
International Journal of Network Security, Vol.22, No.2, PP.331-336, Mar. 2020 (DOI: 10.6633/IJNS.202003 22(2).17) 331

Run-based Modular Reduction Method

Zhengjun Cao1, Zhen Chen1, Ruizhong Wei2, and Lihua Liu3

(Corresponding author: Zhengjun Cao)

Department of Mathematics, Shanghai University, No. 99, Shangda Road, 200444, Shanghai, China1

Department of Computer Sciences, Lakehead University, 955, Oliver Road, Thunder Bay, Canada2

Department of Mathematics, Shanghai Maritime University, No.1550, Haigang Ave, Shanghai, China3

(Email: caozhj@shu.edu.cn)

(Received Oct. 19, 2018; Revised and Accepted Feb. 7, 2019; First Online June 11, 2019)

Abstract

The existing lookup-table modular reduction methods
partition the binary string of an integer into fixed-length
blocks such as 32 bits or 64 bits. This approach requires a
fixed amount of looking up tables. In this paper, we intro-
duce a new modular reduction method which partitions
the binary string of an integer into blocks according to its
runs. The new method can efficiently reduce the amount
of looking up tables. Its complexity depends essentially
on the amount of runs or 1’s in the left segment of the
binary string of an integer to be reduced. We show that
the new reduction is almost twice as fast as the popular
Barrett’s reduction.

Keywords: Barrett’s Reduction; Montgomery’s Reduc-
tion; Run-based Modular Reduction

1 Introduction

The performance of public key cryptographic schemes de-
pends heavily on the speed of modular reduction. Among
several modular reduction algorithms, Montogomery’s re-
duction and Barrett’s reduction are more competitive. In
1985, P. Montgomery [13] invented an elegant reduction
method. His method is not efficient for a single modular
multiplication, but can be used effectively in computa-
tions where many multiplications are performed for given
inputs.

At Crypto’86, P. Barrett [1] proposed a novel reduc-
tion method which is applicable when many reductions
are performed with a single modulus. Barrett’s reduc-
tion and Montgomery’s reduction are similar in that ex-
pensive divisions in classical reduction are replaced by
less-expensive multiplications. At Crypto’93, A. Bosse-
laers et al. [2] compared the performances of classical
algorithm, Barrett’s algorithm and Montgomery’s algo-
rithm. It is reported that these algorithms all have
their specific behavior resulting in a specific field of ap-
plication. No single algorithm is able to meet all de-
mands. In 1998, Win et al. [18] reported that the dif-
ference between Montgomery’s and Barrett’s reduction

was negligible in their implementation on an Intel Pen-
tium Pro of field arithmetic in Fp for a 192-bit prime p.
In 2011, Dupaquis and Venelli [4] modified Barrett’s re-
duction and Montgomery’s reduction. Their technique
allows the use of redundant modular arithmetic. The
proposed redundant Barrett’s reduction algorithm can be
used to strengthen the differential side-channel resistance
of asymmetric cryptosystems.

In order to further speed up modular reduction, lookup
table has been adopted by several researchers [7–9,12,14,
15,17]. If the size of a pre-computed table is manageable,
the method is very effective. These reduction methods
partition the binary string of an integer into fixed-length
blocks such as 32 bits or 64 bits. This approach requires a
moderate size table. In 1997, Lim et al. [10] experimented
on Montgomery’s reduction, classical reduction, Barrett’s
reduction and some reduction algorithms using lookup ta-
ble. It reported that the proposed lookup-table method
runs almost two to three times faster on a workstation
than the Montgomery’s reduction. Although the experi-
mental results are interesting, they did not present a com-
plexity analysis of these combined lookup table methods.

The principles of the existing reduction algorithms can
be briefly summarized as following:

• Division. The classical reduction algorithm adopts
this principle.

• Multiplication. Both Barrett’s and Montgomery’s re-
duction adopt this principle.

• Addition [look up table according to fixed-length
blocks]. All current reduction algorithms based on
this principle look up table according to fixed-length
blocks such as 32 bits or 64 bits.

The last principle, intuitively, is more applicable because
it totally eliminates multiplications although it requires
a moderate size table and a fixed amount of looking up
tables. However, it seems that they are not suitable for
small devices [5, 11,16] such as smart phones.

In this paper, we put forth a new reduction method
based on the principle of addition [look up table accord-
ing to runs]. Unlike the traditional lookup-table reduc-
tion, the proposed method partitions the binary string

International Journal of Network Security, Vol.22, No.2, PP.331-336, Mar. 2020 (DOI: 10.6633/IJNS.202003 22(2).17) 332

of an integer into blocks according to its runs instead of
fixed-length blocks. The performance of the new method
depends essentially on the amount of runs or 1’s in the
left segment of the binary string of an integer to be re-
duced. The new method can efficiently reduce the amount
of looking up tables. We also provide a thorough complex-
ity analysis of the method.

2 Related Reduction Methods

2.1 Montgomery’s Reduction

Let R > p with gcd(R, p) = 1. The method produces
zR−1 mod p for an input z < pR. If p′ = −p−1 mod R,
then c = zR−1 mod p can be obtained via

c← (z + (zp′ mod R)p)/R, if c ≥ p then c← c− p.

Given x ∈ [0, p), let x̃ = xR mod p. Define Mont(x̃, ỹ) =
(x̃ỹ)R−1 mod p = (xy)R mod p. The transformations
x 7→ x̃ = xR mod p, and x̃ 7→ x̃R−1 mod p = x are per-
formed only once when they are used as a part of a larger
calculation such as modular exponentiation.

2.2 Barrett’s Reduction

The following description of Barrett’s reduction comes
from [6], which calculates z mod p. The algorithm first
selects a suitable base b (e.g., b = 2L where L is near the

word size of the processor). It then calculates µ = b b
2k

p c,
where k = blogb pc+1. Suppose 0 ≤ z < b2k. Let q = b zpc,
r = zmod p = z− q p. Since z

p = z
bk−1 · b

2k

p ·
1

bk+1 , we have

0 ≤ q̂ =

⌊b z
bk−1 c · µ
bk+1

⌋
≤
⌊
z

p

⌋
= q.

If µ is computed in advance, then the main cost of calcu-
lating q̂ consists of one multiplication and two types of bit
operations for b z

bk−1 c and b y
bk+1 c, where y = b z

bk−1 c·µ. Set

α = z
bk−1 −

⌊
z

bk−1

⌋
, β = b2k

p −
⌊
b2k

p

⌋
. Then 0 ≤ α, β < 1

and

q =

(⌊ z
bk−1

⌋
+ α

) (⌊
b2k

p

⌋
+ β

)
bk+1

≤

⌊ z
bk−1

⌋
· µ

bk+1
+

⌊
z

bk−1

⌋
+
⌊
b2k

p

⌋
+ 1

bk+1

Since 0 ≤ z < b2k and bk−1 ≤ p < bk, we have⌊ z

bk−1

⌋
+

⌊
b2k

p

⌋
+ 1 ≤ (bk+1 − 1) + bk+1 + 1 = 2bk+1

q ≤

⌊⌊
z

bk−1

⌋
· µ

bk+1
+ 2

⌋
= q̂ + 2.

Therefore, we obtain q̂ ≤ q ≤ q̂ + 2. Set r̂ = z − q̂ p. We
get r = r̂ + (q̂ − q)p. That is, at most two subtractions
are required to obtain r using r̂.

In 2014, Cao and Wu [3] pointed out that the formula

z

p
=

z

bk−1
· b

2k

p
· 1

bk+1

can be directly replaced with

z

p
=

z

2k
· 22k

p
· 1

2k

The adaption could further optimize the programming
code and solve the data expansion problem in Barrett’s
reduction.

2.3 Lookup-Table Reduction

Suppose that z and n are two integers, bk−1 ≤ n < bk,
0 ≤ z < b2k where b = 2L is a suitable base. To compute
z mod n, the usual lookup-table reduction computes

z =

k−1∑
j=0

zjb
j +

k−1∑
i=0

zk+iA[i] mod n, (1)

where 0 ≤ zj < b, j = 0, · · · , 2k − 1, A[i] = bk+i mod
n (0 ≤ i ≤ k − 1) are computed and stored in advance.
In 1997, Lim et al. [10] suggested taking b = 232. In this
method, it only requires a storage for 624 values of mod-
ulus size (e.g., about 78 Kbytes for |n| = 1024). They ex-
perimented on Montgomery’s reduction, classical reduc-
tion, Barrett reduction and some lookup-table reduction
algorithms. It reported that:

1) Modular reduction takes considerably more time
than multiplication;

2) Montgomery’s algorithm and the combined table
lookup method give almost the same performance;

3) The proposed table lookup methods (L224, L624,
L1696) run almost two to three times faster on a
workstation than Montgomery’s reduction. These
methods, however, do not give much improvement
on a PC.

3 Basic Lookup-Table Reduction

The idea behind the basic lookup-table modular reduction
is naive, but useful in some cases. We now describe it as
follows.

3.1 Pre-computed Table

Given a positive integer n, choose an integer k such that
2k−1 < n < 2k. The pre-computed table are constructed
as following (see Table 1).

We can specify that |r[`]| ≤ bn/2c, ` = k, · · · , 2k − 1.
The size of the pre-computation table T can be further
reduced because r[i+ 1] = 2 r[i] for some indexes i.

International Journal of Network Security, Vol.22, No.2, PP.331-336, Mar. 2020 (DOI: 10.6633/IJNS.202003 22(2).17) 333

Table 1: Pre-computation table T for a modular n

` 2k − 1 2k − 2 . . . k
r[`] 22k−1 mod n 22k−2 mod n . . . 2k mod n

3.2 Basic Method (Method-1)

Denote the binary string of a positive integer z by
Binary(z). Suppose that 0 ≤ z < 22k. We directly set
the base b = 2 in Equation (1). It follows that

z ≡
k−1∑
i=0

zk+i r[k + i] +

k−1∑
j=0

zj 2j mod n, (2)

where zj ∈ {0, 1}, j = 0, · · · , 2k − 1, r[k + i] = 2k+i mod
n (0 ≤ i ≤ k − 1). Since zk+i ∈ {0, 1}, 0 ≤ i ≤ k − 1, we
completely eliminated multiplications.

Example 1. n = 97 = (1100001)2, k = 7 (bit-length),
z = 3135 = (110000111111)2, l = 12. Look up for the
values r[11] = 211 mod n = 11 and r[10] = 210 mod n =
54. It gives z = 3135 ≡ r[11] + r[10] + (111111)2 =
11 + 54 + 63 ≡ 31 mod 97.

3.3 Cost Analysis

The number of additions in this method depends on the
amount of 1’s in the left segment of Binary(z). On av-
erage, there are about bk/2c 1’s in the left segment if
the bit-length of z is 2k. That means it requires bk/2c
additions of k-bit integers to compute r =

∑k−1
j=0 zj2

j +∑k−1
i=0 zk+ir[k + i]. It is expected that the absolute value

|r| < kn
4 , since |r[`]| ≤ bn/2c. Hence, it requires bk/4c

subtractions to compute r mod n. In total, Method-1 re-
quires the cost of performing b 3k4 c additions of k-bit inte-
gers.

In the method, addition happened for all values r[k +
i] corresponding to zk+i = 1 (0 ≤ i ≤ k − 1). In the
worst case, zk = zk+1 = · · · = z2k−1 = 1, it has to look
up table and do addition k times. Clearly, Method-1 is
inappropriate for this case.

4 Run-based Reduction

The Method-1 is not good for the worst case when there is
only one run of 1’s in the left segment of Binary(z), i.e., all
the positions are 1’s. We now introduce a new reduction
method based on lookup table which is much better for
the above case.

4.1 The Basic Idea

Given two positive integers k, n, where 2k−1 < n < 2k,
and a positive integer z satisfying 0 ≤ z < 22k, set `0 =
blog2 zc + 1. Flipping all bits of z, we obtain the integer

z1 such that z = (2`0 − 1) − z1. Set `1 = blog2 z1c + 1.
Flipping all bits of z1, we obtain the integer z2 such that
z = (2`0 − 1)− (2`1 − 1) + z2. By the same procedure, we
shall get

z =(2`0 − 1)− (2`1 − 1) + (2`2 − 1) + · · ·
+ (−1)j−1(2`j−1 − 1) + (−1)jz′, (3)

where `j−1 > k ≥ `j , `j is the bit-length of z′. Clearly,

`0 > `1 > · · · > `j . (4)

We then look up the pre-computed table for values
r[`0], · · · , r[`j−1] using the indexes `0, · · · , `j−1 and com-
pute

r =(r[`0]− 1)− (r[`1]− 1) + (r[`2]− 1) + · · ·
+ (−1)j−1(r[`j−1]− 1) + (−1)jz′. (5)

Thus, z ≡ r mod n.

4.2 Description of Method-2

To obtain indexes `0, · · · , `j−1 and z′ in Equation (5), the
above procedure requires to flip all bits of strings. In fact,
these indexes and z′ depend essentially on the runs in the
left segment of Binary(z). Here a run means a maximal
substring whose bit positions all contain the same digit 0
or 1. We can obtain them by counting the length of each
run in the left segment. Suppose that

Binary(z) = α0||α1|| · · · ||αj−1||α′j , (6)

where the notation a||b means that string a is concate-
nated with string b, and αi (0 ≤ i ≤ j − 1) are runs with
lengths di respectively, α′j is the remaining string. We
have

`1 =`0 − d0, · · · , `j−1 = `j−2 − dj−2,
`j =`j−1 − dj−1 (7)

where `j ≤ k < `j−1. Note that the length of string α′j is
`j . Hence, we get

z′ =

{
(α′j)2, j is even,
2`j − 1− (α′j)2, j is odd,

Thus,

z ≡

r[`0] −r[`1] + r[`2] + · · ·+ (−1)j−1r[`j−1]

+(α′j)2, j is even, (8)
r[`0] −r[`1] + r[`2] + · · ·+ (−1)j−1r[`j−1]

+(α′j)2 − 2`j , j is odd, (9)

Example 2. n = 97 = (1100001)2, k = 7; z = 3135 =
(110000111111)2, `0 = 12. The runs in the left segment
of Binary(z) are α0 = 11, α1 = 0000. Their lengthes are
d0 = 2, d1 = 4. We have `1 = `0 − d0 = 12− 2 = 10, `2 =
`1 − d1 = 10− 4 = 6. Since `2 = 6 < 7 = k, we get j = 2,
α′2 = 111111. Therefore, z′ = (α′)2 = (111111)2 = 63.
Thus, z = 2`0 −2`1 + z′ = 212−210 + 63 ≡ 22−54 + 63 =
31 mod 97.

International Journal of Network Security, Vol.22, No.2, PP.331-336, Mar. 2020 (DOI: 10.6633/IJNS.202003 22(2).17) 334

Table 2: The algorithm for Method-2

INPUT: n, k = BitLength(n), 0 ≤ z < 22k, and T = {r[2k − 1], r[2k − 2], · · · , r[k]}.
OUTPUT: zmodn.

If z < n, then return z.
If BitLength(z) = k, then return z − n.
s← Binary[z], `← BitLength[z], y ← 1, r ← r[`], d← 0, t← 0.
For i from `− 1 downto 0 do

b← StringTake[s, {i}].
If b = y, then d← d+ 1.
`← `− d, t← t+ 1, r ← r + (−1)tr[`].

If ` > k, then y ← Mod(y + 1, 2), d← 0.
α← StringTake [s,−`].

If Mod (t, 2) = 0, then r ← r + (α)2, else r ← r + (α)2 − 2`.
Break.

While r ≥ n do: r ← r − n.
While r < 0 do: r ← r + n.
Return r.

4.3 Complexity Analysis

To obtain `0, · · · , `j−1, z′, it requires only a handful of
less-expensive bit operations. Since `0, · · · , `j−1 is or-
dered, i.e., `0 > `1 > · · · > `j−1, the cost of looking up
r[`0], · · · , r[`j−1] in T is negligible. There are j additions
for computing r. Since |r[t]| ≤ bn/2c, t ∈ {`0, · · · , `j−1},
we have

|r| ≤ (j + 2)bn/2c <
(⌊

j + 2

2

⌋
+ 1

)
n.

That means it requires at most
⌊
j+2
2

⌋
subtractions for

computing r mod n. In total, the method needs to per-
form

⌊
3j
2

⌋
additions of k-bit integers. We shall see that

j ≈ bk/2c. That means Method-2 has the similar perfor-
mance as Method-1.

We now give a comparison between Method-2 and Bar-
rett’s reduction. The computation of bz/bic ·µ dominates
the cost of Barrett’s reduction. It requires a multiplica-
tion. For convenience, we suppose that it is a multiplica-
tion of k-bit integers.

The Method-2 requires more cost for bit scans if the
cost for one byte scan is considered to be approximately
equal to that for one bit scan. But we here stress that
the whole cost for bit scans is less than the cost for an
addition of k-bit integers.

The quantity j is of great importance to the compar-
ison. Clearly, j ≤ k. If the left segment of Binary(z) is
1010 · · · 10︸ ︷︷ ︸

k−bit

, then j = k. Given a random 2k-bit integer

z, it is expected that there are about k runs and k 1’s.
Thus, we have j = bk/2c. That means the new reduc-
tion is faster than Barrett’s reduction at the expense of
a little storage. The storage requirement in such case is
acceptable to most devices at the time.

5 A Fast Reduction Method

As we mentioned previously, Method-1 is inappropriate
for dealing with the string 11 · · · 1, whereas Method-2 can
deal efficiently with such a string. Method-2 is not as
efficient as Method-1 to deal with the string 1010 · · · 10.
When hundreds of modular multiplications are required
for modular exponentiation, it is better to use the two
methods alternatively. Since they require a same pre-
computed table, we can combine these two methods. We
now present a description of such a combined reduction
method.

5.1 A Combined Reduction Algorithm

Suppose that n is the modular, 0 ≤ z < 22k, k =
BitLength(n) and T is the pre-computed table. To com-
pute zmodn, the combined reduction method proceeds
as follows.

1) Set Υ to be the left segment of Binary(z) such that
the length of the right segment equals to k.

2) Count the amount of 1’s in Υ and denote it by φ.
3) Count the amount of runs in Υ and denote it by ψ.
4) If φ ≤ ψ then use Algorithm-1. Otherwise, use

Algorithm-2.

5.2 Refined Algorithm

It is possible to refine the above algorithm. For example,
considering a segment of (101010111101)2. For this string,
φ = 8 and ψ = 9. So Algorithm-1 will be used. However,
it is easy to see that the right part of the string is better
to use Algorithm-2. So it is better to use Algorithm-1 for
first 6 bits and use Algorithm-2 for last 6 bits. In general,
if we have a long run of 1, then we should use Algorithm-2
for that run.

The following algorithm can be used to calculate z mod
n, where n < z < n2.

International Journal of Network Security, Vol.22, No.2, PP.331-336, Mar. 2020 (DOI: 10.6633/IJNS.202003 22(2).17) 335

Table 3: Comparison between Barrett’s reduction and Method-2

arithmetic operation pre-computation byte/bit scans
(k-bit integers)

Barrett’s reduction 1 multiplication, 3 additions value µ k/8 byte

Method-2
⌊
3k
4

⌋
additions table T (k items) k bit

1) Set `0 = BitLength[z]. Set Υ to be the left segment
of Binary(z) such that the length of the right segment
equals to k. Count the amount of 1’s in Υ and denote
it by φ. If φ ≥ bk/2c, then flip all bits of Binary(z).
Denote the new number by ẑ. Here z = (2`0 −1)− ẑ.
In such case, the number of 1’s in the corresponding
left segment of ẑ is less than bk/2c. So, we consider
ẑ mod n. For convenience, we now assume that φ ≤
bk/2c.

2) Count runs in Υ to obtain R =
(l0, r0; l1, r1; . . . ; lj , rj), where l0 is the length
of the first run of 1 in Υ and r0 is the length of the
first run of 0 in Υ, . . . , lj is the length of the last
run of 1 in Υ and rj is the length of the last run of
0 in Υ. Here li ≥ 1 for 0 ≤ i ≤ j and ri ≥ 1 for
0 ≤ i ≤ j − 1 while rj ≥ 0.

3) Let `t = k+
∑j

i=t(li + ri), 0 ≤ t ≤ j. For t from 0 to

j calculate St: if lt ≤ 2, St =
∑`t

m=`t−lt+1 r[m − 1];
if lt > 2, St = r[`t]− r[`t − lt].

4) Compute LS =
∑j

t=0 St which can be used to calcu-
late z mod n.

Note that the refined algorithm only needs to look up
the pre-computation table 1+bk/2c times at most, i.e., it
requires about bk/2c additions of k-bit integers at worst.
Since Barrett’s reduction requires one multiplication of
k-bit integers, the method is expected to be almost twice
as fast as the Barrett’s reduction.

Example 3. Suppose z = 58809 = (1110010110111001)2,
n = 267 = (100001011)2. Then k = 9, Υ = (1110010),
R = (3, 2; 1, 1). Therefore S0 = r[16] − r[13] = 121 −
182 = −61, S1 = r[10] = −44, LS = −61− 44 = −105. So
z = −105 + (110111001)2 = −105 + 441 = 69 mod 267.

6 Implementation Tips

Some experiments on modular reduction algorithms have
been implemented, including the common lookup table re-
duction, the refined run-based reduction, Montgomery’s
reduction, Barret’s reduction, the improved Barret reduc-
tion (see [3]) and the general repeated square reduction

for the computation cd mod n, where

c =551032809596221435704021303676634318468838900

242253657466312360131258973407147769827302492

899664883439967559201639571120161329569754012

380070397076398688102087771084080898290586056

782716965021299557575691231794497024713317873

043649598395197752650740840615933274345001186

03083495853207768231485190054148583981,

d =179701540090298627606623440734060835382455879

589891342288209966217108329039535588537789069

509767451580651437283935056579011840457983320

282898150937741373251784485211273880656785034

786587245816549377818099739375517422579161408

358538988289726402478782318599928533360051155

20383724262443403384025327820646467533,

n =13506641086599522334960321627880596993888147

56056670275244851438515265106048595338339402

87150571909441798207282164471551373680419703

96419174304649658927425623934102086438320211

03729587257623585096431105640735015081875106

76594629205563685529475213500852879416377328

533906109750544334999811150056977236890927563.

n is just the RSA-1024 number. The programming codes
are written in Wolfram language. Nevertheless, their per-
formances were not as expected strictly. It means the
current high level languages cannot make the most of bit,
byte or run scanning. That is to say, the underlying as-
sembly language should be exploited for Montgomery’s
reduction, Barret’s reduction and run-based reduction.

7 Conclusion

A new modular reduction method based on lookup table
is introduced, which requires less arithmetic operations
at the expense of a little storage. We show that the new
reduction is almost twice as fast as Barrett’s reduction.
Interestingly, the method scans bit-by-bit. This feature
makes it more portable and more suitable for small de-
vices.

International Journal of Network Security, Vol.22, No.2, PP.331-336, Mar. 2020 (DOI: 10.6633/IJNS.202003 22(2).17) 336

Acknowledgements

We thank the National Natural Science Foundation of
China (Project 61411146001). The authors gratefully ac-
knowledge the reviewers for their valuable suggestions.

References

[1] P. Barrett, “Implementing the rivest shamir and
adleman public key encryption algorithm on a stan-
dard digital signal processor,” in Proceedings of 6th
Annual Cryptology Conference, Advances in Cryptol-
ogy (CRYPTO’86), pp. 311–323, Aug. 1987.

[2] A. Bosselaers, R. Govaerts, and J. Vandewalle,
“Comparison of three modular reduction func-
tions,” in Proceedings of 13th Annual Cryptology
Conference, Advances in Cryptology (CRYPTO’93),
pp. 175–186, Aug. 1993.

[3] Z. J. Cao and X. J. Wu, “An improvement of the
barrett modular reduction algorithm,” International
Journal of Computer Mathematics, vol. 91, no. 9,
pp. 1874–1879, 2014.

[4] V. Dupaquis and A. Venelli, “Redundant modular re-
duction algorithms,” in Proceedings of 10th IFIP WG
8.8/11.2 International Conference on Smart Card
Research and Advanced Applications (CARDIS’11),
pp. 102–114, Sep. 2011.

[5] C. Guo, C. C. Chang, and S. C. Chang, “A secure
and efficient mutual authentication and key agree-
ment protocol with smart cards for wireless commu-
nications,” International Journal of Network Secu-
rity, vol. 20, no. 2, pp. 323–331, 2018.

[6] D. Hankerson., A. Menezes, and S. Vanstone,
Guide to Elliptic Curve Cryptography, 2004. (http:
//citeseerx.ist.psu.edu/viewdoc/download?

doi=10.1.1.394.3037&rep=rep1&type=pdf)
[7] S. Hong, S. Oh, and H. Yoon, “New modular mul-

tiplication algorithms for fast modular exponentia-
tion,” in Proceedings of International Conference on
the Theory and Application of Cryptographic Tech-
niques, Advances in Cryptology (EUROCRYPT’96),
pp. 166–177, May 1996.

[8] L. C. Huang, T. Y. Chang, and M. S. Hwang, “A
conference key scheme based on the diffie-hellman
key exchange,” International Journal of Network Se-
curity, vol. 20, no. 6, pp. 1221–1226, 2018.

[9] S. Kawamura and K. Hirano, “A fast modular arith-
metic algorithm using a residue table,” in Proceed-
ings of International Conference on the Theory and
Application of Cryptographic Techniques, Advances
in Cryptology (EUROCRYPT’88), pp. 245–250, May
1988.

[10] C. Lim, H. Hwang, and P. Lee, “Fast modular reduc-
tion with precomputation,” in Proceedings of Korea-
Japan Joint Workshop on Information Security and
Cryptology (JW-ISC’97), pp. 65–79, Oct. 1997.

[11] Y. J. Liu, C. C. Chang, and S. C. Chang, “An effi-
cient and secure smart card based password authen-
tication scheme,” International Journal of Network
Security, vol. 19, no. 1, pp. 1–10, 2017.

[12] D. Mahto and D. K. Yadav, “Performance analysis
of rsa and elliptic curve cryptography,” International
Journal of Network Security, vol. 20, no. 4, pp. 625–
635, 2018.

[13] P. Montgomery, “Modular multiplication without
trial division,” Mathematics of Computation, no. 44,
pp. 519–521, 1985.

[14] B. Parhami, “Analysis of tabular methods for modu-
lar reduction,” in Proceedings of 28th Asilomar Con-
ference Signals, Systems, and Computers, pp. 526–
530, Nov. 1994.

[15] B. Parhami, “Modular reduction by multi-level table
lookup,” in Proceedings of Midwest Symposium on
Circuits and Systems (MWSCAS’97), pp. 381–384,
Aug. 1997.

[16] C. Y. Tsai, C. Y. Yang, I. C. Lin, and M. S. Hwang,
“A survey of e-book digital right management,” In-
ternational Journal of Network Security, vol. 20,
no. 5, pp. 998–1004, 2018.

[17] C. Walter, “Faster modular multiplication by
operand scaling,” in Proceedings of 11th Annual
Cryptology Conference, Advances in Cryptology
(CRYPTO’91), pp. 313–323, Aug. 1991.

[18] E. Win, S. Mister, B. Preneel, and M. Wiener, “On
the performance of signature schemes based on el-
liptic curves,” in Proceedings of Algorithmic Number
Theory, pp. 252–266, June 1998.

Zhengjun Cao is an associate professor with the Depart-
ment of Mathematics, Shanghai University. He received
his Ph.D. degree in applied mathematics from Academy of
Mathematics and Systems Science, Chinese Academy of
Sciences. He had served as a post-doctor in Computer Sci-
ences Department, Université Libre de Bruxelles. His re-
search interests include cryptography, discrete logarithms
and quantum computation.

Zhen Chen is currently pursuing his M.S. degree from
Department of Mathematics, Shanghai university. His re-
search interests include information security and cryptog-
raphy.

Ruizhong Wei is a professor with the Department of
Computer Science, Lakehead University, Canada. He re-
ceived his Ph.D. degree in applied mathematics from Wa-
terloo University. His research interests include combina-
torics, algebraic code, algorithm design and analysis.

Lihua Liu is an associate professor with the Depart-
ment of Mathematics, Shanghai Maritime University. She
received her Ph.D. degree in applied mathematics from
Shanghai Jiao Tong University. Her research interests in-
clude combinatorics and cryptography.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.394.3037&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.394.3037&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.394.3037&rep=rep1&type=pdf

	Introduction
	Related Reduction Methods
	Montgomery's Reduction
	Barrett's Reduction
	Lookup-Table Reduction

	Basic Lookup-Table Reduction
	Pre-computed Table
	Basic Method (Method-1)
	Cost Analysis

	Run-based Reduction
	The Basic Idea
	Description of Method-2
	Complexity Analysis

	A Fast Reduction Method
	A Combined Reduction Algorithm
	Refined Algorithm

	Implementation Tips
	Conclusion
	REFERENCES

