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Abstract

The Internet of Things, or IoT has achieved much at-
tention in the past few years with many concrete appli-
cations. Among various IoT components, smart sensors
play a vital role for things’ tracking and monitoring, but
due to the absence of centralized administration, those
sensors may encounter various security issues which hin-
der IoT further development. Trust computing provides
dynamic behavior perceiving capability and can take pre-
cautionary measures against malicious actions. In this
study, unlike traditional binary parameter trust, we first
propose a multi-parameter trust computing method so
that trust states can be more accurately and practically
described, then according to the theory of time series,
a favorable trust data sequence and an unknown trust
data sequence are generated so that nodes’ malicious ac-
tions can be observed and detected from the context of a
time period. Simulation results show that the proposed
method can generate a fast detection of malicious nodes,
a higher data packet delivery ratio, and a more trusted
network environment ideal for transactions among sensor
nodes.

Keywords: IoT; Multi-Parameter Trust; Smart Sensors;
Time Series

1 Introduction

As one of the most emerging technologies in computer
science, the Internet of Things, or IoT has achieved much
popularity in the past few years and many IoT applica-
tions are being implemented in areas like logistics, traf-
fic surveillance, and smart families. IoT can incorporate
seamlessly and transparently a large number of heteroge-
neous smart devices or end systems, while providing open
access to selected subsets of data for the development of a
great many of digital services [21,24]. The term IoT is ini-
tially used to refer to the interoperability of uniquely iden-
tifiable objects with radio frequency identification (RFID)
technology [16]. Later, the definition of IoT has been ex-

panded to refer to a network of interconnected objects or
devices such as RFID tags, sensors, actuators, and smart
phones with the object to collect data and interact with
the physical world [3, 22].

Among various IoT components, smart sensors play a
vital role in the current IoT applications. Programmable
smart sensors equipped with processing unit, storage
memory, and wireless communication module are able to
autonomously join in or construct a certain IoT network.
Those sensors usually work in a completely distributed
manner so as to collaboratively collect ambient data and
monitor certain events. But due to the lack of fixed infras-
tructure, the absence of centralized administration, and
the inherent characteristics of these sensors such as lim-
ited computing resources, short radio range, and dynamic
topology, IoT composed by those sensors may encounter
various security issues, e.g., an entity may become ma-
licious and launch packet dropping or select forwarding
attack to gain its own benefits, which poses new security
challenges for IoT applications [10,15,20].

As a complementary solution to the traditional net-
work security, trust mechanism provides access control
by judging the quality of the service and makes tradi-
tional security services more reliable by ensuring that all
communicating devices are trustworthy during service co-
operation [13,14]. In this study, unlike traditional binary
parameter trust methods [8], we first propose a multi-
parameter trust computing method so that trust states
can be more accurately and practically described, then ac-
cording to the theory of time series, a favorable trust data
sequence and an unknown trust data sequence are gener-
ated so that nodes’ malicious actions can be observed and
detected from the context of a time period.

The rest of this study is organized as follows. Sec-
tion 2 explores recent representative trust-based models
implemented for the IoT. Section 3 describes the prelim-
inaries about trust computing and theory of time series.
Sections 4 and 5 present our proposed trust method and
related simulation tests. Section 6 concludes this article
and suggests directions for future research.
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2 Related Work

In this section, some latest and representative literatures
about trust schemes in IoT are discussed, ranging from
data aggregation/fusion, edge computing, malicious infil-
tration, information sharing, data routing, node classifi-
cation, to trust estimation and assessment.

Data aggregating techniques using external IoT mo-
bile elements (MEs) have been recently proposed in some
studies where MEs collect data from stationary sensors
and relay the collected data to the base station. These
MEs could be regular mobile sensors or any mobile devices
with sensing capability. Ali et al. [3] proposed a scheme on
selecting trusted MEs for data aggregation in IoT enabled
wireless sensor networks. When passing through the net-
work, only trusted MEs were recruited, then they acted
as anonymous agents and served as the cluster heads in
order to increase the life span of the network. The trust
vales placed on MEs were completely based on the direct
interactions between the MEs and the base station at the
end of each aggregation round. Regarding the trust calcu-
lation, [3] also uses the classic Beta trust model [8] which
is of two trust parameter based and has been utilized by
many reputation systems for its simplicity and flexibil-
ity. After that, all the trust values and management are
handled by the base station and each sensor node main-
tains a local copy of the trust vales for other nodes in the
network.

The integration of IoT and edge computing is currently
a hot research direction, but the lack of trust among
IoT edge devices has somewhat hindered the acceptance
of IoT edge computing [19]. To facilitate the IoT edge
computing applications, Yuan et al. [23] proposed a re-
liable and lightweight trust mechanism for IoT edge de-
vices based on multi-source feedback information fusion
so that efficient trust calculation mechanism can be es-
tablished in the IoT edge computing architecture. The
proposed scheme uses a feedback information fusion algo-
rithm based on objective information entropy theory to
overcome the limitations of traditional trust schemes, and
the trust factors can be weighted manually or subjectively.
In [23], the trust calculation falls into direct trust calcu-
lation and feedback trust calculation. The former uses
the similar Beta trust model and the latter maintains the
trust vales in a matrix.

Infiltration from malicious devices that can temporar-
ily stop the provided services is one of the main issues
faced by the current IoT networks and these malicious
devices may also launch coordinated attacks. To find out
the malicious behavior of IoT nodes, Khan [12] proposed
an intrusion detection system based on the trust manage-
ment where a node monitored the receivers of its messages
checking if they had forwarded them correctly. Behavior
following the scheme can improve the trust of a node in
another one, but trust deteriorates if the observer detects
that its peer behaves maliciously. [12] built the trust rela-
tion by using the opinion triangles in Jøsang’s subjective
logic [11] which allows to aggregate the trust values of

various other IoT devices.

For information sharing in a health IoT system com-
prising IoT devices carried by members of an environ-
mental health community, Al-Hamadi et al. [2] proposed
a trust management system that could guide IoT devices
to use the most trustworthy environmental health infor-
mation for decision making. In [2], a collective knowledge
base can be built to rate the environment at a particular
location and time, and this knowledge could enable an
IoT device to act on behalf of its user to decide whether
or not the user should visit this place for health reasons.
The proposed system considers the risk classification, re-
liability trust, and loss of health probability for decision
making in the health IoT system.

With large amount of IoT devices likely to be intercon-
nected globally, an important issue is how to secure the
routing of data in the underlying networks from various
attacks. Airehrour et al. [1] proposed a lightweight se-
cure trust-based routing framework for IoT sensor nodes
to identify and isolate common routing attacks in IoTs.
The proposed framework incorporates the concept of trust
among different IoT sensor nodes and utilizes the success-
ful and unsuccessful node interactions among IoT nodes to
evaluate a neighbor’s trustworthiness. Further, the frame-
work also considers a recovery period for nodes that are
classified as untrusted ones owing to lossy network links
or low battery power which could result in the decrease
of their trust values.

Fragkiadakis et al. [7] proposed a centralized trust-
based scheme employing evidence reasoning for IoT archi-
tecture where all nodes monitor their one-hop neighbors
and report their findings to a single fusion center. The
proposed scheme considers nodes’ behavior with regards
to their forwarding capability, thus each node observes its
neighbors and estimates their packet drop ratio, then all
nodes create direct trust reports for specific criteria re-
garding their neighbors, and the fusion is performed by
employing a belief distribution using an evidence reason-
ing algorithm.

Asiri et al. [4] proposed an IoT trust and reputation
model which used distributed probabilistic neural net-
works to classify trustworthy nodes from malicious ones.
The proposed model is based on a recommender system
which helps an IoT node decide to connect to another
one based on previous observed behaviors. The proposed
model also tackles the cold start problem in IoT environ-
ment by predicting ratings for newly joined nodes based
on their characteristics over time, and the processing is
completely distributed and is handled by the nodes them-
selves.

Gwak et al. [9] proposed an IoT trust estimation
scheme making a user evaluate the trust value of an IoT
device in an unknown place. The proposed scheme is on
the basis that a user’s subjective experience can be substi-
tuted by those social friends sharing identical subjective
experiences with the user. It first finds a collection of past
subjective experiences of a user relevant to the target de-
vice, then it discovers the friends of a target user who
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have past subjective experiences closely matching with
the collection. Based on the subjective trust value and
the level of the subjective experience identity of the shar-
ing friends, a user’s trust value of a target device with
the objective opinion of all the users who have interacted
with the device is estimated.

To establish the initial trust level that a device places
on another at their first encounter in IoTs, Nguyen et
al. [17] proposed a challenge-response-based initial trust
assessment scheme. The proposed scheme creates the
knowledge about the device by learning the uncertainty
level in its behaviors, then it relies on the results of the
challenge-response process to assess if a device can be
trusted to a level for its admission to the network. The
proposed mechanism allows a device to generate the ev-
idence for trust computation instead of waiting for the
recommendations or actual interactions for long period.

3 Preliminaries

In this section, as the basis of our proposed trust method,
we first discuss the traditional trust computing method
and then shortly introduce the theory of time series.

3.1 Trust Computing

In trust computing, Bayesian analysis [5] has been widely
used, and as a representative of such a approach, Ganeri-
wal et al. [8] proposed a classical reputation based frame-
work for high integrity sensor networks (RFSN) where
sensor nodes use Beta reputation to evaluate other’s trust
values.

Suppose that in a packet relay cooperation, a sensor
node i has the probability ϕ to pass a packet to another
node in the following jth round, let α and β denote the
historical number of successful and unsuccessful cooper-
ations respectively, ϕ is an unknown parameter and is
equally to take all the values between 0 and 1 inclusive,
then according to Bayesian analysis, P (ϕ) is defined by

P (ϕ) =
Γ(α+ β)

Γ(α)Γ(β)
ϕα−1(1− ϕ)β−1 (1)

Let K(= 0/1) denote the outcome of the jth round, then
P (K|ϕ) is defined by

P (K|ϕ) = ϕK(1− ϕ)1−K (2)

Once the jth round is completed, according to Bayesian
theorem, the posterior distribution of ϕ is defined by

P (ϕ|K) =
P (K|ϕ)P (ϕ)∫
P (K|ϕ)P (ϕ)dϕ

(3)

Put Equation 1 and Equation 2 into Equation 3, then we
get

P (ϕ|K) =
ϕK(1− ϕ)K Γ(α+β)·ϕα−1(1−ϕ)β−1

Γ(α)Γ(β)∫
ϕK(1− ϕ)1−K · Γ(α+β)·ϕα−1(1−ϕ)β−1

Γ(α)Γ(β) dϕ

=
Γ(α+ β + 1)ϕα+K−1(1− ϕ)β+1−K−1

Γ(α+K)Γ(β + 1−K)
(4)

Equation 4 is the update of ϕ after the jth round. It can
be noticed that in Equation 4, the posterior probability of
ϕ still has a Beta distribution, i.e. before the jth round,
P (ϕ) v Beta(α, β) (Equation 1) ; after the jth round,
P (ϕ) v Beta(α + K,β + 1 − K). Therefore, before the
jth round, E(ϕ) is defined by

E(ϕ) =
α

α+ β
(5)

and after the jth round, E(ϕ) is redefined by

E(ϕ) =
α+K

α+ β + 1
(6)

In practice, E(ϕ) is the trust value of node i and (α, β)
are the only two trust parameters characteristic of Beta
reputation that are computed and maintained by the
neighboring nodes. This kind of trust computing is also
called direct observation computing, and many literatures
like [3,17] either directly or indirectly extend and modify
such a method. In [18], an indirect method based on the
belief discounting is used in the trust system, which is
mapped into Dempster-Shafer belief theory [6] where the
two trust parameters are defined as follows.

αi+ =
2αhα

h
i

(βh + 2) + (αhi + βhi + 2) + 2αh
(7)

βi+ =
2αhβ

h
i

(βh + 2) + (αhi + βhi + 2) + 2αh
(8)

In Equation 7 and Equation 8, j receives the trust about i
from h, let (αhi , β

h
i ) denote the indirect trust and j has the

past trust values about i and h denoted by (αi, βi) and
(αh, βh) respectively. One of the advantages of the indi-
rect method is that malicious nodes are prevented from
colluding with each other to feed false trust information,
but it can also result in the energy exhaustion of the net-
work system.

To sum up, Beta reputation first computes the prior
probability of an event, then updates the probability by
using a posterior inference according to the relevant evi-
dences, and (α, β) are trust parameters used to represent
the positive and negative outcome in a transaction. Al-
though Beta reputation model is widely used, it only con-
siders two parameters to describe an event, which limits
its applications to a large extent.

3.2 Time Series

Time series is a statistics tool for processing dynamic data
sequence by which meaningful or abnormal facts can be
analyzed and discovered. The data sequence is usually
measured at successive time instants and spaced at prede-
fined time intervals. For example, let Y denote a random
variable and its time series is defined by Y = {y1, ..., yn}
where yn is the value of Y at time instant n.

In an IoT network, a node’s trust is directly related to
its attitude towards certain task, e.g., faithfully relay data
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packets as requested, or maliciously drop some or all the
data packets. To some extent, malicious actions always
end up with lower trust, but smart sensors can switch
between good and bad so as to keep their trust and cover
their malicious actions. Such a switch is easy to result
in trust fluctuation over time. Thus, the fluctuated trust
values can be regarded as a data sequence, and time series
can be used to find out whether a node is of malicious
actions or not.

In a trust data time series, there are three components:
a trust data sequence to be checked, a standard sequence
to be compared with, and a sequence checking mechanism.
The trust data sequence is the outcomes of a certain node
actions over time, e.g., node i’s trust data sequence is
defined by

Ti = {ti(t1), ti(t2), ..., ti(tn)}. (9)

The standard sequence consists of a series of comparing
data, each of which will be compared with its counter-
part of the same time instant in the trust sequence. The
standard sequence is denoted by

S = {s(t1), s(t2), ..., s(tn)}. (10)

Both the trust data sequence and the standard sequence
should have the same length, and the sequence checking
mechanism used in this article will be introduced in the
following section.

4 The Proposed Method

In this section, our proposed multi-parameter and time se-
ries base trust method is presented. The proposed method
consists of two components: a trust computing module
and a time series checking module.

4.1 Trust Computing Module

Assume there are k outcomes in one transaction denoted
by {o1, ..., ok} with the probability Θ = {θ1, ..., θk} where
P (oi) = θi, and ni is the number of occurrence of oi where
n1 +n2 + ...+nk = N , then according to the multinomial
distribution, P (Y = N |Θ) is defined by

P (Y = N |Θ) = Σk−1
i=1 ni · (N − 1)! · Πk

i=1θ
ni
i

Πk
i=1ni!

(11)

Based on the Dirichlet distribution, the conjugate prior
probability of Θ is defined by

P (Θ) =
Γ(Σki=1αi)

Πk
i=1Γ(αi)

·Πk
i=1θ

αi−1
i (12)

In Equation 12 as in Equation 1, αi is the prior or histor-
ical counts of oi, and the posterior of Θ is defined by

P (Θ|Y = N) =
P (Y = N |Θ)P (Θ)∫
P (Y = N |Θ)dΘ

(13)

Put Equation 11 and Equation 12 into Equation 13, we
get

P (Θ|Y = N) =
Σk−1
i=1 ni · (N − 1)! · Πki=1θ

ni
i

Πki=1ni!
P (Θ)∫

Σk−1
i=1 ni · (N − 1)! · Πki=1θ

ni
i

Πki=1ni!
dΘ

(14)

=
Σk−1
i=1 ni · (N − 1)! · Πki=1θ

ni
i

Πki=1ni!
· Γ(Σki=1αi)

Πki=1Γ(αi)
·Πk

i=1θ
αi−1
i∫

Σk−1
i=1 ni · (N − 1)! · Πki=1θ

ni
i

Πki=1ni!
dΘ

=
Γ(Σki=1(αi + ni))

Πk
i=1Γ(αi + ni)

Then, E(Θ) is defined by

E(Θ) = (
α1 + n1∑k
i=1(αi + ni)

, ...,
αk + nk∑k
i=1(αi + ni)

). (15)

In Equation 15 as in Equation 6, E(Θ) is the trust value
set of node i and (α1, ..., αn) are the multi trust param-
eters characteristic of the trust computing model in the
proposed method where in αi + ni, ni = 0, 1, ...N .

Consider an example of three kinds of outcomes, as-
sume that they are {excellent, good, average} denoted
respectively by {o1, o2, o3} with the occurrence number
{n1, n2, n3} after certain transactions, and the histori-
cal occurrence numbers are {α1, α2, α3}, based on Equa-
tion 15, the trust value set of {excellent, good, average}
are computed as follows.

E(θ1) =
α1 + n1

α1 + α2 + α3 + n1 + n2 + n3
(16)

E(θ2) =
α2 + n2

α1 + α2 + α3 + n1 + n2 + n3
(17)

E(θ3) =
α3 + n3

α1 + α2 + α3 + n1 + n2 + n3
(18)

Compared with the Beta reputation based trust, the
multi parameter based trust has more trust parameters to
present more outcome states in the actual applications.

4.2 Sequence Checking Module

In the checking module, the trust data sequence and the
standard sequence are regarded as two vectors, the cosine
angle λ(v1, v2) of the two vectors are computed to measure
their similarity, regarding the trust data sequence and the
standard sequence, their cosine angle is defined by

λ(Ti,S) =
Ti · S

‖ Ti ‖‖ S ‖
=

n∑
j=1

ti(tj)× s(tj)√
n∑
j=1

(ti(tj))2 ×
√

n∑
j=1

(s(tj))2

(19)
Further, λ is formalized as follows so that its value is
mapped into [0, 1].

λ̇(Ti,S) = 1− cos−1(λ(Ti,S))

π
(20)
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In Equation 20, the closer λ̇ gets to 0, the less similar the
trust data sequence and the standard sequence become,
which means that the trust data sequence deviates from
the standard sequence to a large extent, and the sensor
node is highly likely of malicious actions within the time
period.

In practice, considering the unknown events such as
packet loss during the transmission and to fully take the
advantage of the multi trust parameters, we use four data
sequences: favorable trust data sequence fTi (like success-
ful data relay) and its counterpart comparing standard
sequence SfT , unknown trust data sequence uTi and its
comparing standard sequence SuT .

The working algorithm of the proposed trust method
is shown in Algorithm 1.

Algorithm 1 Working of the proposed method

1: α1: historical favorable outcome number
2: α2: historical unfavorable outcome number
3: α3: historical unknown outcome number
4: n1: current favorable outcome number
5: n2: current unfavorable outcome number
6: n3: current unknown outcome number
7: Len: segment length of time series measured by the

number of transactions (Len ≥ n1 + n2 + n3)
8: ϕ1 ∈ [0, 1]: threshold of λ̇(fTi, SfT )

9: ϕ2 ∈ [0, 1]: threshold of λ̇(uTi, SuT )
10: Begin
11: Node j initiates a certain transaction such as packets

relay within its one hop neighbors, assume Node i
responds, j first checks i ’s (favorable) trust value, if
i is qualified then j starts the transaction with i and
observes i ’s transaction outcomes

12: for(count=0, count <= Len, count++)
13: {j observes the transaction outcomes and records
14: them in (n1,n2,n3)}
15: if (λ̇(fTi, SfT ) > ϕ1)
16: {α1+ = n1, α2+ = n2, α3+ = n3, compute E(θ1)}
17: else
18: {
19: if (λ̇(uTi, SuT ) > ϕ2)// i is of malicious actions.
20: {delete i from j ’s transaction partners’ list,

or reset i ’s trust value for its redemption}
21: else// too many unknown outcomes exist.
22: {α1 = α1, α2 = α2, α3+ = n3, compute E(θ1)}
23: }
24: End

5 Simulations

Suppose that in an IoT packet relay task, there exist three
kinds of smart sensor nodes, i.e. legitimate nodes (65%),
malicious nodes (25%), and selfish nodes (10%). A trans-
action is defined as a data packet relay. Legitimate nodes
are of good actions and they faithfully relay all the re-
ceived packets to the others as requested; to attack the

Table 1: Simulation parameters

Parameters Values
Simulation time 500s
Number of nodes 100
Test area 200×200m2

Transmission range 50m
Node placement random
MAC protocol IEEE 802.11
Packet size 100 bytes
Communication error 5%
SfT randomly ⊂ [0.75, 0.95]
uTi randomly ⊂ [0, 0.15]
Initial trust value 0.5
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Figure 1: Mean trust with ϕ1 = 0.8, ϕ2 = 0.8

integrity of network is the first priority of the malicious
nodes, they intelligently and selectively drop some or all
the received packets and try to keep their trust values to
an acceptable level so as to cover their malicious actions;
selfish nodes sometimes drop packets or deny request not
out of malicious actions but to gain its own benefit such
as saving their energy. Each node generates 1 data packet
containing its ID on every 10 seconds, and a base station
locates on the border of the test area to collect all the
packets from the network. It is also assumed that sen-
sor nodes are capable of bidirectional communication and
their NICs work in a promiscuous mode. NS–2 is used
for simulation and the classical binary reputation based
trust used in [3] is selected for comparing. Simulation
parameters are presented in Table 1.

5.1 Test 1

In this section, the mean trust value is tested between the
compared method and the proposed method, results are
shown in Figure 1 and Figure 2.

In Figure 1, as the simulation time goes by, the mean
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Figure 2: Mean trust with ϕ1 = 0.9, ϕ2 = 0.9

trust value in [3] begins to go upward and reaches about
0.83 on the 200th second, then drops and fluctuates
around 0.8 till to the 500th second. Although there ex-
ist 25% malicious nodes and 10% selfish nodes, the mean
trust value still keeps high as 0.8. This is because in [3],
malicious nodes can intelligently switch between passing
and dropping the packets, which helps them maintain an
acceptable trust value that can be considered as trusted
relaying nodes.

While in the proposed method, trust is computed based
on Len–segment length of time series which is measured
by the number of transactions. It means that trust in
the proposed method is computed according to the seg-
ment length instead of upon the completion of a transac-
tion. This helps to keep broader perspective on the tar-
get nodes. When malicious nodes intelligently switch be-
tween good and bad, its trust fluctuate accordingly, when
its trust data sequence and standard data sequence are
applied into the checking module, if the result is less than
the threshold ϕ1 and meanwhile there is no enough un-
known outcomes, then according to the algorithm pre-
sented above, such nodes are treated as malicious ones.
In Figure 1, it can be noticed that due to the successfully
spotting the malicious nodes, the mean trust value in the
proposed method goes downward gradually, e.g., around
0.67 (Len = 5) and 0.63(Len = 10) on the 500th second.
In Figure 1, the mean trust is the lowest in the propose
method when the Len = 10, this is because when Len be-
comes larger, more malicious actions can be observed, if
any, and malicious nodes are more difficult to cover their
actions.

Similar results can be found in Figure 2. The difference
is that in Figure 2, the thresholds ϕ1 and ϕ2 are set as
0.9 instead of 0.8 in Figure 1. Figure 2 shows that when
these two thresholds are set larger, the checking module
is becoming stricter, meaning that more malicious nodes
can be detected resulting in much lower mean trust of
the the network, e.g., around 0.6 when (Len = 5) on the
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Figure 3: Trust qualified nodes with ϕ1 = 0.8, ϕ2 = 0.8
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Figure 4: Trust qualified nodes with ϕ1 = 0.9, ϕ2 = 0.9

500th second in Figure 2.

5.2 Test 2

In this section, the number of trust qualified nodes is
tested between the compared method and the proposed
method, results are shown in Figure 3 and Figure 4.

As is shown in Figure 3 and Figure 4, as the simulation
continues, the number of trust qualified nodes drops in
both the compared methods, e.g., in Figure 3, the number
in [3] is around 90 on the 200th second and around 88 on
the 500th second. Such a number varies slightly from
the 200th second to the 500th second, and the reason is
that the switching actions of malicious nodes make them
difficult to be spotted by the method in [3]. In addition,
the number of trust qualified nodes of [3] in Figure 3 or
Figure 4 is not the actual number which consists of many
malicious nodes.

On contrast, the number of trust qualified nodes drops



International Journal of Network Security, Vol.22, No.4, PP.589-596, July 2020 (DOI: 10.6633/IJNS.202007 22(4).06) 595

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

Simulation time

P
ac

k
et

 d
el

iv
er

y
 r

at
io

[3]

Proposed with Len=5

Proposed with Len=10

Figure 5: Packet delivery ratio with ϕ1 = 0.8, ϕ2 = 0.8

faster in the proposed method, e.g., in Figure 3, around
86 on the 200th second and around 81 on the 500th second
when Len = 5. In Figure 3 and Figure 4, it can be found
that both the segment length Len and the two thresh-
olds ϕ1, ϕ2 influence the number of trust qualified nodes.
Under the same conditions, the larger the segment length
and the two thresholds get, the less number of the trust
qualified nodes becomes. For example, in Figure 4, when
Len = 10, ϕ1 = 0.9, and ϕ2 = 0.9, the number in the
proposed method is around 69. However, such a number
in the proposed method approximates the actual number
of legitimate nodes (65%), meaning that more and more
malicious nodes including some selfish nodes are detected
in the proposed method and most of the remaining nodes
are legitimate.

5.3 Test 3

In this section, the packet delivery ratio is tested between
the compared methods and results are shown in Figure 5
and Figure 6.

Due to the existence of malicious nodes and selfish
nodes, not all the data packets generated by the legiti-
mate nodes can be received by the base station. Take
Figure 6 as an example, on the 500th seconds, only about
75% data packets reach the base station, and most of the
rest 25% are dropped by the malicious nodes; while in the
proposed method, because of the timely detection of ma-
licious nodes, the packet delivery ration can reach as high
as 85% (Len = 5) or 90% (Len = 10). Figure 5 and Fig-
ure 6 further indicate that with the increase of segment
length and the two thresholds ϕ1, ϕ2, so does the packet
delivery ratio.

These three tests also indicate that compared with the
method in [3], although the proposed method generates
a lower mean trust value and less trust qualified nodes in
the network, it does result in a fast detection of malicious
nodes, a higher data packet delivery ratio, and a more
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Figure 6: Packet delivery ratio with ϕ1 = 0.9, ϕ2 = 0.9

trusted network environment ideal for transactions among
sensor nodes.

6 Conclusions

Due to the lightweight but powerful mechanism, trust
scheme is a promising technology to establish security
for the resource-constrained devices that are character-
istic of the IoT smart sensors. In this study, we propose a
multi-parameter trust computing method combined with
the theory of time series. Through simulation tests, the
feasibility and effectiveness of the proposed method have
been confirmed. But in the proposed method, the seg-
ment length, the two thresholds cannot be selected freely,
a longer segment length would exhaust the buffer of a
sensor node; a larger threshold would not tolerate any
mistakes such as a single packet dropping in the test case;
a smaller threshold would be availed by malicious nodes
to switch their actions, all of which would be our future
research.
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