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Abstract

Parametric t-distributed stochastic neighbor embedding
(t-SNE) algorithm is a kind of unsupervised dimensional-
ity reduction method which is widely used and effectively.
However, current research rarely involves the application
of parametric t-SNE in network attack detection. Simul-
taneously, it is rare to apply a reasonable model for para-
metric t-SNE. Therefore, we propose a novel unsupervised
dimensionality reduction algorithm to detect attack be-
haviors, which uses t-SNE combined with a hierarchical
neural network. This algorithm maps a high-dimensional
network data space into a low-dimensional latent space.
Furthermore, we evaluate the performance of the para-
metric t-SNE method in experiments using two public
network intrusion datasets and a self-collected network
dataset. In experiments, several unsupervised dimension-
ality reduction algorithms are discussed and compared
with the algorithm we proposed. This comparison shows
that parametric t-SNE based on hierarchical neural net-
work gets excellent dimensionality effect, which achieved
a maximum of 99% accuracy for 1-nearest neighbor.

Keywords: Hierarchical Neural Network; Network Intru-
sion Detection; Parametric T-SNE

1 Introduction

Network data possesses high-dimensional characteristics,
which hinders a machine learning model from achieving
good performance. Therefore, dimensional reduction is
commonly used for a large amount of high-dimensional
network data. Traditional reduction algorithms, such as
principal component analysis (PCA) and neighborhood

components analysis [22], are the commonly used linear
reduction techniques. However, these linear reduction al-
gorithms are not ideal when dealing with nonlinear data
in a high-dimensional space. In addition, auto-encoders
proposed by Hinton [6] can map high-dimensional data
by maximizing the variances in latent space. Manifold
learning is another such reduction algorithm. Various al-
gorithms, such as Isomap [8], Locally Linear Embedding
(LLE) [9], and Maximum Variance Unfolding (MVU) [15],
focus more on the local structure of the high-dimensional
data. Unfortunately, these algorithms are non-parametric
and cannot map the out-of-sample data. A typical t-
distributed stochastic neighbor embedding (t-SNE) algo-
rithm [20] is another such non-parametric manifold learn-
ing algorithm. Furthermore, Maaten et al. [3] presented
a parametric t-SNE model based on stacked restricted
Boltzmann machine models [12] and solved this problem
of out-of-sample data.

However, for network data, it cannot simply build a
stacked and fully connected neural network model be-
cause of the hierarchical structure of network data. A
network streaming data consists of two layers, i.e., packet
and micro-flow layers. The micro-flow layer is a set of IP
packets that contain the same source IP address, desti-
nation IP address, source port, and destination port; and
are from the same time window. In this study, micro-flow
(defined by five tuple) data is considered to be a sequence
of network packets, and these packets can be considered
as limited-length data blocks. Thus, a packet layer means
byte-level data and the streaming layer is a sequence of
packets. To detect network attacks by modeling both
packet and streaming layers, a hierarchical model is de-
signed in this study.

This study aims at investigating and proposing a new
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(a) The structure of network traffics

(b) The RNN-MLP model

Figure 1: The structure of network traffics and RNN-MLP model

parametric t-SNE model, which is adapted to the hier-
archical structure of network data and performs unsu-
pervised dimensionality reduction because of the lack of
labels for malicious network behaviors. Unlike typical t-
SNE, the new algorithm should solve the problem of out-
of-sample data. We performed dimensional reduction and
visualization based on the Defense Advanced Research
Projects Agency (DARPA) 1998 dataset [4] and the
Information Security Centre of Excellence (ISCX)-2012
dataset [11]. The effects of various hyper-parameters,
such as perplexity, learning rate, packet length, and flow
length, on the results of dimensionality reduction are dis-
cussed. The experiments show that the parameterized
t-SNE method has about four to five percent absolute
improvement as compared with other classical dimension-
ality reduction methods, such as using auto-encoders and
PCA.

The remainder of this study is organized as follows.
In the second section, the parametric t-SNE algorithm
combined with a hierarchical deep neural network is de-

scribed. Furthermore, in the third section, the experi-
mental setup and results, and performance of various in-
fluencing factors are discussed. Finally, conclusions and
future work are described in the fourth section.

2 Parametric T-SNE Based On
Hierarchical Deep Neural Net-
work

In this section, we introduce parametric t-SNE based on
the recurrent neural network (RNN)-multilayer percep-
tron (MLP) model [5, 17]. First, a typical t-SNE algo-
rithm is described, which is a global dimensional reduc-
tion method. However, the out-of-the-sample extension is
invalid. Further, we introduce the parametric t-SNE al-
gorithm. As an improvement, the algorithm can train the
RNN-MLP model while performing global dimensionality
reduction, thereby making the model effective for external
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samples. In addition, we also discuss the preprocessing
method of network traffics.

2.1 Structure Of Micro-flow And Hierar-
chical Neural Network

In this study, the micro-flow is the intrusion detecting
object. The micro-flow sequence is divided into two lay-
ers, i.e., flow and packet layers. The network data is
temporal sequence and hierarchical. In Figure 1(a), the
structure of micro-flow is shown. One micro-flow is com-
posed of an ordered set of network packets and one packet
is composed of bytes. Therefore, it is necessary to design
a hierarchical model corresponding for the special data
structure.

Inspired by the special structure of network traffics, we
design a hierarchical deep neural network model, named
RNN-MLP. The structure of this model is shown in Fig-
ure 1(b). The model consists of 4 parts. The first layer
from the bottom is the byte representation. The second
layer is the packet representation, and the third layer is
RNN model, which is the flow representation. The RNN
model is a deep neural network, which is suitable for mod-
eling temporal sequences, such as speech recognition [1],
language models [10] and micro-flow [14]. The top layer
is a t-SNE clustering model.

1) Byte representation. In this paper, we adopt dis-
tributed embedding for byte representation. The net-
work packets are composed of bytes,which are pre-
sented as packet = {b1, b2, . . . , bn}, where n is the
number of bytes in a packet. As the input of an
embedding function femb, each byte is mapped to a
k-dimensional byte-embedding vector, and each ele-
ment of the vector follows a uniform distribution from
0 to 1. The mapping packet is contracted presented
as:

vp = {femb(b1), femb(b2), . . . , femb(bn)}

where, vp is the packet vector which is concatenated
by byte vectors and is taken as the input for the
following RBM model.

2) Packet representation. The packet representation
refers to the whole MLP because raw data are recom-
mended as inputs in the deep neural network com-
monly. The packets of byte-level data are directly
considered as model inputs. The output of MLP is
presented as follows:

omlp = θ(Wm o · θ(Wm h · x+ bm h) + bm o),

where x refers to input data that equals to vp; Wm o

and Wm h are the weights of the output and hidden
layers, respectively; bm h and bm o are the biases of
the hidden and output layers, respectively; the func-
tion θ(·) is the activation function; omlp is the packet
feature vector.

3) Flow representation. The flow representation refers
to the entire recurrent neural network [19] There are
two aspects of the inputs to a recurrent model. One
part is the output of MLP, omlp, and the other is the
output of the recurrent layer from the last time step.
The recurrent network is presented as follows:

ornn,t = θ(Wr i · omlp +Wr h · or,t−1 + b),

where Wr i and Wr h are the weights of the input
layer and the recurrent layer, and the symbol b is the
bias; or,t is the output of the recurrent layer at the
tth step.

4) Clustering layer. After obtaining the output ornn,t
from the RNN model, a parametric t-SNE method is
adopted to cluster whose detail is discussed in Sec-
tion 2.2.

2.2 Parametric T-SNE Model and Back-
ward Propagation

In this part, we firstly introduce the t-SHE algorithm
and obtain a gradient of cost function. Then the para-
metric t-SNE algorithm based on hierarchical neural net-
work is discussed. The t-SNE algorithm consists of two
steps. The first step is probability distribution in a high-
dimensional space is performed. Accordingly, the more
similar a pair of objects in the space are, the easier it
is to be selected. Conversely, the probability of selecting
two dissimilar objects is reduced. Further, the probability
in a low-dimensional space is constructed, and the high-
dimensional probability distribution is similar to the low-
dimensional probability distribution. Different algorithms
use different criteria to measure similarity distances (such
as k-means using Euclidean distance). The t-SNE algo-
rithm uses conditional probability to present the similar-
ity distances of two objects. Specifically, when given a set
X = {x1, x2, . . . , xN} containing N samples (objects), be-
tween any two samples xi and xj, the distance is defined
as follows:

pij =
pi|j + pj|i

2N

The definition of the probability condition between two
samples is as follows:

pj|i =
exp(− ||xi−xj ||2

2σ2
i

)∑
k 6=i exp(− ||xi−xk||2

2σ2
i

)

where σ2
i is the standard deviation of the Gaussian dis-

tribution of the data.
After dimensional reduction via t-SNE, the samples’

set is presented asY = {y1, y2, . . . , yN}, which is the
mapping from a high-dimensional space into a low-
dimensional space. The distance qij between two samples
in the low-dimensional space is presented as follows:

qij =
(1 + ‖yi − yj‖2)−1∑
k 6=l(1 + ‖yk − yl‖2)−1
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The final optimization of the t-SNE algorithm is minimiz-
ing Kullback-Leibler (KL) divergence, which is presented
as follows:

C = KL(P‖Q) =
∑
i

∑
j

pij log
pij
qij

Generally, the values of pii and qii are 0. The mini-
mization of the KL divergence is non-convex optimiza-
tion; thus, the technique of mini-batch gradient descent
is adopted, and the gradient is presented as follows:

∂C

∂yi
= 4

∑
j

(pij − qij)(yi − yj)(1 + ‖yi − yj‖2)−1 (1)

So far the partial derivative about yi are obtained and the
method of t-SNE algorithm has been introduced.

In the model of parametric t-SNE, the symbol yi refers
to the output of the hierarchical neural network. The
weights of neural networks are updated by back propaga-
tion. In this case, the weights of the model are presented
as W = {w1, w2, . . . , wK}, where K refers to the amount
of weights from the neural network, and the gradient is
presented as follows:

∂C

∂wj
=
∂C

∂Y

∂Y

∂wj
, j = 1, 2, . . . ,K,

where ∂C
∂Y can be calculated by Equation (1) and ∂Y

∂wj
can

be calculated by back propagation.

2.3 Preprocessing

The micro-flow sequence is preprocessed. A micro-flow se-
quence, f, contains many ordered network packets, which
can be presented as f = {p1, p2, . . . , pm}. The length of
a micro-flow sequence refers to the number of the packets
it contains. Furthermore, the length of packets is also dif-
ferent between any two packets. Thus, the dimensions of
the samples are inconsistent and not suitable as the input
for the t-SNE algorithm. The preprocessing is described
as follows:

1) Cutting and padding. To construct an equal-length
micro-flow sequence, cutting and padding are in-
volved. Preset each micro-flow sequence to contain
m packets and each packet contains t bytes. Under
known m and t conditions, the truncated network
packets or micro-flow sequence can be cut. For a net-
work packet or micro-flow that is too short, it needs
to be padding with zero. The details of cutting and
padding are presented in Algorithm 1.

2) Ignoring the address information. In network intru-
sion detection, the IP and Mac addresses are usually
shielded to avoid interference from these messages in
the detecting model.

3 Parametric T-SNE Based On
Hierarchical Deep Neural Net-
work

In this section, the experimental setups, evaluation met-
rics, effects of hyper parameters, and performance com-
parison of different algorithms are discussed.

3.1 Experimental Setup

In the experimental setup, two public datasets, DARPA
1998 [4] and ISCX-2012 [11], are involved. Additionally,
a self-collected real network dataset without label is also
employed in the experiment.

DARPA 1998 is a public dataset, which was sponsored
by DARPA for the first realistic and systematic evaluation
of research intrusion detection system, published by the
MIT Lincoln Laboratory in the United State in 1998. This
dataset contains a seven-week training set and a two-week
test set. In this dataset, the traffic data contains four
types of attacks, i.e., DoS, Probe, U2R, and R2L. The
percentage of attacks in the training set of DARPA 1998 is
about 65.54%, while the proportion of attacks in DARPA
is 63.29%, 1.99%, 0.26%, and 0.01%. The proportion of
the test set is similar to that of the training set.

ISCX-2012 is a public network dataset published by the
Information Security Centre of Excellence (ISCX) of the
University of New Brunswick in Canada in 2012. This
dataset contains the full network traffic data of seven
days. All traffic data are normal on the first day, while
four types of malicious traffics occurred in the following
six days. The different typesof malicious traffic were BF-
SSH, infiltrating, DDoS, and HttpDoS. The percentage of
normality in ISCX-2012 is about 97.27%, while the pro-
portion of attacks in ISCX-2012 is 0.46%, 0.66%, 0.23%,
and 1.38% respectively.

The self-collected dataset contains data of seven days
full traffic, which is collected by our self-developed net-
work data acquisition equipment from a Chinese telecom-
munication operator. This dataset is without labels and
plays a validated role in the experiments.

The experimental platform is Dell R720, which consists
of a CPU of 16 cores with 2.7 GHz, 96 GB memory, and
Nvidia Grid K2 GPU. The OS used is Ubuntu 14.04.

3.2 Evaluation Metrics

In this study, the 1-nearest neighbor (1-NN) algorithm is
adopted, and the metrics for this are accuracy and recall.
Accuracy is a description of systematic errors, a measure
of statistical bias that represents the reliability of a rule,
usually represented by the proportion of correct classifica-
tions. However, if some attacks are more important, the
recall, which is the fraction of relevant instances that have
been retrieved over the total amount of relevant instances,
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Algorithm 1 Preprocessing the network flow

Input: micro-flow, presetting m and t
Output: preprocessed micro-flow

1: cnt ← 0
2: if length flow ¡ t then
3: padding with (t-length flow) packets, where the packets are filled by zero values
4: end if
5: for each packet in flow: do
6: if cnt ≥ t then
7: break
8: end if
9: if length packet ¡ m: then

10: padding with zero value at the end of the packet
11: else
12: if length packet ¿ m: then
13: cutting and only reserve the first m bytes
14: end if
15: end if
16: cnt ← cnt + 1
17: end for

(a) DARPA: learning rate from 0.00001 to 0.1

(b) ISCX-2012: learning rate from 0.00001 to 0.1

(c) The accuracy with learning rate

Figure 2: Two-dimensional (2D) dimensionality reduction effect under different learning rates

should be given more attention.

Accuracy =
TP + TN

TP + TN + FP + FN

Recall =
TP

TP + FN

where TN is the number of instances correctly predicted
as a non-attack instance. FN is the number of instances

wrongly predicted as a non-attack instance. FP is the
number of instances wrongly predicted as an attack. TP is
the number of instances correctly predicted as an attack.

In this study, the 2D dimensionality reduction render-
ings are also involved. The visual renderings are not nu-
merical indicators; however, they enable us to visually
determine the effect of dimensionality reduction.



International Journal of Network Security, Vol.22, No.2, PP.265-274, Mar. 2020 (DOI: 10.6633/IJNS.202003 22(2).10) 270

(a) DARPA: perplexity from 2 to 50

(b) ISCX-2012: perplexity from 2 to 50

(c) The accuracy with perplexity

Figure 3: 2D dimensionality reduction effect under different perplexity

3.3 Influence Of Hyper Parameters

There are two main types of hyper parameters that affect
the performance of the parametric t- SNE algorithm. One
consists of the inherent parameters of the algorithm, such
as learning rate and perplexity. The other type consists of
parameters of the preprocessing network data (the length
of micro-flow and the size of packets).

1) Learning rate. The learning rate of the paramet-
ric t-SNE algorithm affects the speed at which the
model converges in back propagation. There is an
argument [20]that if the learning rate is too low, the
distribution of samples tends to be spherical; Con-
versely, the model cannot converge.

In the experiments of learning rate, the range is from
0.0001 to 0.1. In Figure 2, the 2D dimensionality re-
duction renderings are shown. In the DARPA data
set, the 1-NN error rate is the lowest between 0.001
and 0.01 learning rates, and too large or too small
learning rates will increase the error rate. A sim-
ilar phenomenon exists in the ISCX-2012 data set.
However, the difference is that when the learning
rate reaches 0.1, this model cannot converge, and the
learning rate cannot be calculated.

2) Perplexity. The degree of perplexity is the number
of nearest neighbors selected during the iterative up-
date process. Generally, a larger sample set requires
a higher degree of perplexity. It is highlighted in

the literature [20]that the non-parametric t-SNE al-
gorithm is less sensitive to the confusion parameter.
However, it has been found through experiments that
the parametric t-SNE algorithm is more sensitive to
perplexity than the non-parametric t-SNE algorithm.

In the experiments of perplexity, the range is from 2
to 50. It can be seen that the degree of perplexity
is data sensitive. For the DARPA 1998 dataset, the
degree of perplexity has a greater impact on the 1-NN
accuracy; however, for the ISCX-2012 dataset, the
degree of perplexity is less affected. The preliminary
assumption is that in different datasets the manifold
characteristics are not identical in high-dimensional
data space. The 1-NN accuracy rate does not change
too much; however, the effect of data’s 2D reduction
is significant. It can be clearly seen that when the
perplexity is 2 or 10, the high-dimensional data is not
effectively mapped into the latent space.

3) Length of micro-flow. The length of micro-flow refers
to the number of packets that one flow contains. We
use a five tuple (source IP, destination IP, source
port, destination port, and time window) sequence
of packets that indicate the micro-flow. The num-
ber of network packets included in each flow is not
uniform; thus, cutting and padding is required.

As shown in Figure 4, in the experiments of the
length of micro-flow, the range is from 2 to 50. There
is a phenomenon that the 1-NN error rate with short-
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(a) DARPA: flow number from 2 to 40

(b) ISCX-2012: flow number from 2 to 40

(c) The accuracy with flow number

Figure 4: 2D dimensionality reduction effect under different length of micro-flow

length flow is lower than that of the longer one. A
simple explanation is that irrespective of a normal
or attack traffic, the first few network packets in a
micro-flow are all connected packets, which cannot
be detected as attacks.

4) length of packets. The size of a packet is the num-
ber of bytes a sampled IP packet contains. The
short IP packets are padding. Conversely, long pack-
ets are cutting. Considering the importance of the
header data of the IP packet, at least 60 bytes are
reserved (The IP packet contains at least a 20 byte
header. The TCP layer also contains at least a 20
byte header. Other application layer protocol data
reserved 20 byte header).

The experiment of the length of packets is illustrated
in Figure 5. The range of length is from 20 to 120 bytes.
The best performance is achieved at the 100 byte length
in both DARPA 1998 and ISCX-2012 datasets. In most
cases, packets need to be 100 bytes long to contain enough
information to be detected; however, packets with more
than 100 bytes may cause excessive padding, and it in-
volves too much noise.

3.4 Results Of Comparison Experiments

We set up a control experiment choosing PCA and auto-
encoder as the control group.

The PCA algorithm is a typical linear dimensional re-
duction algorithm. The main idea of PCA is mapping
data along the maximum direction of the variance makes
the data easier to distinguish.

The auto-encoder was proposed by Hinton in 2006 [6],
which is a deep neural network unsupervised algorithm.
The core idea is that using multi-layer neural network
makes input vectors closed to the output vectors. The
structure of the auto-encoder is shown in Figure 6. The
structure of the auto-encoder contains encoder and de-
coder, which are multi-layer neural network. The dimen-
sional reduction is the output of the encoder.

The 2D dimensionality reduction renderings of
DARAP1998, ISCX-2012 and the self-collected dataset
are shown in Figure 6. In the subfigures of PCA, the
sample points are scattered and have a certain cluster-
ing effect; however, the distinction between U2R, normal,
and DoS is not obvious. In the subfigures of the auto-
encoder, the sample points are scattered, and only R2L
can be distinguished from other types. In the subfigures
of parametric t-SNE, the effects of reduction are obvious.

In Figure 6(c), the performance of each reduction al-
gorithms are shown based on the self-collected dataset.
Differently from the other datasets, the data is untagged
here, so the picture is with only one color to mark the
network flow. It shows that by PCA and auto-encoder
algorithms, samples have not been distinguished or re-
duce the dimension sensibly. However, sample points are
effectively divided into 5 clusters via t-SNE algorithm.
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(a) DARPA: packets’ number from 20 to 120

(b) ISCX-2012: packets’ number from 20 to 120

(c) The accuracy with packets’number

Figure 5: 2D dimensionality reduction effect under different length of packets

(a) DARPA: 2-D dimensionality reduction

(b) ISCX-2012 : 2-D dimensionality reduction

(c) self-collected dataset: 2-D dimensionality reduction

Figure 6: 2D dimensionality reduction effect of PCA (left), auto-encoder (middle) and parametric t-SNE algorithm
(right)

In Table 1, the accuracies and recalls of 2-D, 5-D, and 10-D dimensional reductions are presented. According
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Table 1: 1-NN accuracy and recall rate for PCA, auto-encoder, and parametric t-SNE

Dimensions 2-D 5-D 10-D
Datasets DARPA ISCX DARPA ISCX DARPA ISCX
Metrics Acc Rc Acc Rc Acc Rc Acc Rc Acc Rc Acc Rc
PCA 0.784 0.83 0.831 0.854 0.823 0.819 0.988 0.986 0.832 0.831 0.985 0.982
Auto-encoder 0.411 0.654 0.361 0.517 0.684 0.774 0.678 0.698 0.826 0.856 0.875 0.863
t-SNE (RNN) 0.85 0.871 0.97 0.967 0.773 0.819 0.986 0.983 0.842 0.874 0.99 0.988
t-SNE (MLP) 0.819 0.862 0.975 0.972 0.808 0.858 0.962 0.957 0.819 0.869 0.949 0.945
t-SNE (RNN-MLP) 0.848 0.872 0.981 0.978 0.791 0.858 0.989 0.987 0.871 0.897 0.99 0.988

Table 2: The performance of different algorithms based on DARPA1998 dataset and ISCX-2012 dataset

Dataset DARPA1998 ISCX-2012
Algorithm Accuracy Avg-Rc Accuracy Avg-Rc
SVM [21] 79.4 47.6 N/A N/A
Random forest [7] 91.4 78.23 N/A N/A
Bayes network [13] 90.6 53.47 N/A N/A
PLSSVM [2] 99.8 68.25 N/A N/A
ALL-AGL [16] N/A N/A 95.4 93.2
AMGA2-NB [18] N/A N/A 94.5 92.7
t-SNE(RNN-MLP) 87.1 89.7 99.0 98.8

to the table, the parametric t-SNE method based on the
RNN-MLP model is better than other algorithms. By
comparing different dimensions, we can observe that as
the dimension increases, both the 1-NN accuracy and 1-
NN recall rate of the algorithm increase.

3.5 Algorrithm And Implementation
Comparison

In this paper we also compare some algorithms based on
the KDD99 dataset and ISCX-2012 dataset. It is note-
worthy that most of the current studies are based on su-
pervised method, and the t-SNE method we proposed are
unsupervised. The methods of KNN, SVM, Tree and ran-
dom forests, and Bayes are involved in Table 2.

As can be seen, for the DARPA1998 dataset, the t-
SNE model performed well in terms of the accuracy rate
and obtained a higher average recall than any other al-
gorithms in Table 2. Our model were constructed via a
recurrent neural network and t-SNE which takes the byte-
level data (raw data) as inputs. It could be inferred that
the recurrent model is suitable for streaming-type data.

According to the performance of difference algorithms
based on ISCX-2012 dataset, we compared the t-SNE
method with three supervised methods. In spite of the
t-SNE algorithm is unsupervised, t-SNE method got a
best accuracy rate and a second good recall rate.

4 Conclusions

• In this study, we are committed to developing an un-
supervised dimensionality reduction method for fac-
ing network attacks and have proposed a parametric
t-SNE method based on a hierarchical neural net-
work. Furthermore, a data preprocessing method
adapted to the parametric t-SNE algorithm for the
indefinite-length network data is discussed.

• In the experiments, the proposed method achieves
better results of dimensional reduction than other al-
gorithms.

• In future works, we aim to investigate how to intro-
duce geographic information, such as IP addresses,
as input data. Furthermore, we aim to investigate
other unsupervised reduction or clustering methods
for network attacks.
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