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Abstract

The Internet of Things (IoT) provides transparent and
seamless incorporation of heterogeneous and different end
systems. It has been widely used in many applications
such as smart homes. However, people may resist the
IOT as long as there is no public confidence that it will not
cause any serious threats to their privacy. Effective secure
key management for things authentication is the prerequi-
site of security operations. In this paper, we present an in-
teractive key management protocol and a non-interactive
key management protocol to minimize the communica-
tion cost of the things. The security analysis, numerical
analysis and simulation results show that the proposed
schemes are efficient and resilient to various types of at-
tacks.

Keywords: IoT Security; Key Management; Ticket Based
Authentication

1 Introduction

The Internet of Things (IoT) comprises of billions of de-
vices that can sense, communicate, compute and poten-
tially actuate [1, 3, 4]. IoT involves accessing, monitoring
and controlling various sensors and devices over the in-
ternet. A great example of the IoT application is smart
homes. Household systems like smart smoke-alarms, air
quality sensors, smart doorbells, and home monitoring
devices can now communicate with smart watches, and
activity trackers. After an activity tracker assessed your
sleep – determining when you are in light sleep – it can
tell your alarm clock to go off. Your alarm clock in uni-
son with your phone will check the weather – just before
you wake up (based on your preference and sleep cycle)
and tell air conditioners in your car and your home to
change the temperature accordingly. Navigation apps on
your smart phone – after gathering information from your
weather app – can predict how the weather will affect
traffic congestion, and plan a route to your work. As the
communication between IoT devices may include sensi-

tive and critical data, the security requirements for any
IoT-based system are high. To set up a security channel
between different devices such as an air quality sensor and
a smart watch, a number of security operations (authen-
tication, authorisation, and data integrity) are needed [8].
Since key management is the prerequisite of these secu-
rity operations, the motivation of this research is thus to
develop pairwise key generation and rekeying schemes for
IoT devices [6]. Generally, the design of IoT key manage-
ment protocols has the following security requirements.

1) Secrecy and authenticity: The protocol needs to
guarantee that only the intended party learn the
key management and that this key is unique and
fresh. Security and authenticity need to be protected
against attacks such as impersonation, DoS, etc. An-
other security goal is to minimize the negative effects
of a comprised key. Keys maybe exposed regard-
less of the security of the key management protocol
that generates them, e.g., by break-ins to a device,
poor secure storage for keys, etc. Mechanisms like
independence between different keys in a system, fre-
quently refreshment, and perfect forward secrecy, as
discussed below, address this goal.

2) Key refreshment: The key management protocol
must provide automatic mechanism to periodically
refresh keys: when a cryptographic key is used ac-
tively, the amount of data encrypted with it grows
and it becomes easier to perform attacks on the en-
cryption algorithm. To prevent breaking of the secu-
rity, every key has to be replaced after a time interval.

3) Perfect forward secrecy: Perfect forward secrecy (de-
noted PFS) refers to the property that disclosure
of long-term key does not comprise the session keys
from earlier runs. If one encryption key is compro-
mised, only the data encrypted by that specific key
is compromised. Some cryptosystems allow session
keys to be derived from long term keys, so that if
the long term key is compromised, an attacker might
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have enough information to figure out session keys
and/or decrypt data encrypted using those keys.

4) Key Separation: Different cryptographic functions
should use different and independent keys (namely
the exposure of one key should not compromise the
other). This applies to different functions used in the
key exchange protocol as well as the cryptographic
functions applied to data during the subsequently
sessions. In particular, one has to careful not to reuse
the session key for different functions.

Also, new key management protocols should fit the fea-
tures of IoT and avoid the challenges such as limited band-
width and vulnerable to attacks. So far, the research on
the secure key issues of the IoT is focused on homogenous
and heterogeneous wireless sensor networks. Perrig [7]
presented a suite of security protocols optimized for sen-
sor networks that they called ‘SPINS’. The suite is built
upon two secure building blocks, each performing individ-
ual required work: SNEP and TESLA. SNEP offers data
confidentiality, authentication, integrity, and freshness,
while TESLA offers broadcast data authentication. The
TESLA protocol, used on regular networks, is modified
as a SPINS for use in resource-constrained wireless sensor
networks. Disadvantages of this scheme include TESLA
overhead from releasing keys after a certain delay and
possible message delay. A non-interactive key manage-
ment approach is introduced in the article ”self-certified
keys - concepts and applications” [11]. This scheme al-
lows the computation of a session key in a non-interactive
manner. Non-interactive key management protocol in-
volve minimal interaction among the nodes of the net-
work which requires global clock. In a key pre-distribution
scheme [12,15,16], some keys are preloaded into each sen-
sor before sensor deployment. After deployment, sensor
nodes undergo a discovery process to set up shared keys
for secure communications. This scheme ensures to some
probability that any two sensor nodes can communicate
using a pairwise key. This scheme does not, however, en-
sure that two nodes always are able to compute a pairwise
key to use for secure communication. The key manage-
ment scheme of 802.11i in WLAN is helpful to develop
key management protocols in IoT. However, 802.11i has
the following weaknesses:

1) The authentication server (AS) works as key distri-
bution center that may not be reachable.

2) More communication costs on the network due to the
involvement of the AS.

3) Single point failure of AS.

4) 802.11s does not support Perfect Forward Secrecy.
If the primary master key (PMK) is exposed, the
session keys will be compromised.

5) The 4-way handshake is vulnerable to DOS attack.

Our work is based on the key management scheme
of 802.11i. The motivation of our work is trying to en-
hance 802.11i with new interactive and non-interactive
key management protocols whose design should be able
to fit the features of IoT and solve the weaknesses of the
key management scheme in 802.11i. The contribution of
this paper is developing pairwise key generation and rekey
schemes for IoT devices. In particular, we bring in a novel
interactive key management protocol which is resilient to
attacks and save communication cost. Moreover, we pro-
pose a secure non-interactive key management protocol
which further reduces the communication cost close to
zero. The rest of the paper is organized as follows. Sec-
tion 2 presents our proposed interactive key management
scheme. The non-interactive key management scheme is
explained in Section 3. The numerical analysis on the
performance of the interactive and non-interactive key
management schemes are explained in Section 4. Finally,
Section 5 concludes the paper.

2 An Interactive Key Manage-
ment Scheme

The interactive key management scheme between device
A and device S is comprised of two phases that is shown
in Figure 1. Notations used in the rest of the paper is
summarized in Table 1. In Phase 1, A requests to com-
municate with S. They mutually authenticate each other
with a Ticket-based authentication protocol and generate
a Pairwise Master Secret (PMK). In Phase 2, following
the establishment of the PMK, a session key rekey proto-
col is executed to confirm the existence of the PMK and
the liveliness of the peers; the session key rekey protocol
is resilient to DoS attack and supports Perfect Forward
Secrecy (denoted PFS) which refers to the property that
disclosure of long-term PMK does not comprise the ses-
sion keys from earlier runs.

Table 1: Notations

Notation Description
Ix ID of node X
Px Public key of x
Tx Ticket issued to x

Texp Expiry date of a ticket
Nx Nonce of node x

Sigx Digital signature of node x
Dx Domain name of x

EpubA(m) Encrypt m using A’s public key
Vk Message authentication code re-

sulting from the application of a
MAC key k on a message m
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2.1 Phase 1: Ticket-based Authentica-
tion and PMK Generation

Tickets are used to establish the trust relationships among
entities. For example, devise A will trust devise S if the
ticket of S is valid and issued by the ticket agent it trusts.
A ticket agent is defined as an authority who issues and
manages various types of tickets and can be trusted by
various entities in IoT. Before deployment of IoT devices,
the network operator, denoted by OP, requests tickets
from a ticket agent, one per device, and preinstall the
ticket for each node. The OP is also responsible for re-
questing and distributing new tickets before the current
tickets expire.

Following is the structure of a ticket for device R:

TR = {IR, IA, Texp, PR, DR, SigA}

• TR: Ticket issued by ticket agent IA.

• IR: ID number of the device R that is given this
ticket.

• IA: ID number of the ticket agent who issued ticket
TR to IR.

• Texp: Expiry date and time of ticket TR.

• PR: Public key of IR, which is used to verify the
signature of messages sent by IR.

• DR : Domain name of the network that the device is
located.

• SigA: Digital signature of ticket agent IA.

With the design of tickets in the design of the key man-
agement protocol, the key generation and negotiation of
IoT devises do not need the involvement of the third
party, such as the key distributed center or authentica-
tion server. The messages exchange only between the pair
of devices dramatically reduce the communication cost of
the network. Following is the messages to be exchanged
according to the order of the protocol as shown in Phase 1
of Figure 1.

1) Device A broadcasts its ticket periodically. This mes-
sage allows device S to detect its presence in order
to join the negotiation process. S verifies the digital
signature of the ticket agent who issued A’s ticket TA
using the ticket agent’s public key. We assume that
the tickets of all nodes are issued by the same ticket
agent and the public key of the agent has been pre-
installed in each node. S verifies the domain name of
the ticket and ensure that the device it associated is
from the same network. S also verifies other informa-
tion in the ticket such as the ID of the ticket agent
and the ticket expiry date.

2) If the above verifications are successful, S extracts
A’s public key from TA and generates a message MS
which contains S’s ticket TS and two nonce NS1 and

Figure 1: Interactive key management protocol

NS2. S then encrypts the message using the A’s pub-
lic key and sends the encrypted message to the A.
Upon receiving the message, A decrypts it using its
private key, and verifies the digital signature of the
ticket agent who issued the ticket TS . A verifies the
domain name of the ticket and ensure that the de-
vice it associated is from the same network. A then
verifies other information recorded in ticket TS such
as the ID of the ticket agent who issued TS and the
ticket expiry date.

3) If the above verifications succeed, A retrieves S’s pub-
lic key from ticket TS , and generates a message MA
containing random numbers NA1, NA2 and NS2. A
then encrypts message MA using S’s public key, and
sends the encrypted message to S. S will decrypt
the message using its private key to retrieve NA1,
NA2 and NS2. A authenticates S if NS2 is correct.
Both devices A and S then calculate their shared
PMK by applying a hash function H to the message
NS1||NA1, and NS1 and NA1 are the random num-
bers generated in Steps 2 and 3 above. That is, PMK
= H(NS1||NA1).

4) S then uses the key PMK and applies a (predeter-
mined) MAC algorithm on NA2 to produce a mes-
sage authentication code VPMK(NA2), which S then
sends to A. Upon receiving this message authenti-
cation code, A performs the same computation as S
just did to produce a message authentication code
V ′PMK(NA2). If V ′PMK(NA2) = VPMK(NA2), then A
has successfully authenticated S, because only S has
the knowledge of the shared key PMK and NA2 .

In Phase 1, device A and S exchange their tickets and
verify the validity of each other’s tickets. The trust re-
lationship between A and S from the same network is
based on their exchanged tickets which should be issued
by a same ticket agent. The results of the protocol are
mutual authentication of the pair and the generation of
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a shared PMK key which is the basis for the following
process to create the session key for data confidentiality.

2.2 Session Key Rekey

The session key rekey protocol is shown in Phase 2 of
Figure 1. Here, we assume g and p are public information
known by both A and S.

1) In the first message, gNAmodp, VPMKg
NAmodp. De-

vice A generates a random number NA and calculate
the MAC value of gNA mod p with the PMK key.
Device S authenticates A.

2) S generates a random number NS , gNSmodp and cal-
culate the MAC value of gNSmodp with the PMK
key. With this step, A authenticates S. Both A and S
then calculate DH key KDH = gNANSmodp and their
shared session Key KM by applying a hash function
H to the message KDH ⊕NS0⊕NA0 where NS0 and
NA0 are the random numbers generated in Steps (1)
and (2). That is, KM = H(KDH ⊕NS0 ⊕NA0).

3) A sends an acknowledgement message, msg1,
VKMmsg1, to S. S authenticates A.

4) S sends an acknowledgement message, msg2,
VKMmsg2, to A. A authenticates S.

The main reason of the DoS attack on the original 4-way
handshake of 802.11i is due to the plaintext of message 1.
In the new session key rekey protocol, we have generated
a shared key to protect the first message so as to avoid
blocking and the legitimate authenticator and the suppli-
cant is not necessary to allocate memory to store all the
received nonces and the derived PTKs. The interactive
key management protocol is resilient to DoS. First, the
attacker cannot impersonate device A and forge message
1 since he does not know the PMK and cannot generate
the proper MAC value. Any change in the original mes-
sage 1 cannot be successfully verified by S. Second, the
PTK inconsistency in 802.11i 4-way handshake will not
happy in the proposed interactive key management pro-
tocol. The nonce values of DH key KDH = gNANSmodp
and the session key, H(KDH ⊕ NS0 ⊕ NA0) are all se-
cret values. They both hide from the attackers. Without
the knowledge of NA, NS , NS0, and NA0, the attacker is
not possible to modify the session key or DH key. Thus,
the session key inconsistency problem occurred in 802.11i
4-way handshake will not occur in our proposed inter-
active key management protocol. We consider PMK as
the long term key and session key as a short term key.
Within the lifetime of PMK, multiple session keys should
be updated. our protocol supports PFS. In the scheme,
a DH key is introduced and located between the PMK
and the session key. PMK key securely transfer the pub-
lic information gNA mod p and gNSmod p for mutually
authenticity of A and S while hide their secret value NA

and NS accordingly. The knowledge of PMK does not
help to derive DH key gNANS mod p because the secret

values NA or NS are private information of A and S. Even
the PMK is exposed, the attacker cannot derive the DH
key that is current used, previously used or will be used
by valid device A and S. In addition, DH key is the basis
to retrieve the session key. For example, the session key
is H(KDH ⊕ NS0 ⊕ NA0). Hence, the attacker cannot
compromise the session keys in case PMK is exposed.

3 The Non-interactive Key Man-
agement Protocol (Non-INT)

3.1 Overview

The authenticity of public keys in a public cryptosystem
is gained in two different ways: either it is verified by
its certificate, or it is verified implicitly during the use
of the keys. The latter is introduced by Girault as self-
certified keys [2]. Self-certified keys are not verified until
it is used for cryptographic function such as signature
verification. Public keys of each node are verified without
the aid of its public key certificate or an online Certificate
Authority (CA) [11]. The concept of self-certified keys is
employed in this paper due to its simple non-interactive
rekey mechanism. In this section, by coupling the ticket-
based technique with the self-certified keys, we obtain a
fully non-interactive key management protocol for IoT. In
contrast with prior work [11], our techniques for session
key update do not require any interaction and do not in-
volve any reliable broadcast communications among de-
vices. Here, we present a new scheme that offers both
device A and S to compute or rekey a session key in a
non-interactive manner. We achieve this result by using
the user-controlled key progression. Compare with inter-
active key management schemes, the new non-interactive
approach further reduce the communication cost of the
session key generation and rekey to zero or close to zero.

3.2 Bootstrapping

The network is initialized by the network operator OP.
OP chooses large primes p and q with q|(p − 1) (q is
a prime actor of p-1). OP chooses a random number
KA ∈ Zq∗ with order q and generates its (public, private)
key pair (yZ , xZ). We assume that the public key yZ , p,
q and g are preinstalled to every node of the network. To
issue the private key for a device A with identifier IDA,
OP computes the signature parameter rA = gkA(modp)
and sA = xZ × h(IDA, rA) + kA(modq). rA is called the
guarantee and xA = sA is its private key. The public
key of A can be computed by any node that has yZ , IDA

and rA using the following equation yA = y
h(IDA,rA)
Z ×

rA(modp). We denote this initial key pair as (xA,0, yA,0).
We assume that each node has installed the initial pair of
public and private key issued by the OP.
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3.3 Self-Certification

The non-interactive key management protocol is com-
prised of two phases. Phase 1 in Figure 2 is in charge
of the PMK key generation and rekey which is interac-
tive. Phase 2 discuss the session key generation and rekey
which is non-interactive. For the original non-interactive
scheme, for each PMK update, the device A and S need
to exchange rA,t = gKA , tmodp and rS,t = gKs, tmodp
where 1 ≤ t ≤ n. This scheme waste valuable bandwidth
because each rA,t or rS,t could be as large as 2048 bits
or 3072 bits and number n is uncertain since the num-
ber of session keys update within a PMK rekey interval
is unknown.

Phase 1. Ticket-based authentication and PMK genera-
tion.
In Phase 1 of the non-interactive key management
protocol.

1) First message TA includes R and VPMKR. De-
vice A generates a random number R and cal-
culate the MAC value of R with the PMK key.
Device S authenticates A because only A has
the shared PMK to generate the MAC value.

2) Upon receiving the second message, A decrypts
it using its private key, and verifies the digi-
tal signature of the ticket agent who issued the
ticket TS using the ticket agent’s public key. A
receives three random numbers NS0, NS1, NS2

and gNSmodp where NS is the secret value gen-
erated and hold by S, A verifies other informa-
tion of ticket TS such as the ID of the ticket
agent who issued TS and the ticket expiry date.

3) If the above verifications succeed, A retrieves
S’s public key from ticket TS , and generates
a messageMA containing gNAmodp, l, δT, F and
three random numbers NA0, NA1andNA2. NA

is the secret value generated and hold by A. A
then encrypts message MA using S’s public key,
and sends the encrypted message to S. S will de-
crypt the message using its private key and re-
trieve gNA

modp, the length of the one-way hash
chain l, session key progression interval δT , life-
time of the PMK F and three random numbers
NA0, NA1andNA2. Again, S authenticates A in
this message.

4) In message 4, S verified A’s authenticity. Fi-
nally, both A and S calculate the DH key as
KDH = gNANS mod p and derive the initial
VA,1 and VS,1 value as H(KDH⊕NA0⊕NS0). In
Phase 1, whenever generate or rekey the PMK,
A and S generate their new secret values NA

and NS which are the basis to derive new ses-
sion keys in the second phase. After Phase 1,
both A and S know their common secret value
V as well.

Figure 2: Non-interactive key management protocol

Phase 2. Session key generation and rekey.
xA,0, xS,0, yS,0 and yA,0 are assigned by the OP. yS,0
and yA,0 are exchanged by A and S with the second
and third messages of Phase 1. We define that

KA,t = KA,t−1 × V mod p

= KA,t−1 ×H(KDH ⊕NA0 ⊕NS0) mod p

= KA,1 × (H(KDH ⊕NA0 ⊕NS0)t−1 mod p

KA,1 = NA.

Thus,

KA,t = NA ×H(KDH ⊕NA0 ⊕NS0)t−1 mod p

= NA × Vt−1 mod p.

rA,1 = gKA,1 mod p

= gNA mod p.

rA,t = gKA,t mod p

= gNA × (H(KDH ⊕NA0 ⊕NS0))t−1 mod p

= gNA × Vt−1 mod p.

For devise S,

KS,1 = NS

KS,t = NS × Vt−1 mod p,

rS,1 = gNS mod p

rS,t = gS × Vt−1 mod p.

In Phase 2, A keeps its secret value KA,1 = NA

and derives KA,t = NA × Vt−1modp for the fol-
lowing sessions. S keeps KS,1 = NS and derives
KS,t = NS × Vt−1modp for the following sessions.
On the other hand, to derive the public key of the
S, A needs to know rS,1 and rS,t. rS,1 = gNSmodp
is transferred to A in message 2 of layer 1 while
rS,t = gNS

× Vt−1modp can be derived for each ses-
sion because A know gNS and V. Each r value we
derived will be ∈ Zq∗ because q is a prime and all r
value are modular p and its value must be in Zq*.
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The initial scheme [11] is not a pure non-interactive key
management scheme because in their approach the set
of rA,t = gVt

modp is shared through message exchange.
Compare with the scheme, our protocol allows A and S
to generate the rA,t by themselves, and thus no message
exchange are involved.

3.4 Security Analysis

For our proposed scheme, the security of the VA,t values
depends on the public key algorithm we used in Phase 1
which is safe. The non-interactive has no PFS problem
because the PMK has no relationship with the values of
VA,t and VS,t. If the PMK exposed, it will not compromise
the session key.

1) Key security. In the non-interactive key management
protocol, the security of the session rekey procedure
of Phase 2 depends on the Schnorr signature scheme
whose security is based on the intractability of dis-
crete logarithm problems. The Schnorr signature
scheme has been provably secure in a random ora-
cle model [5, 13]. To derive the value of the session
key, the attacker has to figure out xA,t and yS,t.

xA,t = xA,0 × h(IDA, rA,t) +KA,t

= xA,0 × h(IDA, g
NA × Vt−1modp)

+KA,t mod p

= xA,0 × h(IDA, g
NA × Vt−1modp)

+NA × Vt−1 mod p.

yS,t = y
h(IDS ,rS,t)
S,0 × rS,t mod p

= y
h(IDS ,gNS )
S,0 × Vt−1 mod p)× rS,t mod p

= y
h(IDS ,gNS )
S,0 × Vt−1 mod p)× gNS

×Vt−1 mod p,

where only the ID of A and S, p and g are public
known. Other parameters are hiding from the at-
tackers. Thus the session keys cannot be disclosed to
attackers.

2) Key refreshment. For the non-interactive key man-
agement protocol, the update of PMK is carried out
in Phase 1 while the session key rekey is automati-
cally implemented by device A and S. Whenever the
session key needs rekeying, the Phase 2 of each pro-
tocol will be carried out.

3) Perfect forward secrecy. The only value in Phase 1
relating to the generation of session key is V . V =
H(KDH ⊕ NA0 ⊕ NS0). If the PMK is exposed, it
cannot derive DH key. Thus, we can say that the
attacker cannot compromise the session key if PMK
is exposed.

4) Key separation.

a. PMK and Session key: The PFS analysis shows
that PMK is independent from the session key.

That is, if PMK is exposed, the session key will
not be compromised. Due to the same reason,
if a session key is exposed, the PMK cannot be
compromised either.

b. PMK and DH key: In the non-interactive
key management protocol, DH key KDH =

gN
ANS

modp, the NA and NS are secret ran-
dom numbers that only known by the authen-
ticator and supplicant. The PMK and session
key are independent: if PMK is exposed, it does
not help to figure out the DH key. On the other
hand, if DH key is exposed, the PMK will not
be compromised.

c. DH and Session key: The session key Kt =
h(MA, t) = yx−A,t

S,t modp. To derive the session
key, we have to know xA,t and yS,t

xA,t = xA,0 × h(IDA, rA,t) +KA,t

= xA,0 × h(IDA, g
NA × Vt−1 mod p)

+KA,t mod p

= xA,0 × h(IDA, g
NA × Vt−1 mod p)

+NA × Vt−1 mod p

= xA,0 × h(IDA, g
NA

×h(KDH ⊕NA0 ⊕NS0)t−1 mod p)

+NA × h(KDH ⊕NA0 ⊕NS0)t−1

modp

yS,t = y
h(IDS ,rS,t)
S,0 × rS,t mod p

= yhS,0(IDS , g
NS × V t−1 mod p)× rS,t

modp

= yhS,0(IDS , g
NS × V t−1 mod p)× gNS

×Vt−1 mod p

= yhS,0(IDS , g
NS

×h(KDH ⊕NA0 ⊕NS0)t−1 mod p

×gNS
× h(KDH ⊕NA0 ⊕NS0)t−1

modp.

If DH key is exposed, the session key of non-
interactive protocol cannot be compromised since
only g, p, KDH and IDs of authenticator and sup-
plicant are know. Other parameters are hiding from
the attackers. Due to the same reason, if the session
key is exposed, the attacker still cannot derive the
DH key.

4 Performance Analysis and Sim-
ulation

4.1 Numerical Analysis

We compare our proposed interactive key management
protocol (INT), and the non-interactive protocol (Non-
INT) with the EAP-TLS and 4-way handshake protocol.
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We choose EAP-TLS and 4-way handshake protocol for
comparison because EAP-TLS and 4-way handshake is
the authentication protocol in IEEE 802.11i. 4-way hand-
shake protocol is vulnerable to DoS attack while our pro-
posed protocols do not have. The performance is mea-
sured in terms of Latency of the key generation protocol,
which is defined as the summation of the computation
cost and communication cost.

• Computation costs, which are the latencies (in mil-
liseconds) incurred by the security operations such as
encryption, decryption and hashing [9];

• Communication costs, which indicate the number of
messages exchanged between the neighbouring de-
vices to complete an key generation session.

Computation costs. Table 2 lists the security opera-
tions, the current state-of-the-art algorithms imple-
menting the operations, and the computation time
each of these algorithms incurs. Since the encryp-
tion operation of RSA is a modular exponentiation,
we assume that the cost of modular exponentiation
is the same as that of RSA encryption. The orig-
inal EAP-TLS and 4-way handshake protocol per-
forms one public-key encryption, one public-key de-
cryption, one signature generation, three signature
verifications, five MAC operation and two hash func-
tion (assuming that A and S compute the MAC key
KMAC in parallel). The fourth column of Table 2
records the above numbers of operations. By multi-
plying the computation cost of each operation (from
the third column) and the number of times it is exe-
cuted, and summing up the costs of all operations the
EAP-TLS and 4-way handshake protocol performs,
we obtain a total computation cost of 97.9645ms, as
shown in the third last row of the fourth column.

Similarly, the fifth and sixth columns of Table 3 list
the numbers of security operations the proposed INT
and non-INT perform, respectively. Applying simi-
lar calculations as above, we obtain the computa-
tion costs of the proposed INT and non-interactive
protocol, which are 108.09ms and 110.94ms, respec-
tively. The Non-INT protocol includes an interac-
tive PMK generation and a non-interactive session
key generation. The latency of PMK and session key
generation in non-INT protocol includes two times
Epub, two times Dpub, two times Vsig, one time
MAC and five times modular exponentiation oper-
ations. Two devices pre-compute their session keys
before the session key is expired. Thus, its computa-
tion cost for the latency of session key generation in
non-interactive protocol is zero.

Communication costs. For the PMK generation, Ta-
ble 2 lists the number of messages involved in each
of the three protocols we compare. The proposed
INT and Non-INT require less messages to be ex-
changed than EAP-TLS and 4-way handshake. For

the session key generation, Table 3 lists the number
of messages involved in each of the three protocols we
compare. The proposed INT has the same number
of messages to be exchanged as EAP-TLS and 4-way
handshake. There is no message exchange between
the two devices to negotiate session key in the non-
interactive protocol, and thus their communication
cost is zero. In summary, considering both computa-
tion and communication costs, the latency of EAP-
TLS, INT and Non-INT are 385.16ms, 327.77ms and
182.74ms, respectively.

4.2 Simulation Results

We further evaluate and compare the performance of
EAP-TLS, INT and Non-INT protocols under realistic
network settings using simulations. The 600m x 600m
network has one home device, which is placed in the center
area of the square. We assume a number of neighbour-
ing devices could directly communicate with the home
device to illustrate the overhead of the key generation ap-
proach used by EAP-TLS, INT and Non-INP. We varied
the number of neighbors from 1 to 30. Each data point in
the graphs is the average of 10 runs using different random
seeds. The graphs are plotted with a confidence interval
of 95%. We conducted two experiments as function of:

1) Number of neighboring devices: We measure the
key generation latency as function of the number of
the neighboring devices. We assume that up to 30
neighboring devices implement the EPH-TLS, INT
or Non-INT protocol with the home device simul-
taneously. We calculate the average key generation
delay, averaged over all neighbors participating in
the experiment. We also keep track of the maximum
key generation delay, the maximum value among all
neighbors of the home device. The messages of the
key generation protocols may get lost. We measure
the success rate of key distribution for 10 neighbors.
The success rate is defined as follows: if the home
device has m neighbors and we consider eight mes-
sages of INT as an example, the number of key gen-
eration messages for all neighbor’s key generation re-
quest is m * 8. Assume each experiment run 10 times
with different seeds, the total messages regarding to
a client’s request is 10 * m * 8. If the simulation re-
sult shows that s messages are lost, the success rate
of m neighbors is (10 * m * 8 - s)/ (10 * m * 8).

2) Background traffic load: We calculate the average
and maximum key generation latency of 10, 20 and
30 neighbors as a function of background traffic. The
data rate for both scenarios is varied from 10 Mbits/s
to 50 Mbits/s. Data rate is 0 means that there is
no background traffic. We also measure the suc-
cess rate of key generation messages as the function
of background traffic. The data rates various from
10Mbits/s to 50MBits/s. Here, we assume the home
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Table 2: Cost of PMK

Operations Algorithm Time(ms) EAP-TLS INT Non-INT
Epub RSA 1.42 1 2 2
Dpub RSA 33.3 1 2 2
Gsig ECDSA 11.6 1 0 0
Vsig ECDSA 17.2 3 2 2
MAC HMAC 0.0015 5 5 1

Hashing SHA-1 0.009 2 1 0
Modular Exponentiation 1.42 0 3 5

Total computational cost 97.9645 108.09 110.94
# of messages 12 8 4

Latency of PMK key 313.36 251.69 182.74

Table 3: Cost of session key generation

Operations Algorithm Time(ms) 4-way Handshake INT Non-INT
MAC HMAC 0.0015 3 4 0

Hashing SHA-1 0.009 0 1 0
Modular Exponentiation 1.42 0 3 0

Total computational cost 0.0045 4.275 0
# of messages 4 4 0

Latency of session key 71.8 76.08 0

device has 10 neighbors. Following is a detailed dis-
cussion of the experimental results.

Experiment 1. Function of number of neighboring
BMAPs. The graph in Figure 3 and Figure 4
show the average latency and maximum latency
as function of the home BMAP’s neighbors.
As the number of neighboring devices increases
from 1 to 30, the average latency of EAP-TLS,
INT and Non-INT increases as expected, by ap-
proximately 69.7%, 81.1% and 76.3% respec-
tively. The maximum latency of the protocols
increase by approximately 93.1%, 89.5% and
98.7%. More clients imply more key distribution
requests to be processed by the home device,
and more channel contention around the home
device, resulting in longer delay Figure 5 shows
the success rate as the function of neighbors.
According to the formula we provided in section
IV, the success rate of key distribution messages
of 10 neighboring devices in EAP-TLS, INT and
Non-INT are at the range of 98.3% and 99.6%.
We observe that the number of neighboring de-
vices does not have a big impact on its success
rate, which is a positive attribute of the key gen-
eration scheme.

Experiment 2. Function of background traffic load
We examine how background traffic may affect
the average latency and maximum latency if
10 neighboring devices request key generation

Figure 3: Average latency as function of number of neigh-
bors

Figure 4: Maximum latency as function of number of
neighbors
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Figure 5: Success rate as function of number of neighbors

Figure 6: Average latency as function of background traf-
fic

from the home device. Figure 6 shows average
latency as function of data rate, which is var-
ied from 10Mbits/s to 50Mbits/s. Data rate
is 0 means that there is no background traf-
fic. As the data rate increases, average latency
of neighboring devices is enlarged. Higher data
rate implies more background traffic to be pro-
cessed by the home device, and more channel
contention around the home device, resulting in
longer delay. Figure 7 shows the maximum la-
tency of 10 neighboring devices. As the data
rate increases from 0 to 50MBits/s, the maxi-
mum latency of EAP-TLS, INT and Non-INT
increases as expected, by approximately 34.3%,
19.9% and 18.2% respectively.

Figure 8 shows the success rate as the function of
data rate. The success rate of key generation mes-
sages of 10 neighboring devices is at the range of
96.8% and 99.7%. We observe the success rate is
higher if there is no background traffic (data rate is
0). However, the data rate does not have a big im-
pact on success rate, which is a positive attribute of
the key generation scheme.

5 Conclusion

Security has become the central issue for IoT and key
management plays a critical role to ensure data confiden-
tiality and integrity. A new design of ticket-based authen-
tication protocol, an interactive key management proto-
col and a non-interactive key management protocol en-

Figure 7: Maximum latency as function of background
traffic

Figure 8: Success rate as function of background traffic

hanced the security of 4-way handshake and at the same
time have lower latency than that of EAP-TLS and 4-way
handshake. Unlike EAP-TLS and 4-way handshake. the
interactive key management protocols support PFS and
resists DoS attack,
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