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Abstract

In this paper, we propose a novel framework for reversible
data hiding schemes in encrypted images inspired by the
privacy needs of outsourcing data in the cloud service.
Our scheme allows the image owner and the data provider
to send encrypted images and encrypted data to the data
processor separately; then, the data processor can do the
embedding without knowing any side information; the re-
ceiver would obtain the marked image after decryption
and could extract the hidden data and completely recover
the original image. By exploiting the Paillier homomor-
phism and the equivalence of the modular approach, the
high capacity of at least 1 bpp and even exceeding 1016
bpp can be achieved at one-time embedding. Then, we
extended the first scheme to provide a multi-receiver, re-
versible data hiding scheme by combining our approach
with the(t, w)-threshold secret sharing homomorphism. It
is suitable for the application of distributed storage with
fault tolerance or the protection of patients’ privacy when
they are consulting with multiple doctors.

Keywords: Homomorphic Encryption; Reversible Data
Hiding; Secret Sharing

1 Introduction

Reversible data hiding (RDH) is a technique that embeds
secret data into the cover medium in a reversible manner.
In the RDH scheme, the embedded data can be extracted
correctly, and, also, the cover medium can be recovered
perfectly from the marked data. Prior studies have pro-
posed several approaches for RDH, such as difference ex-
pansion [7, 11], lossless compression [21], histogram shift-
ing [15], and prediction error expansion [4]. Motivated
by the need to preserve privacy in cloud computing and
other applications for securely storing or sharing multi-
media files with others, the combination of data hiding

and encryption has received increasing attention. RDH
for encrypted images enables cloud servers to reversibly
embed data into images, but no knowledge about image
content is available.

The first encrypted image-based RDH scheme was pro-
posed by Puech et al. [20], who used the bit substitu-
tion method to embed one bit into a block of pixels en-
crypted by Advanced Encryption Standard. The extrac-
tion process is just simple read, and the decryption pro-
cess is done by analyzing the local standard deviation. In
Zhang’s scheme [30], the bits of each pixel are encrypted
by exclusive-or with pseudo-random bits, and then, the
encrypted image is partitioned into blocks. An additional
bit is embedded into each block one by one by flipping
a portion of the least significant bits (LSBs). The ex-
traction and decryption can be done by examining the
fluctuation in natural image blocks. Then, the higher em-
bedding capacity with a lower bit error rate is achieved by
defining different evaluation functions based on the spa-
tial correlation of blocks [22], by using a different flipping
strategy [12], or by using prediction error [28].

Qin and Zhang [22] proposed the flipped pixels’ elabo-
rate selection method to improve the visual effect of the
decrypted. Zhou et al. [32] proposed a scheme with a
high embedding capacity by utilizing a public-key modu-
lation mechanism without sharing the secret data hiding
key and a two-class SVM classifier for decoding. In ad-
dition, Ma et al. [16] reserved room before encryption to
obtain large payloads up to 0.5 bit per pixel, and the per-
formance was improved further by considering patch-level
sparse representation [6].

However, all of the images are encrypted with symmet-
ric cryptosystem in [1,6,12,16,20,22,28,30,32], making it
difficult for them to be processed directly in the encryp-
tion domain. This disadvantage can be overcome by intro-
ducing the homomorphic encryption. In order to process
the encrypted data directly, the special functions called
“privacy homomorphism” [23] must be found. In other
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words, after the ciphertext is processed, an encrypted re-
sult is generated that matches the desired plain-text result
after decryption. Since the encrypted image can be pro-
cessed directly, the privacy and confidentiality of the user
can be enhanced. Hence, conducting RDH in the homo-
morphic encryption domain can enrich its availability in
cloud computing and other similar scenarios.

Recently, an additive homomorphic Paillier
cryptosystem-based RDH scheme [19] also has been
investigated [9, 14, 27, 31]. First, Chen et al. [9] designed
the RDH with the public-key cryptosystem by dividing
each pixel value into two portions, i.e., the seven most
significant bits (MSBs) and one LSB, and then they
performed the encryption using the Paillier cryptosystem.
Then, two encrypted LSBs of each encrypted pixel pair
are modified to reversibly embed one additional bit
following the homomorphism.

Zhang et al. [31] used histogram shrink before encryp-
tion and used error-correction codes to expand the addi-
tional data to achieve reversibility. Wu et al. [27] pre-
sented two high-capacity RDH schemes, one by doing
value expansion on the encrypted pixel values and an-
other by taking advantage of the self-blinding feature of
the Paillier encryption. Both embedding capacities are
more than 1 bpp. Li et al. [14] used histogram shifting
in encrypted images to embed bits. Compared with the
image RDH algorithms with symmetric cryptography, the
proposed algorithms are more suitable for the cloud envi-
ronment without reducing the security level.

The interpolation-based RDH is also an important
work [1, 10, 13, 24]. This paper mainly uses polynomial
interpolation technique to realize secret sharing and then
solve the RDH problem for multiple receivers.

The (t, w) secret sharing scheme was developed by
Shamir [25] based on polynomial interpolation, and it was
developed independently by Blakley [5] in 1979 based on
geometry. The basic idea is to protect the privacy of infor-
mation by distribution. In a (t, w) secret sharing scheme,
a dealer divides a secret into w shares and the secret is
shared among a set of w shareholders, in such a way that
any t or greater shareholders can reconstruct the secret,
while fewer than t shareholders cannot.

There are other types of secret sharing, e.g., McEliece-
Sarwate’s scheme [17], which is based on Reed-Solomon
codes, and Mignotte’s scheme [18] and Asmuth-Bloom’s
scheme [2], which are based on the Chinese remainder
theorem (CRT). In 1987, Benaloh [3] first proposed the
concept of secret sharing homomorphism, which allows
multiple secrets to be combined by direct computation of
shares. This property reduces the need for trust among
the agents. Some secret sharing-based, data-hiding algo-
rithms have been presented in literature [8,26]. Recently,
Wu et al. [29] introduced a model of RDH in encryption
domain-based secret sharing. The image content owner
encrypts the original image into several shares and sends
them to the service provider. The servive provider is re-
sponsible for storing and reversibly hiding data into en-
crypted shares, extracting the hidden data, and sending

the encrypted shares to the authenticated receiver who
can recover the desired image. This model can be applied
to the scenario in which extraction is required for image
decryption.

RDH in the encrypted domain is suitable for the sce-
nario in which the image owner and the data hider are
not the same person. The image owner would encrypt
the medium before transmission, and the data hider can
append some additional message into the cipher without
knowing the plaintext image. Then, the receiver can re-
cover the original image and extract the embedded data
losslessly.

In this paper, we address the issue concerning the sep-
aration of the roles of the data provider and the data pro-
cessor, and both images and data are encrypted before
transmission to the data processor. The data processor
does not know anything about the image or the hidden
data but can integrate them to a new cipher in a way that
the receiver can perfectly decrypt the image and extract
the data. For example, in electronic-healthcare, medical
images and electronic patient records are generated by
two different departments, and the information should be
encrypted before it is transmitted to the database admin-
istrator to protect the patient’s privacy.

The database administrator embeds the patient’s en-
crypted record into the corresponding encrypted image
to achieve privacy homomorphism. Then, when the doc-
tor receives the marked encrypted medical image, he or
she can get the original medical image and data. Our
scheme is suitable for the scenario in which image de-
cryption is required for extraction. Also, considering the
application scenario after consultation with several doc-
tors, we propose a (t, w) multi-receiver RDH scheme us-
ing secret sharing homomorphism to achieve the goal that
any t receivers can collaborate with each other by using
their shadows to reconstruct the original image and ex-
tract the hidden data, which cannot be done unless t or
more receivers cooperate.

In short, there are two contributions of our work:

1) Proprose a RDH scheme suitable for data outsourc-
ing, in which the roles of data owner and data hider
are separated.

2) Extend the RDH scheme for multi-recever case, com-
bined with the secret sharing technology.

The rest of this paper is organized as follows. Section 2
gives some preliminaries. In Section 3, we review the re-
lated works proposed by Chen et al. [27] and by Li et
al. [14]. In Section 4, we propose a high-capacity RDH
scheme based on the Paillier cryptosystem. In Section 5,
we present another scheme for sharing the marked en-
crypted image among multiple receivers who have the
same decryption key. The performance analysis and the
experimental results are shown in Section 6, and our con-
clusions are made in Section 7.
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Table 1: Notations

N RSA modulus, N = p·q, where p and
q are two large primes, while (p −
1)/2 and (q − 1)/2 are also primes

ZN Integers modulo N , ZN =
{0, 1, . . . , N − 1}

Z∗N Multiplicative group of ZN , Z∗N =
{r ∈ ZN |gcd(r,N) = 1}

ϕ(·) Euler’s phi function, ϕ(N) = (p −
1)(q − 1)

λ(·) Carmichael’s function, λ(N) =
lcm(ϕ(p), ϕ(q))

L(·) L(u) = (u − 1)/N,∀u ∈ {u <
N2|u = 1modN}

ePK Encryption algorithm with the re-
ceiver’s public key PK

dSK Decryption algorithm with the re-
ceiver’s private key SK

b·c Floor function

2 Preliminaries

Two important techniques were used to design our pro-
posed scheme, i.e., homomorphic cryptosystem and the
secret sharing scheme. The former allows direct pro-
cessing in the encryption domain to reach privacy homo-
morphism [23], that is, an encrypted result will gener-
ate a decryption that matches the desired result without
knowing the decryption key. Although Goldwasser-Micali
scheme is the classical homomorphic encryption, it only
supports additive homomorphism on Z2 domain, so we
finally choose Paillier system. The latter can decompose
one secret into shadows that are distributed among share-
holders, such that the pooled shadows of specific subsets
of users allow the reconstruction of the original secret.
To offer sufficient background knowledge of the proposed
scheme, these techniques are illustrated as follows. (The
notations are listed in Table 1).

2.1 Paillier Homomorphic Cryptosystem

In 1999, Paillier proposed a probabilistic public-key cryp-
tosystem [19] based on the composite residuosity class
problem. Paillier’s encryption scheme with fast decryp-
tion can be described as follows.

2.1.1 Key Generation Phase

Choose an RSA modulus N = p · q, where p and q are
large primes. Compute Carmichael’s function taken on
N , i.e., λ = λ(N) = lcm(p − 1, q − 1), and choose an
element, g ∈ Z∗N2 , of an order divisible by αN for some
α, where 1 ≤ α ≤ λ.

Now, the public key is PK = (N, g), and the secret
key is SK = α.

2.1.2 Encryption Phase

The plaintext space is ZN . Given a plaintext M < N ,
choose r ∈ Z∗N at random, and let the ciphertext be:

C = ePK(M) = gMrN modN2. (1)

2.1.3 Decryption Phase

The plaintext space is ZN2 . Given a ciphertext, C < N2,
get the plaintext:

M = dSK(C) =
L(CαmodN2)

L(gαmodN2)
modN, (2)

where L(µ) = (µ− 1)/N.
Based on an appropriate complexity assumption, this

system is semantically secure, and it is a trivially additive
homomorphism over ZN , which leads to other identities
as we require here:

dSK(ePK(M1) · ePK(M2)modN2) = (M1 +M2)modN, (3)

dSK((ePK(M1))
k
modN2) = (kM1)modN, (4)

dSK(ePK(M1) · gM2modN2) = (M1 +M2)modN, (5)

where M1,M2 ∈ ZN , k ∈ N.

2.2 Shamir’s (t, w)-Threshold Secret
Sharing

In 1979, Shamir developed a (t, w)-threshold secret shar-
ing scheme [25] based on polynomial interpolation and the
fact that a univariate polynomial y = f(x) of degree t−1
is uniquely defined by t points, (xi, yi) with distinct xi,
for i = 1, 2, · · · , t. The scheme can decompose one secret
into w shadows, with t shadows required to recover the
original secret, where t ≤ w, but no group of t−1 shadows
can do so. It consists of the following two phases:

2.2.1 Shadow Distribution Phase

The trusted dealer starts with a secret integer, S ≥ 0, that
is to be distributed among w users. Thus, the dealer:

1) Chooses a prime P > max(w, S).

2) Randomly selects t − 1 independent coefficients
a1, a2, · · · , a(t − 1), 0 ≤ ai ≤ P − 1, to constitute
a random polynomial with t− 1 degree over ZP ,

f(x) = S +
∑t−1
j=1 ajx

jmodP.

3) Chooses w distinct non-zero elements of ZP , denoted
as xi, 1 ≤ i ≤ w.

4) Computes si = f(xi)modP, 1 ≤ i ≤ w, and securely
transfers the shadow, si, to user Ui, along with the
public index xi.
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2.2.2 Secret Reconstruction Phase

Assume that users Ui1 , Ui2 , · · · , Uit pool their shadows to
compute the secret S. Their shadows provide t distinct
points (xij , sij )′s, 1 ≤ j ≤ t, which allow the computation
of the coefficients of f(x) by Lagrange interpolation. The
secret, S, can be expressed as:

S = f(0) =
∑t
j=1 sijcijmodP,

where cij =
∏

1≤k≤t,k 6=j
xij

xik
−xij

modP, 1 ≤ j ≤ t.

3 Related Works

By utilizing the redundancy of value representation in
the Paillier cryptosystem, Wu et al. [27] proposed an en-
crypted, signal-based RDH for the scenario in which the
extraction occurs after decryption. To embed a bit b, a
pixel m is mapped to 2m+ b, i.e., ePK(m) is changed to
another encrypted value, ePK(2m+ b).

There are three parties, i.e., an image owner, a data-
hider, and a receiver, corresponding to the three phases.
The algorithm runs as follows. In the image encryption
phase, for a pixel m, the image owner uses the Paillier
cryptosystem to generate the ciphertext, c = ePK(m). In
the data embedding phase, to embed a bit b1, the data-
hider sequentially computes:

c̄ = (c · c)modN2

and

c′ =

{
(c̄ · ePK(1))modN2 if b1 = 1

c̄ if b1 = 0
,

which implies that c′ = ePK(2m+ b1). When the Paillier
modulus N is chosen to be sufficiently large to ensure
that, in data extraction phase, 2m + b1 < N , i.e. 2m +
b1modN = 2m + b1, the receiver can obtain the correct
values of the original pixel, m, and the hidden bit, b1, by
computing:

m = bdSK(c′)/2c

and

b1 = dSK(c′)− 2m.

The embedding of multiple bits can be accomplished it-
eratively. For example, if the second bit, b2, is to be
embedded into the encrypted value of the pixel m, based
on the encrypted value, c′, of the pixel with hidden bit,
b1, the data-hider sequentially computes:

c̄′ = (c′ · c′)modN2

and

c′′ =

{
(c̄′ · ePK(1))modN2 if b2 = 1

c̄′ if b2 = 0
,

which implies that c′′ = ePK(2(2m+ b1) + b2).

Therefore, if one wants the embedding rate to reach µ
bpp, µ iterations are required, and some room must be
vacated for recording associated information, such as the
number of iterations.

Similarly, Li et al. [14] encrypted the image pixel using
the Paillier cryptosystem, and then they handled data
embedding from the perspective of histogram shifting in
the plain domain. First, for embedding one bit per pixel,
the histogram of the host image is expanded by a factor
of two, i.e., from [0, 255] to [0, 511], so that the zero
bins in the expanded histogram with odd numbers are
vacated. Second, for embedding a bit, b, into the pixel,
m, if the embedded bit b is 1, the corresponding unit
of 2m in the expanded histogram shifts right by one step.
The value 2m is processed in the plaintext image, the
encryption of which can be obtained by computing c̄ =
(ePK(m))

2
modN2, and the encrypted value of the pixel

m with the hidden bit is obtained by computing c′ = (c̄ ·
gb)modN2. According to the additive homomorphism, c′

is a valid encryption of 2m+b, so reversibility is achieved.
When one wants the embedding rate to be 1016 bits, the
Paillier modulus N must be at least 1024 bits, and the
expansion ratio of the pixel is 21016.Thus, the calculation

in encryption domain is c̄ = (ePK(m))
21016

modN2.

4 A Reversible Data Hiding
Scheme with Single-Receiver

In this section, we present an RDH scheme using the
Paillier cryptosystem for a single receiver. Figure 1(b)
shows the flowchart of the process. There are five par-
ties in the scheme, i.e., a trusted dealer, an image owner,
a data provider, a data processor, and a receiver. The
trusted dealer generates the Paillier cryptosystem’s pub-
lic/private key pair, secretly sends a private key to the
receiver, and broadcasts the public key to everyone. The
image owner and the data provider use the Paillier cryp-
tosystem with the receiver’s public key to encrypt each
pixel of the host image and the initial data, respectively,
and the data provider, who does not know the host image,
can modify the pixel values of the ciphertext to embed
some additional data into the encrypted image. After
receiving the encrypted image with the additional data
embedded, the receiver, who has the private key of the
cryptosystem, can execute decryption directly to get a
marked image and then recover the hidden data and the
host image perfectly.

4.1 Initialization Phase

When inputting the payload parameter, K, choose an
RSA modulus, N ,that is greater than K, such that K ′ =
bN/Kc > 255. Then the image space is {0, 1, · · · ,K ′−1},
and the data space is {0, 1, · · · ,K − 1}. Choose an ele-
ment, g ∈ Z∗N2 , that has an order divisible by αN for
some 1 ≤ α ≤ λ(N).
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Figure 1: Comparison between the existing scheme and the proposed RDH scheme

The public key PK = (N,K, g) is broadcasted, and
the secret key SK = α is sent secretly to the receiver.

4.2 Image Encryption Phase

Given the image m < K ′, the image owner uses the re-
ceiver’s public key PK to compute the ciphertext from
Equation (1):

c1 = ePK(m) = (gmrN1 )modN2,

where r1 ∈ Z∗N is chosen randomly.

Then, the image owner sends the ciphertext, c1, with
the receiver’s public key, PK, to the data processor.

4.3 Data Encryption phase

Given the data b < K, the data owner uses the receiver’s
public key, PK, to compute the ciphertext from Equa-
tion (1):

c2 = ePK(b) = (gbrN2 )modN2,

where r2 ∈ Z∗N is chosen randomly.

Then, the image owner sends the ciphertext, c2, with
the receiver’s public key, PK, to the data processor.

4.4 Data Hiding Phase

To embed the hidden data, c2 < K, into the ciphertext,
c1, which is encrypted by the reciever’s public key, PK,
the data processor computes:

c = (c1 · ck
′

2 )modN2,

and sends the cipher, c, to the receiver.

4.5 Decryption and Extraction Phase

Given the cipher, c, the receiver first decrypts c with the
secret key, SK, to get the marked message from Equa-
tion (2) as

m′ = dSK(c) =
L(CαmodN2)

L(gαmodN2)
modN. (6)

Then the host image can be obtained by:

m = m′modK ′,

and the hidden data can be extracted by:

b = bm′/K ′c.

Here we illustrate a simple numerical examples. Sup-
pose the public key PK = (N,K, g) = (15, 3, 16) and
the secret key SK = α = 4. Given the image pixel
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m = 3, the image owner can encrypt it with a random
number r1 = 2 as: c1 = 163 × 215 mod 152 = 53. Mean-
while, the data owner can encrypt the data b = 1 with
a random number r2 = 4 to obtain the encrypted data
c2 = 161 × 315 mod 152 = 34. While the data hider re-
ceive the encrypted image and the encrypted data, the
hiding is done as c = 53× 34b15/3c mod 152 = 122. When
the receiver gets the cipher c, the marked message m′ =
(1224 mod 152−1)/15
(164 mod 152−1)/15 mod 15 = 8 is obtained first, then the

host image pixel can be recovered as m = 8 mod 5 = 3,
the hidden data can be extracted as b = b8/5c = 1.

5 A Multi-Receiver Reversible
Data Hiding Scheme

In this section, a reversible data hiding scheme is proposed
for sharing data among multiple receivers by combining
the homomorphism property of Paillier encryption and
polynomial interpolation. The aim of this scheme is to
distribute both the image and the hidden data into mul-
tiple shadows prior to outsourcing them to the database
center. This is necessary because the processing center
will embed every data shadow into the responding im-
age shadow to conduct a marked encrypted shadow for w
receivers so that more than t receivers who collect their
decrypted shadows can recover the host image and the
plain data.

The proposed second scheme consists of five
phases, i.e., the initialization phase, the image par-
tition and encryption phase, the data partition and
encryption phase, the data embedding phase, and the
decryption and reconstruction phase.

5.1 Initialization Phase

When the payload parameter, K, is input, the trusted
dealer chooses an RSA modulus N > K, such that K ′ =
bN/Kc > 255. Then, the dealer selects a prime, P >
max(w,K,K ′) and chooses an element, g ∈ Z∗N2 , that has
an order divisible by αN for some 1 ≤ α ≤ λ(N). Choose
w non-zero elements, x1, x2, · · · , xw ∈ ZP , randomly, and
then xi is distributed to the receiver Ri as her or his index.

The public key, PK = (w,N,K, g), is broadcasted,
while the secret key SK = α is sent secretly to the re-
ceivers.

5.2 Image Partition and Encryption
Phase

1) Given the image m < K ′, the image owner
randomly selects t − 1, independent coefficients,
a11, a12, · · · , a1,t−1 ∈ ZP , that define the random
polynomial over ZP ,

f1(x) =
(
m+

∑t−1
j=1 a1jx

j
)
modP.

2) The image owner computes s1i = f1(xi)modP, 1 ≤
i ≤ w, and securely transfers the shadow, s1i, to
receiver Ri.

3) The image owner uses the receiver’s public key, PK,
to compute the cipher shadows by the Paillier cryp-
tosystem,

c1i = ePK(s1i), i = 1, 2, · · · , w.

Then, the image owner sends the cipher shadow sequence,
(c11, c12, · · · , c1w), to the data processor.

5.3 Data Partition and Encryption Phase

1) Given the hidden data b < K, the data provider
randomly selects t − 1 independent coefficients,
a21, a22, · · · , a2,t−1 ∈ ZP , that define the random
polynomial over ZP ,

f2(x) =
(
b+

∑t−1
j=1 a2jx

j
)
modP. (7)

2) The data provider computes s2i = f2(xi)modP, 1 ≤
i ≤ w, and securely transfers the shadow s2i to re-
ceiver Ri.

3) The receiver uses her or his public key, PK, to com-
pute the cipher shadows by the Paillier cryptosystem,

c2i = ePK(s2i), i = 1, 2, · · · , w. (8)

Then, the receiver sends the cipher shadow sequence
(c21, c22, · · · , c2w) to the data processor.

5.4 Data Embedding Phase

After obtaining the two cipher shadow sequences,
(c11, c12, · · · , c1w) and (c21, c22, · · · , c2w), the data proces-
sor computes:

ci = (c1i · (c2i)K
′
)modN2, i = 1, 2, · · · , w,

and then distributes the marked cipher shadow, ci, to the
receivers Ri, respectively, for 1 ≤ i ≤ w.

5.5 Decryption and Reconstruction
Phase

Assume that at least t receivers, Ri1 , Ri2 , · · · , Rit , pool
their shadows and use the receiver’s private key, SK, to
compute:

s′ij = dSK(cij ), 1 ≤ j ≤ t, (9)

m′ =
(∑t

j=1 s
′
ij

∏
1≤k≤t,j 6=k

xik

xik
−xij

)
modP.

Then, the host image can be obtained by:

m = m′modK ′, (10)

and the hidden data can be extracted by:

b = bm′/K ′c. (11)
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Figure 2: The original test image Lena, the encrypted image with different hidden data, and the recovered image

6 Performance Analysis

6.1 Verifying Reversibility

The reversibility of the single receiver RDH scheme in
Section 4 can be verified easily in a theoretical analysis.
Based on the homomorphic properties of the Paillier cryp-
tosystem, which is shown in Equations (4)-(5), we know
that Equation (6) is equivalent to m′ = m + K ′bmodN .
Under the condition of 0 ≤ m ≤ K ′−1 and 0 ≤ b ≤ K−1,
we have 0 ≤ m+K ′b ≤ K ′K − 1 < N , so that

(m+K ′b)modN = m+K ′b,

and then, the original values of m1 and m2 can be recov-
ered by Equations (10) and (11), respectively.

In the experimental analysis, we chose the modulus N
that was 1024 bits in length, the original “Lena” gray-
scale, 512× 512 image, the encrypted image with no data
embedded, the marked encrypted image at different em-
bedding rates (1, 100, and 1000 bpp, respectively), and
the perfectly recovered image are shown in Figure 2. The
four images in Figures 2(b)-(e) were obtained by perform-
ing the arithmetic modulo 256 on the real encrypted im-
ages. The same result is also shown in Figure 3 for ”Ba-
boon”. The test images are came from the USC-SIPI
Image Database.

The reversibility of the multi-receiver RDH scheme pre-
sented in Section 5 was verified as follows. Assume that t
receivers, Ri1 , Ri2 , · · · , Rit , honestly pool their shadows.
Similar to the analysis above, Equation (9) is equivalent
to:

s′ij = (s1,ij + s2,ijK
′)modN = s1,ij + s2,ijK

′, 1 ≤ j ≤ t,

and using Lagrange interpolation, we have:

m′ =
(∑t

j=1 s
′
ij

∏
1≤k≤t,j 6=k

xik

xik
−xij

)
modP

=
(∑t

j=1(s1,ij + s2,ijK
′)
∏

1≤k≤t,j 6=k
xik

xik
−xij

)
=
(∑t

j=1

(
s1,ij

∏
1≤k≤t,j 6=k

xik

xik
−xij

)
+K ′

·
∑t
j=1

(
s2,ij

∏
1≤k≤t,j 6=k

xik

xik
−xij

))
modP

= (f1(0) +K ′ · f2(0))modP = m+K ′b.

Therefore, Equations (7) and (8) hold, i.e., the host im-
age can be recovered exactly and the hidden data can be
extracted correctly.

Figure 4 shows the illustration of the multi-receiver
RDH scheme with (2,3)-secret sharing. Here we illustrate
a small example for (3,5)-secret sharing reconstruction.
Suppose that P = 17, t = 3, w = 5; and the i -th receiver’s
public index is xi = i, for 1 ≤ i ≤ 5. Suppose that three
shares (1, 8), (3, 10) and (5, 11) are pooled. Writing the
polynomial f (x) as f (x) = a0 +a1x+a2x

2, then we have
three linear equations in Z17: a0 + a1 + a2 = 8

a0 + 3a1 + 9a2 = 10
a0 + 5a1 + 8a2 = 11

This system has a unique solution in Z17: a0 = 13,
a1 = 10 and a2 = 2. Therefore the secret key is
f(0) = a0 = 13.

6.2 Embedding Capacity

The embedding capacity depends on the payload param-
eter, K, and up to blog2Kc bits can be hidden per pixel
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Figure 3: The original test image Baboon, the encrypted image with different hidden data, and the recovered image

Figure 4: The illustration of the multi-receiver RDH scheme with (2, 3) - secret sharing
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Table 2: Performance comparison

Method Cryptosystem Embedding capac-
ity(bpp)

preprocess be-
fore encryption

Separability of
data encryption
& embedding

Ma et al. [16] Stream cipher 0.5 yes no
Zhang et al. [31] Paillier encryption < 1 no no
Wu et al. [27] (|N | = 1024) Paillier encryption 1016 no no
Li et al. [14] (|N | = 1024) Paillier encryption 1016 yes no
Singh et al. [26] secret sharing ≤ 2 no no
Proposed Scheme (|N | = 1024) Paillier encryption |K| ∈ [1, 1016] no yes

and perfectly extracted with the appropriate modulus.
As a grey-level pixel value from 0 to 255 can be repre-
sented with 8 bits, when a big modulus, N , with the bit
length of 1024 was used, one pixel can embed up to 1016
bits, even when the length of N is only 9 bits, and 1 bit
per pixel can be embedded and correctly extracted. The
size of the modulus is related to the scale of the value
expansion and the security of the scheme, so parameters
can be chosen adaptively by the trade off between effi-
ciency and security. The performance of the proposed
algorithm was compared with those of several other al-
gorithms [14, 16, 26, 27, 31], as shown in Table 2. When
an 8-bit pixel value was encrypted into a 2048-bit big inte-
ger for N with 1024 bits in the Paillier cryptosystem, the
embedding capacities of the proposed algorithms is much
higher than those in [16,26,31]; although [27] and [14] at-
tained the same capacity, the former must conduct data
hiding 1016 iteratively, and the latter must perform extra
processing of the images before encryption.

7 Conclusions

In this paper, we proposed two RDH schemes with large
embedding capacity, i.e.,

1) One that is suitable for a single receiver;

2) One for multiple receivers.

These two schemes have the following common features:

1) Compared to the traditional scheme, we do the role
separation between the data provider and data-hider
for more application scenarios, and the hidden data
also are transmitted in encrypted form;

2) The high embedding rate can be achieved adaptively
according to requirements, ranging from 1 bpp to
even more than 1016 bpp, which is irrelevant to the
pixel distribution of the test image;

3) The schemes do not require an extra processing step
before encryption;

4) The embedding rate is independent of the pixel dis-
tribution of different natural images;

5) Both the encryption key and the data hiding key are
the receiver’s public key, and the extraction of the
data is done after decrypting the marked encrypted
image with the corresponding private key.

In addition, the multi-receiver RDH scheme distributes
trust among several receivers, the marked, encrypted im-
age is shared among w receivers, and the host image and
hidden data cannot be extracted unless t or more re-
ceivers cooperate. It was assumed that all of the receivers
have the same private key, and this inflexibility may be
improved in the future work by considering multi-secret
sharing or proxy encryption.
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