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Abstract

With the increase of access control size in big data, the
roles in most of the existing role mining algorithms have
overmuch permission, which conveniently results in fraud.
Therefore, this paper proposes two kinds of role mining
algorithms that satisfy the permission cardinality con-
straints. Algorithms 1 divide each row of the sorted access
control matrix to generate a set of roles. Algorithm 2 in-
tersect the permission of adjacent users of the ordered
access control matrix to generate a candidate role sets.
The iterative reduction is then performed multiple times
on the basis of the candidate role sets to produce most of
the decisive role sets. Both algorithms first perform row
and column sorting on the access control matrix, which
draw on word frequency statistics and frequent item min-
ing, respectively. The data applied in the experiment are
a common real data set. Relevant experimental results
demonstrate that the performance of algorithm 2 is supe-
rior to algorithm 1 and PRUCC-RM.

Keywords: Access Control; Frequent Item Mining; Per-
mission Cardinality Constraints; Role Mining; Word Fre-
quency

1 Introduction

Role based access control has been one of the most
widespread way of access control.The key of applying
the model is the definition of the roles. The solution
of the question is divided in two types, one is a top-
down method, which gain roles by analyzing users’ cir-
cumstance and the business process [18], the other way is
a down-top way,which utilize data mining technology to
find roles from existing user permission assignment rela-
tionship (UPA). The user permission assignment relation
that specifies which individuals had access to which re-
sources in the original system can be presented in the
form of a boolean matrix. Mitra divides the role mining
model into the deterministic model and the probabilistic
model [12]. Vaidya defined the basic role mining problem

that finding a minimal set of role from an input UPA that
provides an equivalent user permission assignment [19],
who shows the problem of finding the minimal set of de-
scriptive roles and relationships without disturbing per-
mission assignments is NP-complete. There exist various
ways to mine roles.Belim presents an algorithm for analyz-
ing the matrix of authorized user permission for optimal
role formation [1], which solves the role mining problem
with the help of graph theory knowledge.Dong uses bipar-
tite network models for role mining and solves problems
from the perspective of edge importance in complex net-
works [3]. Huang converted Basic role mining problem to
the Set Cover Problem [6]. There are a few role mining
algorithms with machine learning model. Constraints are
a powerful mechanism for arranging high-level organiza-
tional strategies. In addition, there are malicious activi-
ties in RBAC [15], by applying the constraints, the rate
in database attacks can be reduced, and fraudulent be-
havior can be prevented. It is necessary for enterprises to
conduct role mining meeting constraints in implementing
RBAC. Ye proposed a novel role mining approach useing
answer set programming (ASP) that meets various opti-
mization objectives, named constrained role miner [21].

There are three constraints in role-based access con-
trol. That is separation of duties, cardinality constraints
and prerequisite constraints.Separation of duties is widely
used in situations where multiple people need to work to-
gether to perform a sensitive task, but not by fewer peo-
ple to prevent fraud. There are for two situations about
prerequisite constraint. One is prerequisite constraint on
the role which specifies that one user can obtain role r1
only after the user has obtained role r2. The other is
prerequisite constraint of permission which specifies that
a permission can be assigned to a certain role only after
the role possesses permission p. There are four situations
about cardinality constraint, one is permission cardinality
which specifies the maximum number of permission a role
can have in a RBAC system; Second is user cardinality
constraint which specifies the maximum number of user
a role can belong to; Third is role usage cardinality con-
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straint which specifies the limited number of roles which
each user can have; The last one is permission assignment
cardinality constraint which specifies the limited number
of roles that each permission can be assigned.

The rest of the paper is framed as follows: Section 2
reflects the related work. Section 3 exhibits the related
terms needed to understand the algorithms. Section 4 in-
troduces in detail the execution process and flow chart of
the two algorithms proposed in this paper, and carries on
the algorithm analysis. Section 5 uses real public data for
algorithm experiments,and analyses the results. Finally,
we conclude our work in Section 6.

2 Related Works

Although the algorithms of role mining have been pro-
posed [7], the role which most algorithm generate don’t
meet cardinality constraint [16], which makes many roles
own overmuch permission, violating separation of duty
constraints easily, and being harmful to redistribution.
For roles generated meet permission cardinality con-
straints. One which uses the combination of clustering
and limited permission set mining gets roles with meet-
ing given cardinality constraint [8], it is very time con-
suming to mine role from a collection of disorganized user
permission, because a role is mined each time. The statis-
tics of the user’s no-visited permission are required, and
also calculates all possible intersections of all users’ no-
visited permission. Role usage cardinality constraint and
permission assignment cardinality constraint is conflicting
between the relationship of users role assignment and the
relationship of role permission assignment, trying to meet
one of the two constraints may lead to violation of the
others, constrained role mining problem is a NP complete
problem [5], Harika proposes two different frameworks,
one is to implement constraint after role mining, and the
other is to implement constraint separately or simulta-
neously in the role mining process. One proposed a role
mining method that are based permission cardinality con-
straint and user cardinality constraint, which merge roles
by the similarity of roles to improve precision of roles’
state, when it is running, it will consume substantial time
and calculation about similarity of roles [11].

One proposed two heuristic role mining algorithms that
satisfy both the permission cardinality constraint and the
role usage cardinality constraints, since it randomly se-
lects a row with the least number of users, the permission
is defined as a role, so there is uncertainty, and the per-
mission sets whose number is minimum is not necessarily
a frequent item set [2]. The above method selects a con-
straint from the user role relationship and the role per-
mission relationship to control the relationship between
the user and the permission. The advantage of using
role-based access control is that the role is used to bridge
the gap between users and permission, users can get the
required permission indirectly through the role. A user
needs to remember all kinds of ID (identities) and pass-

words in multi-server environment [14], and outsourcing
large-scale computing tasks to the cloud [10], so there are
a large number of relationships between users and per-
mission stored in enterprise. By implementing role-based
access control, access control matrix can be simplified to
facilitate enterprise storage and analysis.

The purpose of finding the smallest set of roles is to be
able to express users and permissions with it. By mining
association rules between permission. It can help define a
role so that it can replace more relationship between users
and permission. Take into account this consideration, the
paper decided to design the algorithm based on the ideas
of word frequent statistics and frequent item mining.

3 Constrained Role Mining Prob-
lem

Fundamental RBAC model has been introduced. We will
only introduce some concepts about implementing the al-
gorithm in this part.

Definition 1 (RBAC). The Role Based Access Control
(RBAC) model comprises the following components [17]:

• U = {u1, u2, . . . , un}, U represents user set;

• P = {p1, p2, . . . , pn}, P represents permission set;

• R = {r1, r2, . . . , rn}, R represents the role set;

• UA ⊆ U ×R, UA is a relationship from U to R;

• PA ⊆ R× P , PA is a relationship from R to P .

Definition 2 (Basic role mining problem, RMP). Given
a set of users U , a set of permission P and a user permis-
sion access control matrix UPA, find a group of roles R,
user role assignment relationship UA and role permission
assignment relationship PA. Satisfy UA ⊗ PA = UPA,
and minimizes |R|.

Definition 3 (Permission cardinality constraint). The
permission cardinality constraint specifies the maximum
number of permission a role can have in a RBAC system.

Definition 4 (User cardinality constraint). The user car-
dinality constraint is specified as the maximum number of
user that a role can belong to in a RBAC system.

Definition 5 (Role usage cardinality constraint). The
role usage cardinality constraint is defined as the limited
number of roles which each user can have.

Definition 6 (Permission assignment cardinality con-
straint). The permission assignment cardinality con-
straint is defined as the limited number of roles that each
permission can be assigned.

When an enterprise establishes a RBAC system, the
relationship of user and permission will change with the
development of the enterprise. Therefore, the company
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should control user cardinality constraint and role usage
cardinality constraint in a dynamic process. The permis-
sion assignment cardinality constraint does not need to be
considered, because the purpose of controlling the permis-
sion assignment cardinality can be achieved by controlling
the role usage cardinality constraint. The permission car-
dinality constraint could satisfy the separation of duties
constraints to prevent roles from having mutually exclu-
sive permission. When a user accesses the allocation of
resources in the cloud, if the number of permission of the
role is limited, the hierarchical management of the role
can be facilitated [20]. So the algorithms proposed in
this paper is to mine the role in the access control matrix
meeting the permission cardinality constraint.

Definition 7 (Weighted Structural Complexity, WSC).
[13]. Given W =< wr, wu, wp, wh, wd >, where

wr, wu, wp, wh, wd ∈ Q+ ∪ {∞}, the Weighted Structure
Complexity (WSC) and RBAC state γ, which is denoted
as wsc(γ,w), is computed as follows. We have

wsc(γ,w) = wr ∗ |R|+ wu ∗ |UA|+ (1)

wp ∗ |PA|+ wh ∗ |t reduce(RH)|+
wd ∗ |DUPA|

Where | · | denotes the size of the set or relations, and
t reduce(RH)denotes the transitive reduction of the role-
hierarchy.Since the proposed algorithm does not consider
the role in heritance, and does not allow the authority to
be directly assigned to the user, by setting wr = wu =
wp = 1, wh = wd =∞. Arithmetic involving∞ is defined
as follows: 0 ∗ ∞ = 0,∀x ∈ Q+ x ∗ ∞ = ∞,∀x ∈ Q ∪
{∞} x+∞ =∞.

Definition 8 (Role Mining Problem Satisfied the Per-
mission Cardinality Constraint). Given a set of user
U = {u1, u2, · · · , un}, a set of permission P =
{p1, p2, · · · , pn}, a user permission access control matrix
UPA, and a positive integer t, t > 1. Find a group of roles
R = {r1, r2, · · · , rq}, a user role assignment relationship
UA and a role permission assignment relationship PA,
Satisfy UA ⊗ PA = UPA, ∀ri ∈ R |PermsR(ri)| ≤ t,
1 ≤ i ≤ q, PermsR(ri) represents the permission that
role ri own, and minimize WSC.

The evaluation goal of role mining cannot be measured
by reducing the number of the roles.Because simply reduc-
ing the number of roles, in order to achieve, finally lead
to the increment of UA and PA. Taking the reduction of
WSC as the final metric can fully measure the definitive
role mining situation.

4 Algorithm Overview

In machine learning algorithms, FP-growth algorithm is
an algorithm founded on association rules.It can mine a
group of items with a strong correlation.So it could be
used to basket analysis,merchant arranges placement of
goods conveniently and bundled sale of goods.Mapping

the user permission access control matrix to the user’s
shopping list, where the permission represents the prod-
uct. If you use FP-growth algorithm, you can mine
the frequent permission set in the access control matrix
and define the frequent item set as a role. Where the
permission cardinality constraint can be defined as the
permission set has at most several permission, so as to
achieve the purpose of satisfying the defined cardinality
constraint.When the data set is large, the FP-growth algo-
rithm recursively generates a large number of conditional
pattern libraries and conditional FP-tree. In this situa-
tion, the algorithm needs excessive memory and has low
efficiency [4]. Additionally,a role mining algorithm as a
method for frequent item mining. It becomes less effi-
cient due to the larger set of roles and multiple iterations
of the FP-growth algorithm.This paper presents a method
of clustering frequent permission sets in the access control
matrix, clustering similar permission sets, and generating
role sets by iterative simplification. Finally, the set of
roles corresponding to each user is found in the access
control matrix by using the generated set of roles.

4.1 Role Mining Algorithm Satisfied the
Permission Cardinality Constraint

Algorithm 1 Role mining algorithm based on word fre-
quency statistics

Input: Access control matrix:UPA,Permission
Cardinality:Limited.

Output: Role set:R, the relationship of user and
role:UA,WSC.

1: Begin
2: Column of UPA is sorted from left to right in de-

scending order according to the number of users of
the permission.

3: Sort the rows of UPA from top to bottom in descend-
ing order,depending on the location of the permission
of UPA.If the user has permission to the front left,it
will be ranked first.

4: The location which is 1 is replaced by the original
order of the permission in UPA.

5: Define every Limited permission from left to right for
each user in UPA as a role.

6: Define each role as a key in a key-value pair whose
number of occurrences is defined as the value of the
key.

7: Generate user role relationships (UA) based on gen-
erated role sets (R) and access control relationship
F(UPA).

8: WSC = |UA| + |PA| + |R|, UA represents the role
set.

9: End

By sorting the rows and columns of UPA, it is possi-
ble to have similar permission gathered together.Defining
every limited permissions for each user in the access con-
trol as a role, which not only meets permission cardinal-
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ity constraint, but also limits the number of each user’s
role. In addition, the idea of the algorithm draws on word
frequency statistics.By sorting the UPA,each row of the
UPA can be treated as a string of characters,and the per-
mission cardinality constraint is the number of characters
that specify the intercepted zero-free word (the user does
not get the permission).

Algorithm 2 Iterative based role mining algorithm

Input: Access control matrix:UPA,Permission
Cardinality:Limited,Iterative benchmark:IteraBench.

Output: Role set:R, the relationship of user and
role:UA,WSC.

1: Begin
2: Column of UPA is sorted from left to right in de-

scending order according to the number of users of
the permission.

3: Sort the rows of UPA from top to bottom in descend-
ing order,depending on the location of the permission
of UPA.The user has permission to the front left,which
will be ranked first.

4: The location which is 1 is replaced by the original
order of permission in UPA.

5: Define the maximum intersection of the permission of
neighboring users in the matrix as a role.

6: Sort the generated role set according to the number
of permission included, and deletes the smaller role.

7: Select a role greater than the iteration cardinality line
(IteraBench) from the bottom to the top of the ma-
trix as a temporary role r‘.

8: ∀R ⊃ r‘,R = R− r‘
9: Sort candidate role set.

10: Replace the relationship between users and roles in
the access control matrix with candidate role set.

11: if There is a user’s remaining permission which can-
not be replaced by the roles in candidate role set then

12: Generate a role to add to candidate role set for
each user’s remaining permissions that cannot be
replaced with roles in role set,

13: goto 7
14: else
15: Split the role who’s the number of permission

greater than Limited and generate some new roles.
16: end if
17: Generate user role relationships (UA) based on gen-

erated role sets (R) and access control relationship
(UPA)

18: WSC = |UA|+ |PA|+ |R|, UA is the role set.
19: End

Algorithm 2 also is required to perform the same sort-
ing as algorithm 1. The intersection of the permissions
owned by each user and neighboring users’ is to extract
the largest identical portion locally. The global optimum
is accomplished as much as possible by local optimiza-
tion. Iterative benchmark defines the criteria for iteration
in the process of role set reduction,if it is too large,it is
easy to violate the permission cardinality constraint. In

start

Access control 

matrix

Sort the Columns of UPA

Sort the Rows of UPA

replace

Division

Role Frequency Statistics

Generate UA

Calculate WSC

End

Figure 1: The flow chart of Algorithm 1

the 6th step, if the size of the candidate role is less than 4
and its frequency is less than 2, we will delete it.About the
permission owned by a small number of users, it is likely
to be a key permission, so this article also defines it as a
role, when assigning, it should limit the assigned amount
of such roles and prevent unauthorized operation.In order
to ease the understanding of the processing of the two al-
gorithms, we present flow charts of the two algorithms.
As showed in Figure 1 and Figure 2, We can see from
the figure that the two algorithms are the same ones at
the beginning and end, but the access matrix processing
method after sorting is different. It is worth mentioning
that in fact, the content of the loop in the flowchart of
algorithm 2 will only be executed once. Because the pro-
cess is performed only once, the remaining permissions of
all users are generated by the relevant roles, and the loop
will not be run.

4.2 Analysis of Algorithms

We will illustrate the general operation of the algorithms,
for example, Table 1 is an access control matrix. After
column sorting and row sorting, it will produce the matrix
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Figure 2: The flow chart of Algorithm 2

U1 U2 U3 U4 U5 U6

R5 R4 R2 R1 R3

P2 P5 P8 P1 P3 P4 P7 P6

Figure 3: The result of Algorithm 1

U1 U2 U3 U4 U5 U6

R2 R3 R5 R1 R4

P2 P5 P8 P4 P1 P3 P7 P6

Figure 4: The result of Algorithm 2

shown in Table 2, The number in the matrix is the num-
ber of the column’s permission, From the Table, we can
see that sorting makes the original disordered access con-
trol matrix more regular. It is more convenient to mine
roles on the matrix. Algorithm 2 mine the roles from the
perspective of the line of the UPA. In this example,the
permission cardianlity is set to four, The relationship be-
tween users,roles and permissions through algorithm 1 is
shown in Figure 3, Each segmented word represents a role.
Because a role in a candidate role set might be a subset
of another role, we set a benchmark for iterative reduc-
tion. The number of inclusion relationships between roles
decreases by reduction. The relationship between users,
roles and permission through algorithm 2 is given in Fig-
ure 4. The time complexity is required for algorithm 1
to sort the access control matrix once is O(c log2 c),where
c represents the number of columns in the access control
matrix. The time complexity required to perform a row
sort is O(r log2 r), where r represents the number of rows
in the access control matrix. Furthermore, generating a
set of roles requires traversing the access control matrix
once, and generating a user role assignment relationship
also needs to be traversed once. Therefore the total time
complexity of algorithm 1 is O(c log2 c+r log2 r+2cr).The
spatial complexity of algorithm 1 is O(cr+ |UA|+ |PA|).
UA represents user role relationship. PA represents role
permission relationship.

Algorithm 2 also needs to first sort the row and column
of the access control matrix, and the time complexity is
O(c log2 c+r log2 r), Each row in the access control needs
to produce an intersection with the adjacent row, which
needs to be compared 2c(r − 2) times. Multiple iterative
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Table 1: Access control matrix

user P1 P2 P3 P4 P5 P6 P7 P8
U1 1 1 0 0 1 0 0 1
U2 1 1 0 0 1 0 0 1
U3 1 0 1 1 0 0 0 1
U4 1 0 1 1 0 1 1 1
U5 1 0 1 0 0 1 1 1
U6 1 0 1 0 0 1 1 1

Table 2: Sorted access control matrix

user P1 P8 P3 P7 P6 P5 P4 P2
U4 1 8 3 7 6 0 4 0
U5 1 8 3 7 6 0 0 0
U6 1 8 3 7 6 0 0 0
U3 1 8 3 0 0 0 4 0
U1 1 8 0 0 0 5 0 2
U2 1 8 0 0 0 5 0 2

reduction occurs when the final role set is generated. In
the process of iteration, only if the role’s number of per-
mission is greater than the given value (that is greater
than the IteraBench defined in the algorithm 2), the role
can be iterated and simplified with the previous roles in
the array of role sets. So the time complexity of the part
is approximately O(|R|cr). At last, generating user role
relationships needs to be compared |PA|cr time. Conse-
quently, the total time complexity of algorithm 2 is ap-
proximately O(n log2 n + (1 + |R| + |PA|)cr), n is the
maximum of c and r. The spatial complexity of algo-
rithm 2 is O(|UA| + |PA| + cr). There are a few places
in algorithm 1 and algorithm 2 which can be changed to
parallel operations, such as the division of permissions for
each user and the generation of intersections of adjacent
rows.

5 Experimental Evaluation

In the following sections, we present the experimental
evaluation of our algorithms and PRUCC-RM which is
proposed by Blundo and satisfies the permission cardinal-
ity constraint [2]. The test platform hardware is 3.4Ghz
Intel CPU and 8 GB memories. The operation system is
Windows 7, the program is run in a VMware virtual ma-
chine, the operating system image used is Ubuntu, and
its version number is 16.04 LTS. In the Spark pseudo-
distributed cluster, using Scala high-level programming
language to perform programming experiments in Intellij
IDEA.

In order to be possible to repeat this experiment and
the data sets used are all public data sets, which have
been used in the literature [2, 5, 8]. The URL for down-
loading the role mining tool RMiner is given there [9].

Through this website, not only you download the public
data set, but you can also download the role mining tool
RMiner. Table 3 lists sizes, execution time and defined
iteration benchmark for each data set, where userMax-
Perm represents the maximum number of permissions a
user has in the data set. IteraBench is the threshold for
each iteration of different data sets, and the reader can
choose the threshold of the iteration. Finally, we also rep-
resent the execution time of three algorithms in the worst
case.Algorithm 2 takes longer than algorithm 1 because it
requires multiple iterations. Since PRUCC-RM does not
have row and column ordering, it takes the least amount
of time. When the data set is small, the running time
of the three algorithms is approximately equal. Defining
algorithm 1 as A1 and algorithm 2 as A2.

From Figure 5 to Figure 12, it can be observed that as
the permission cardianlity increases, the number of roles
generated by the three algorithms is gradually decreasing.
Because the maximum number of permission each role
can have, resulting in some users have all the permission
which can be replaced by fewer roles.Some data sets ap-
pear with the increase of the permission cardinality, and
the number of roles subsequently grows. Algorithm 1 di-
vides the permission of each user according to the permis-
sion cardinality. When the permission cardianlity is set
to an appropriate value, the number of generated roles
is minimized. When the permission cardianlity exceeds
the appropriate value, more roles are generated to satisfy
the relationship between the user and the permission. In
terms of weighted structural complexity, the overall trend
of algorithm 1 decrease first and then increases with the
increase of the permission cardinality. Because as the
number of the permission cardinality increases, the num-
ber of roles decreases overall, while the size of |PA| may
increase, and the size of |UA| may decrease. When a suit-
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Table 3: Characteristics of real data sets

Data Set |U| |P| userMaxPerm IteraBench
Execution time(s)

A1 A2 PRUCC-RM
Americas Large 3485 10127 733 10 251.541 273.533 24.113
Americas Small 3477 1587 310 13 20.179 24.968 11.006

Apj 2044 1164 58 12 11.531 12.258 9.701
Emea 35 3046 554 10 7.444 7.778 7.231

Healthcare 46 46 46 10 7.176 7.132 7.165
Domino 79 231 209 10 7.058 7.310 7.385

Firewall1 365 709 617 15 7.841 8.137 7.599
Firewall2 325 590 590 12 7.443 7.827 7.875

1 http://code.google.com/p/rminer/
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Figure 12: Experimental results of three algorithms in
Firewall2

able permission cardinality is reached, the weighted struc-
tural complexity reaches a minimum.The performance of
PRUCC-RM is similar to algorithm 1, the biggest differ-
ence is that PRUCC-RM has no sequence of rows and
columns. The overall tendency of algorithm 2 decreases
with the increase of the permission cardinality. Because
the permission cardinality is increased, Algorithm 2 can
be better mine more frequent permission sets to define as
roles, so the overall weighted structural complexity is re-
duced. Figure 7 and Figure 5 show that the performance
of PRUCC-RM is between algorithm 1 and algorithm 2.
Because the results produced by PRUCC-RM are related
to the location of the permission in UPA, different results
are produced when adjusting the position of each permis-
sion (i.e., each column) is adjusted in the UPA. Algorithm
1 needs to be sorted by row and column, so it has nothing
to do with the position of the permission in UPA.

6 Conclusion

In this paper, we have proposed two algorithms to solve
the role mining problem meeting the permission car-
dianlity constraint in the public data set.Compared with
PRUCC-RM. The experimental results demonstrate that
the second algorithm performs better than algorithm 1
and PRUCC-RM. However, the algorithm 1 is more sim-
ple. The two algorithms proposed in this paper can be ap-
plied in the field of frequent item mining. In addition, we
can also define the candidate roles with higher frequency
as the definitive role, and the roles owned by a small num-
ber of users can be managed separately because they are
either very important roles or unimportant. Any kind of
role mining method has its limitations. Algorithm 2 pro-
posed in this paper is an open role mining method, and
the iteration benchmark in the running process of the
program can be debugged by the user. The permission
cardinality constraint can be adjusted according to the
requirements of the number of permissions that the role
in the enterprise.Practical experience shows that RBAC is
very suitable for systems where the relationship between
users and permission does not vary frequently.Users’ cir-
cumstance and the business process should also be con-
sidered after role mining.
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