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Abstract

In this paper, we propose a reversible data hiding scheme
based on improved locally adaptive coding for compressed
images by side match vector quantization (SMVQ). In the
proposed scheme, an indicator is defined to encode the
SMVQ indices and embed the secret data. The smaller
the index is, the more bits of secret data could be hidden.
In order to improve the capacity, we use an improved
adaptive coding method after the assigned indices. Ex-
perimental results show that our proposed scheme out-
performs state-of-the-art VQ-based data hiding schemes
in terms of embedding capacity.

Keywords: Data Hiding; Image Compression; Locally
Adaptive Coding; Reversibility; Side Match Vector Quan-
tization (SMVQ)

1 Introduction

Due to the advance of Internet technology and the con-
venience of transmitting information, data hiding has
become a popular research issue in recent years. Gen-
erally speaking, data hiding schemes can be classified
into three types, i.e., spatial domain, frequency domain
and compression domain based schemes. Data hiding
schemes in the spatial domain embed secret information
by directly modifying pixel values of an image, while
those in the frequency domain first transform an im-
age from the spatial domain to the frequency domain
and then modify coefficient values. However, the com-
pressed domain based schemes embed data into the com-
pressed codes of digital images [9]. Nowadays, many re-
searchers have proposed various information hiding meth-
ods designed for the compression domain, such as block
truncation coding (BTC) [12, 21, 22], discrete wavelet

transform (DWT) [1, 2, 20], discrete cosine transform
(DCT) [6,14,15] and vector quantization (VQ) [8, 10].

Wu and Sun [22] presented a data hiding method in
which each secret bit is embedded into the bitmap of
the BTC compression codes. Lin and Liu [12] proposed
a data hiding method in BTC compressed images using
the order of each pair of gray levels to embed the secret
data. Wang et al. [21] presented a reversible data hid-
ing scheme for images compressed by BTC based on the
correlation among adjacent blocks and prediction-error
expansion. Abdelwahab and Hassaan [1] proposed a data
hiding method based on DWT that hides secret images
inside the cover image using two secret keys. Vijay and
VigneshKumar [20] proposed a method that first employs
DWT to transform the cover image from the spatial do-
main to the frequency domain, and then compresses the
secret data by the Huffman code for embedding. Baby et
al. [2] proposed a DWT-based data hiding scheme using
multiple color images to hide the secret data. Chang et
al. [6] proposed a scheme to hide secret information in the
DCT coefficients. In this scheme, the image is divided into
8 × 8 blocks. If two successive coefficients of the medium-
frequency components are zero, the information is hidden
in each block. Lin [15] proposed a method that embeds
the data using the DCT coefficients and integer mapping.
Lin [14] presented a method that uses histogram shifting
to embed the secret data based on two-dimensional DCT
coefficients.

VQ is another efficient image compression technique
that was proposed by Gray [10]. In recent years, many
researchers have studied data hiding based on VQ [3–5,
7, 8, 11, 13, 16–19, 23, 24]. In 2009, Chang et al. [5, 8] pre-
sented two reversible data hiding schemes based on VQ.
They used joint neighbor coding to hide data [8] and em-
ployed a locally adaptive coding scheme (LAS) to reduce
the cost of the compression code [5]. Also in 2009, Yang
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and Lin [23] proposed a VQ-based reversible information
hiding method in which an indicator for data hiding is de-
fined according to the embedding rule and the correspond-
ing index. To improve the method in Chang and Chou’s
scheme [5], in 2010, Yang and Lin [24] presented a data
hiding scheme that changes the hiding path to further
enhance the effect of LAS. In 2011, Chang et al. [4] pro-
posed an improved method that modifies the embedding
rule to increase the embedding capacity of the method
in [5]. In 2013, Pan et al. [17] presented another VQ-
based method which uses search order coding (SOC) to
compress the indices, and then utilizes the remainder of
the space to embed the secret data. In 2014, Chang and
Nguyen [7] introduced the concept of side match vector
quantization (SMVQ) and proposed a novel data hiding
scheme based on SMVQ that uses fewer indices than [17]
when the same data are embedded. In 2015, Tu and
Wang [19] proposed a method that divides all indices into
two clusters for embedding. Their scheme can reduce ex-
tra bits and increase the hiding capacity. In 2016, Qin
and Hu [18] proposed a method that uses an improved
searching order coding (ISOC) encoded VQ index table.
This method uses a lower bit rate and extends the degree
of the index table to achieve higher hiding capacity.

However, the embedding capacities of the aforemen-
tioned data hiding schemes based on VQ are limited.
Therefore, in this paper, we propose a VQ-based re-
versible data hiding scheme to enhance the embedding
capacity. In the proposed scheme, we combine the SMVQ
and LAS techniques to achieve a high embedding capac-
ity.

The remainder of this paper is divided into five sec-
tions. Section 2 shows two techniques that our proposed
reversible information hiding scheme is based on, i.e., the
SMVQ and LAS methods. Section 3 elaborates our pro-
posed scheme. The detailed experimental description and
comparative analysis are provided in Section 4, and our
conclusions are presented in Section 5.

2 Related Work

In this section, we will introduce VQ, SMVQ and LAS
techniques in Sections 2.1, 2.2 and 2.3, respectively.

2.1 VQ

VQ is a simple, lossy compression technology that is com-
monly used in reversible data hiding schemes [13]. The
algorithm of VQ is divided into three phases. In the code-
book generation phase, some images are used for training
and to generate a codebook using the Linde-Buzo-Gary
(LBG) algorithm, which was proposed by Linde et al. [16]
in 1980. The LBG algorithm is an iterative procedure
in which, first, it divides the image into a set of blocks
with the size of r × r, and each block can be viewed as
an r × r− dimensional vector. Then, 256 blocks are se-
lected randomly from these blocks as the initial codebook,

with these 256 initial vectors as the 256 centroids. The
rest of the blocks are grouped into the 256 centroids, i.e.,
each block is used to find the nearest centroid to form
256 groups. Then, the centroids of these 256 groups are
recalculated to get a new codebook until the codebook
converges, i.e., when the training of the codebook is com-
plete. In the compression phase, the image is divided
into many blocks of the same size containing many pix-
els. These blocks are used to search for similar codewords
in the codebook, and the vector is replaced to form an in-
dex table. These procedures are explained by an example
in Figure 1. In the decompression phase, the index values
are used to extract the corresponding vectors from the
codebook, and the vectors are used to form blocks that
are then merged into an image.

Figure 1: An example of VQ

2.2 SMVQ

As a variant of VQ, SMVQ was proposed by Kim [11]
in 1992. In the encoding procedure, the algorithm di-
vides the cover image into a set of non-overlapping blocks
with the size of c × c. These blocks are divided into two
parts, i.e., seed blocks and residual blocks. The image
blocks in the first row and first column are denoted as
seed blocks, and the rest of blocks are defined as residual
blocks. As shown in Figure 2, the upper block U and
the left block L are used to predict the current block X.

After the prediction, let x1 = (u13+l4)
2 , x2 = u14, x3 =

u15, x4 = u16, x5 = l8, x9 = l12 , and x13 = l16. Then,
x1, x2, x3, x4, x5, x9 and x13 are used to find the most sim-
ilar codeword from the traditional VQ codebook and a
state codebook by using the most similar codewords is
constructed. The codeword in the state codebook with
the minimum Euclidean distance from X is used to en-
code X.

2.3 LAS

LAS is a data compression method that was proposed
by Bentley et al. [3] in 1986. An example of the LAS
is shown in Table 1. Suppose we want to compress the
message “I HAVE A PEN I HAVE AN APPLE”. Then,
by using LAS, we can get the compressed message “1 I, 2
HAVE, 3 A, 4 PEN, 4, 4, 5 AN, 6 APPLE.” The encoding
steps are described as follows. First, list L is empty and
is denoted as L = {}, and the size of list L is S = 0.
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Figure 2: An illustration of SMVQ

We use the list L to encode the input word x. If the
input word x doesn’t belong to L, then we will use S + 1
concatenated with x to encode it and x is inserted at the
front of list L. Otherwise, the input word x is encoded by
S, indicating the position of the input word x in the list
L, and x is moved to the front of list L. The encoding
process is repeated for the next word until all input words
of the message are encoded.

Table 1: An example of LAS

Step Input The list L = {} Output
1 I L = {I} 1 I
2 HAVE L = {HAVE I} 2 HAVE
3 A L = {A HAVE I} 3 A
4 PEN L = {PEN A HAVE I} 4 PEN
5 I L = {I PEN A HAVE} 4
6 HAVE L = {HAVE I PEN A} 4
7 AN L = {AN HAVE I

PEN A}
5 AN

8 APPLE L = {APPLE AN
HAVE I PEN A}

6 APPLE

3 Proposed Scheme

The proposed scheme is elaborated in this section. First,
we propose an improved locally adaptive coding scheme
(NILAS) by using the feature of SMVQ. Then, the embed-
ding procedure and the extraction procedure are shown
in Sub-sections 3.2 and 3.3, respectively.

3.1 NILAS

In the proposed NILAS, first we set the list L as not
empty, and its length as equal to the largest value in the
SMVQ indices. (For example, L = {0, 1, . . . , N − 1}, and
N is equal to the largest value in the SMVQ indices. If
the state codebook size is equal to 256, then the value of
N is 256.) Based on the statistical analysis of different
types of images, we found that the referred frequencies of
all indices in SMVQ index table were close to the value
in the range from zero to nine. Therefore, we divide L

into two parts, i.e., L1 and L2, where L1 = {0, 1, . . . , 9}
and L2 = {10, 11, . . . , N − 1}. The order of L1 remains
unchanged, and the move-to-front method is only applied
in the order of L2. An example is provided in Figure 3.

Figure 3: An example of NILAS

In Figure 3, we show a set of 4 blocks, and two lists L1
and L2. There are four rounds and each round processes a
block. In particular, the gray block represents the current
processing block. In the first round, the index value of the
current block is 5, which belongs to L1. Thus, its order
is unchanged. In the second round, the index value of the
current block is 13. Since it belongs to L2, the move-to-
front scheme is applied and it moves to the head of L2.
Then, in the third round, the index value of the current
block is 20. Since it belongs to L2, it also moves to the
head of L2. Lastly, the index value of the current block is
20, which belongs to L2. Because its order is in the front
of L2, the sequence will be unchanged.

3.2 Embedding Phase

Figure 4 shows the embedding flowchart of our method.
I represents a cover image sized H × W . Secret data
S is a bit stream, and sl represents the bit value in S,
where sl = 1 or 0, l = 0, 1, . . . ,M , and M is the maximum
embedding capacity in bits to the cover image I.

Input: A cover image I sized H×W , codebook CB, and
secret data S.

Output: The stego code stream CS.

Step 1: Encode I utilizing the SMVQ algorithm to ob-
tain the SMVQ index table, IT . Vi is the value of
each index in index table IT , where i = 0, 1, . . . , H

4 ×
W
4 − 1. Set the L = {0, 1, . . . , N − 1} and di-

vide L into two parts, L1 = {0, 1, . . . , 9} and L2 =
{10, 11, . . . , N − 1}, where N is the size of codebook
CB. Apply the NILAS method to IT, L1 and L2.

Step 2: Read the current Vi in IT . If the position of the
current Vi is in the first row or the first column, i is
increased by 1 and read the next Vi.
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Figure 4: Flowchart of the embedding phase

Step 3: Check the value of Vi. If Vi ≤ 1, go to Step
4. If 2 ≤ Vi ≤ 9, go to Step 5. Otherwise, go to
Step 6.

Step 4: Add 00 to the head of the value of Vi as an indi-
cator. That is, the first two bits are indicator bits and
the third bit is the value of Vi. The remaining n− 3
bits are used to embed the next sl,l+1,...,l+(n−3)−1
from secret data S, where n = log2bNc. They will
be encoded by 00‖Vi‖sl,l+1,··· ,l+(n−3)−1, where ‖ rep-
resents the concatenation operation. Go to Step 8.

Step 5: Add 01 to the front as an indicator. The next
three bits are the value of Vi−2 in binary form. And
the remaining n− 5 bits are used to embed the next
sl,l+1,...,l+(n−5)−1 from secret data S. They will be
encoded by 01‖Vi‖sl,l+1,...,l+(n−5)−1. Go to Step 8.

Step 6: Check the position pi of current Vi in L2, where
pi is the position of Vi in L2. If 8 ≤ pi ≤ N − 11,
go to Step 7. Otherwise, if 0 ≤ pi ≤ 7, add 10 to
the front as an indicator. Then, use three bits to en-
code the position pi in binary form. The next n− 5
bits are used to embed the next sl,l+1,...,l+(n−5)−1
from secret data S. They will be encoded by
10‖pi‖sl,l+1,...,l+(n−5)−1. Then, move Vi to the front
of L2. Go to Step 8.

Step 7: Add 11 to the front as an indicator.. Then, en-
code the position pi in binary form with n bits. They
will be encoded by 11‖pi. Then, move Vi to the front
of L2.

Step 8: Repeat Steps 2 through 7 until all Vi’s have
been processed.

Step 9: Output the stego compression code CS.

After all of the steps have been completed, we get the
stego compression code CS. To further clarify our em-
bedding phase, an example of the embedding process is
provided. In Figure 5(a), we assume that our SMVQ in-
dex table, IT , has the size of 3 × 3. Figures 5(b) and
(c) show the secret data S that we want to embed in the
SMVQ index table, IT , and the result after embedding,
respectively.

Figure 5: An example of the data embedding phase: (a)
SMVQ index table IT ; (b) Secret data S; (c) Stego com-
pression code CS

3.3 Extraction Phase

The extraction phase, as shown in Figure 6, is explained in
this section. Because the indicator of two bits has been in-
serted during data embedding phase, a decoder can choose
the corresponding extraction operation according to the
indicator. If the first bit of the current processing stego
index V ′i , i.e., the first bit of the indicator, is 0, the cur-
rent processing stego index V ′i is in L1. Otherwise, it is in
L2. Then, according to the second bit of indicator, it de-
termines the extraction and recovery method. Moreover,
if the current processing stego index V ′i is in L2, it must
be moved to the front of L2 after extracting and recovery.

Input: Codebook CB and the stego compression code
CS.

Output: The secret data S, reconstructed SMVQ index
table IT , and cover image I.

Step 1: Check the position of current processing stego
index V ′i . If the position is at the first row or the
first column, i is increased by 1 and read the next
current processing stego index V ′i .

Step 2: Read the first bit of current processing stego in-
dex V ′i . if it is 0, go to Step 3. Otherwise, go to
Step 5.
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Figure 6: Flowchart of the data extraction phase

Step 3: Check the value of the second bit of current pro-
cessing stego index V ′i . If it is 0, use the value of
the third bit of the current processing stego index
V ′i to recover the index Vi. Then, the remainder of
n − 3 bits, i.e., sl,l+1,...,l+(n−3)−1, will be extracted
and appended to the secret data S. Go to Step 7.
Otherwise, go to Step 4.

Step 4: Check the value of the second bit of current pro-
cessing stego index V ′i . If it is 1, the next 3 bits are
converted into decimal value to recover the index Vi.
The remainder, n−5 bits, i.e., sl,l+1,...,l+(n−5)−1, will
be extracted and appended to the secret data S. Go
to Step 7.

Step 5: Get the second bit of current processing stego
index V ′i . If it is equal to 0, the next 3 bits will be
transformed into decimal value p′i. Use the corre-
sponding value of p′i in L2 to recover the index Vi.
Extract the remaining n − 5 bits, sl,l+1,...,l+(n−5)−1,
and insert them into secret data S. Then, move Vi

to the front of L2. Go to Step 7. Otherwise, go to
Step 6.

Step 6: Convert the remaining n bits into decimal value
p′i. Utilize p′i

′
corresponding value in L2 to recover

the index Vi and move Vi to the front of L2.

Step 7: Repeat Steps 1 through 6 until all bits in the
stego compression code have been read.

Step 8: Obtain secret data S and the SMVQ index table
IT .

After all of the steps have been completed, we can ob-
tain the secret data S and the reconstructed SMVQ index

table IT . To further clarify our extraction and recovery
phase, we present an example of the extracting process.
Figures 7(a), (b) and (c) show the stego code stream, the
reconstructed SMVQ index table, IT , and secret data S,
that we can extract the reconstructed SMVQ index table
IT and secret data S from the stego code stream, respec-
tively.

Figure 7: An example of the data extraction phase: (a)
Stego code stream; (b) Reconstructed SMVQ index table
IT ; (c) Secret data S

4 Simulation and Analysis

We chose the software MATLAB R2016 to conduct the
experiments, and used a computer with an Intel-Core i7-
6700 3.40GHz and 32GB RAM. The operating system was
the 64-bit Windows 10 Pro. To verify the efficiency of
the proposed scheme, several experiments are performed.
Six 512 × 512-sized, 8-bit grayscale images were used as
the test images. These images were “Lena”, “Peppers”,
“F-16”, “Toys”, “Girl” and “Sailboat”, as shown in Fig-
ure 8. These images were smooth images, which have
been used extensively in image processing. Rough images
would generate a negative value of payload, so we used
the smooth images to keep the value positive, the bit rate
lower, and the embedding rate higher. The images were
partitioned into non-overlapping 4 × 4 blocks, and the
codebook with a size of 256 was trained using the LBG
algorithm. In our experiments, the secret data S were
in binary form and the data were generated randomly by
using a pseudo-random number generator and encrypted
by conventional methods.

4.1 Experimental Results

In these experiments, the embedding efficiency was eval-
uated by the payload and the embedding rate, and the
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Figure 8: Test images: (a) Lena; (b) Peppers; (c) F-16;
(d) Toys; (e) Girl; (f) Sailboat

compression efficiency was evaluated by the bit rate. In
order to show that our proposed scheme can hide more
secret data than other methods, payload was defined as
the number of secret bits that can be hidden when the
bit rate is fixed at 0.5, i.e., the larger the payload is, the
better the result is, as shown in Equation (1). The bit
rate indicates the compression rate of the cover image by
using bits per pixel (bpp). So, the smaller the bit rate
is, the greater the compression efficiency is, as defined in
Equation (2). The embedding rate is a ratio of the size of
embedded secret data to the size of code stream, and it
denotes whether the size of the code stream is fixed. The
higher the embedding rate is, the more secret bits can be
embedded, as defined in Equation (3).

Payload = Capacity − (0.5− bit rate)

×Size of original image. (1)

Bit rate =
Size of code stream

Size of original image
. (2)

Embedding rate =
Size of embedded secret data

Size of code stream

×100%. (3)

To investigate the superiority of our proposed scheme,
we compared it with some VQ-compressed-based data
hiding methods, and the compressed code was used to
achieve compression and transformation [4,5,7,18,19,23,
24]. Because the capacities of other methods are not
high, we proposed a high capacity method combined with
SMVQ and NILAS, and, even though the bit rates were
identical, our method still provided the highest capacity.
Figure 9, Table 2, Table 3 and Figure 10 compare our pro-
posed scheme’s hiding capacity, payload, embedding rate
and bit rate with those of Chang et al.’s schemes [4,5,7],
Yang and Lin’s schemes [23,24], Qin and Hu’s scheme [18],
and Tu and Wang’s scheme [19].

As shown in Table 2 and Figure 9, our experimental re-
sults indicated that the capacity of our method was higher
than that of all of the other methods. We achieved this

Figure 9: Comparisons of capacity (bits) between our
method and other methods

result because we used the frequency of the occurrences
of the SMVQ indices and clever application of the indices
to hide more secret bits. The capacity of our method was
still greater than that of other methods even under the
same bit rate. The payload is defined that, when the value
of bit rate is 0.5bpp, the number of secret data that can
be hidden. When the sizes of code stream of all schemes
are identical, we can get the value of payload according
to the total number of the embedded secret bits. The ex-
perimental results showed that the capacity and payload
of our scheme were much better than the other VQ-based
methods.

Table 3 compares the embedding rate of our method
and other methods. The higher the embedding rate was,
the more secret bits could be hidden. It means that the
embedding rate depends on the code stream. It can be
seen that our proposed method is better than the other
methods irrespective of how many code streams are em-
bedded.

Figure 10: Comparisons of the bit rate (bpp) of our
method with other methods

Figure 10 compares the bit rate of our method with
other methods. According to Equation (2), we can know
that the bit rate represents the compression rate. If the
value of bit rate is low, the compression rate is better.
Although compression rate of some methods are better
than our method, the capacity of our method is better
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Table 2: Comparison of the payload (bits) of our method and other methods

Image [5] [24] [4] [7] [19] [18] [23] Ours
Lena 4360 33982 850 43442 8738 34692 7521 49794
Peppers 11166 31089 10277 47700 11403 33940 9362 52614
F-16 23763 39754 42274 45421 9426 34555 3546 53786
Toys 31086 55728 58244 51191 11852 46770 6280 61025
Girl 9077 25068 6617 41147 10878 23449 10264 44906
Sailboat 11951 20339 10536 40632 11141 33684 2627 45215
average 8604 21740 7655 37404 8752 34558 2758 42244

Table 3: Comparison of the embedding rate (bpp) of our method and other methods

Image [5] [24] [4] [7] [19] [18] [23] Ours
Lena 0.113 0.143 0.145 0.289 0.118 0.116 0.111 0.404
Peppers 0.119 0.139 0.154 0.309 0.120 0.116 0.112 0.421
F-16 0.131 0.150 0.199 0.305 0.119 0.117 0.102 0.433
Toys 0.139 0.176 0.233 0.335 0.121 0.147 0.107 0.480
Girl 0.117 0.132 0.151 0.270 0.120 0.096 0.114 0.372
Sailboat 0.119 0.127 0.155 0.274 0.120 0.115 0.101 0.379
average 0.118 0.133 0.159 0.259 0.118 0.118 0.102 0.363

under the same bit rate. That is the reason why the
payload is more important to represent the embedding
effect of the data hiding scheme.

Figure 11: Histogram of the frequency of the occurrences
of SMVQ indices

Figure 11 shows that we obtained the highest frequency
of SMVQ index occurrences, i.e., from 0 to 17. Therefore,
we embedded most of the secret data in indices 0 through
9, and, after index 10, we used NILAS to improve the
embedding capacity. Then, an indicator was defined and
used to encode the indices and embed the secret data as
much as possible in indices 0 or 1. That is to say, for
indices 0 and 1, we can hide 5 bits; for indices 2 to 9 and
10 to 17, we can hide 3 bits. Then, in order to improve
the embedding capacity after index 10, we used improved
adaptive coding to increase the embedding capacity. This
technology can use the feature of recurring occurrences of
SMVQ indices to increase the embedding capacity. If the

test image is smooth, we can hide more bits. Therefore,
the experimental results showed that more secret data
were embedded while the bit rate was the same, providing
a higher capacity than schemes in the previous literature.

4.2 Discussions

In Chang and Wu’s method [8], each index only can be
embedded with one secret bit, but their method requires
more bits to present the index in some cases. So, the
payload of their method is lower than that of our method.
In Chang and Chou’s method [5], the largest capacity of
each index is 1, and some indices cannot be embedded
with secret bits if the index is not in the list L. Although
their method can reduce the bit rate, the payload of their
method is lower. Yang and Lin’s method [24] improved
the method in [5] by changing the run path of the normal
VQ encoder. Although their bit rate is lower than Chang
and Chou’s method [5], their payload is still lower than
that of our proposed method. The improved run path and
the normal path are shown in Figure 12.

In Chang et al.’s method [4], although two secret bits
can be embedded in some cases, it still requires more
bits to represent the index. The largest capacity of their
method is two, which is lower than that of our method.
In Chang and Nguyen’s method [7], the largest capacity
of the indices is 3, while it is 5 for our proposed method.
In their method, although the indices belong to the cases
that can embed secret bits, the indices only need to use
7 bits to represent the index. But the payload of their
method is lower than that of our proposed method. In
Tu and Wang’s method [19], although they used trained
images to obtain a better distribution of codewords, clus-
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ter 2 and cluster 3 had to embed an extra 2 bits; so the
payload of our proposed method was better than their
method. In Qin and Hu’s method [18], an improved search
order coding-encoded VQ index table was used that could
effectively embed secret data. However, their bit rate and
payload were lower than those of our proposed method.
In Yang and Lin’s method [23], they resorted the VQ
codebook according to the referred frequency of each in-
dex. , Their method can be mapped directly to the other
clusters though the index is in the first cluster, thereby
reducing the presented bits of the index. If the index
is not in the first cluster, their method must use more
bits to represent the index. The largest capacity of the
indices in their method is 2, which is lower than that of
our method. So our method is better than Yang and Lin’s
method [23]. However, our proposed method utilized only
one bit to represent the indices and hided five secret bits
most frequently, and three secret bits can be hidden com-
bined with NILAS and SMVQ. Therefore, our proposed
method achieved a higher capacity than any of the other
methods while simultaneously providing a greater embed-
ding rate and payload than the other methods.

Figure 12: Run paths: (a) Improved path in Yang and
Lin’s method; (b) Normal VQ encoder path

5 Conclusions

In this paper, we proposed a reversible data hiding
method for SMVQ indices. In the proposed method, using
SMVQ indices can embed five bits or three bits at a time.
In order to increase the embedding capacity, we combined
SMVQ with improved locally adaptive coding. The exper-
imental results showed that our proposed method effec-
tively improved the capacity and outperformed state-of-
the-art VQ-based data hiding schemes. In the future, we
will focus on studying a simpler technique than locally
adaptive coding to realize data hiding for compressed im-
ages while keeping high embedding capacity.
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