inductive method to n-ary key
tree, we can apply the same derivation method and show
that the derived group key of n-ary key tree is secure as
well.

Theorem 2. When a new member joins or an exiting
member leaves the group, the application of CTDH is still
secure. We use Figure 3 as an an example to shown that
CTDH provide backward secrecy and forward secrecy.

First, CTDH provides backward secrecy. Backward se-
crecy states that a new member who knows the current
group key cannot derive any previous group keys. In Fig-
ure 3, once a new member M3 joins the key tree, the group
leader for this join event generates a new secret key and
a new hidden key and must involve the new member’s se-
cret key into the new group key, consequently, previous
group key is changed. Therefore, the information learned
by the new member with respect to the prior key tree is
exactly same as the information of an outsider. Hence,
the new member does not gain any advantage compared
to a passive adversary.

Second, CTDH provides forward secrecy. Forward se-
crecy requires that a member who knows a contiguous
subset of old group keys cannot discover subsequent group
keys once it leaves the group. In Figure 3, once the current
member M3 leaves the group, the group leader refreshes
the secret key and hidden key, therefore, all keys known
to leaving members will be changed accordingly. More-
over, the new group key will subtract the member M3’s
secret. Thus, the information learned by M3 with respect
to the new key tree is exactly same as the information
of a passive adversary. This proves that CTDH provides
both backward and forward secrecy.

3 Evaluation

In this section, we evaluate our proposed CTDH protocol
with Tree-based Group Diffie-Hellman (TGDH) protocol
in terms of computation and communication costs.

3.1 Computation Analysis

Table 1 shows computation comparison between TGDH
and CTDH when a new member joins the group or an
existing member leaves the group. CTDH needs to com-
pute 3 log2 n + 3 exponentials while 4 log2 n exponen-
tials are required by TGDH upon joining. Upon leav-
ing, 2 log2 n+ 1 exponentials are computed using CTDH,
where 3 log2 n− 3 exponentials are needed by TGDH.

Table 1: Computation comparison

Description TGDH CTDH
Group Leader 2 log2 n log2 n + 3
Existing member at most at most

Join log2 n− 1 log2 n− 1
New member log2 n + 1 log2 n + 1
Total exponentials 4 log2 n 3 log2 n + 3
Group Leader 2 log2 n− 2 log2 n + 2

Leave Existing member at most at most
log2 n− 1 log2 n− 1

Total exponentials 3 log2 n− 3 2 log2 n + 1

Figure 5 shows that if there are 8 members before a
new member joins the group, CTDH has same exponen-
tial computation as TGDH. Only if there is less than 8
members in the group before new member joins, TGDH
requires 1 or 2 exponential computations less than CTDH.
Since these 1 or 2 more exponentials are actually com-
puted by the powerful node in CTDH, they should not
cause any big delay comparing with TGDH. If there is
more than 8 member in the group before new member
joins, CTDH outperforms TGDH.

Figure 6 shows that if there are 16 members before
a member leaves the group, CTDH has same exponen-
tial computation as TGDH. Only if there are less than 4
members in the group before anyone leaves, TGDH re-
quires 1 or 2 exponential computations less than CTDH.
Since group leader is much more powerful than a mobile
device in terms of computation, memory, power supply,
these 1 or 2 exponentials should not cause any big de-
lay comparing with TGDH. If the gorup has more than
16 members before a member leaves, CTDH outperforms
TGDH.

3.2 Communication Analysis

Upon member joins the group, TGDH needs 2 broad-
cast messages to distribute the partial keys, while CTDH
needs 1 unicast and 1 broadcast to update the partial
keys. Although CTDH and TGDH require same number
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of messages, one unicast has less communication cost than
a broadcast when sending same size message.

A more relevant measure for a group key management
is the latency that a user experiences from the moment
the group change was detected, until the new secure group
is established. This time is greater than only analytical
cryptographic cost, since it includes network latency. Our
simulation results in Figures 7- 8 shows that CTDH pro-
vides best communication efficiency. Thus, CTDH per-
form much better than TGDH in terms of communication
delay upon joining or leaving.

4 Conclusions

In this paper, a scalable and efficient group sharing
method, CTDH, is proposed for public cloud. CTDH is
scalable and efficient thanks to the key tree structure.
It uses the contributory approach based on the Diffie-
Hellman cryptographic algorithm to avoid the need of
setting up pairwise secure channels among members We
briefly analyze the security and performance of CTDH.
We conclude that CTDH not only provides same level
of security as TGDH, but also outperforms TGDH in
terms of computation and communication costs. In the
future, we would like to present a secure and fault-tolerant
key agreement for group data sharing in a cloud storage
scheme.
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