International Journal of Network Security, Vol.22, No.1, PP.80-92, Jan. 2020 (DOI: 10.6633/1JNS.202001-22(1).08)

80

Automatic Verification of Security of Identity
Federation Security Protocol Based on SAML2.0
with ProVerif in the Symbolic Model

Jintian Lu?, Xudong He!, Yitong Yang!, Dejun Wang!, and Bo Meng!

(Corresponding author: Bo Meng)

School of Computer Science, South-Central University for Nationalities®
Wuhan 430074, China
School of Data and Computer Science, Sun Yat-Sen University?
Guangzhou 510006, China
(Email: mengscuec@gmail.com)
(Received June 20, 2018; Revised and Accepted Nov. 22, 2018; First Online June 17, 2019)

Abstract

In recent years, several Identity Federation security pro-
tocols have been introduced to enhance the security of
Identity authentication. Owning to the complexity, as-
sessing security of Identity Federation security protocols
has becoming a hot issue. Hence, in this study, we firstly
review the development of formal methods on Identity
Federation Security Protocol Based on SAML. And then,
an Identity Federation Security Protocol Based on SAML
is formalized with Applied PI calculus. After that, the
formal model is translated into the inputs of ProVerif. Fi-
nally, we run ProVerif to analyze the security properties
of Identity Federation Security Protocol Based on SAML.
The result shows it has not secrecy, but it has some au-
thentications. At the same time, we present a solution to
address the security problems.

Keywords: Applied PI Calculus; Authentication; Formal
Method; Security Protocol

1 Introduction

Identity Federation has been playing an increasingly im-
portant role in information security [2,9,26] and can al-
low the end users to use the same set of credentials to
obtain access to multiple resources in different organiza-
tion. Identity Federation security protocols typically in-
clude Microsoft U-Prove, OASIS SAML, and Liberty. But
the OASIS Security Assertion Markup Language (SAML)
is the emerging standard in this context and it is the most
important technology to establish and manage Identify
Federation. According to the related researches, the se-
curity of Identity Federation based on SAML2.0 has not
been analyzed based on rigorous proofs and has been chal-
lenged by several analysis.

In order to obtain the strong confidence on security
properties of security protocols [2, 8,10, 15, 18, 25], the
symbolic model and the computational model are intro-
duced. Firstly, each model formally defines security prop-
erties of security protocol, and then propose methods for
strictly proving and analyzing that whether given security
protocols meet these requirements in adversarial environ-
ments or not. The computational model is too extreme
complicated and difficult to get the support of automatic
tools. In contrast, the symbolic model is considerably
simpler than the computational model, hence proofs are
also simpler, and can sometimes benefit from automatic
tools support. For example: SMV, NRL, Casper, Isabelle,
Athena, Revere, SPIN, Brutus, Coq [4, 7], ProVerif [6],
Scyther [22,24]. ProVerif is an automatic security proto-
col verifier and accepts the Applied PI calculus [27] as its
input. It can process a lot of the different cryptographic
primitives and an unbounded number of sessions of the se-
curity protocol in an unbounded message space. ProVerif
has been tested on security protocols of the literature with
very great results.

Therefore, in this paper, we use ProVerif to formally
verify security properties of Identity Federation Security
Protocol Based on SAML2.0 in the symbolic model.

2 Contribution

Several Identity Federation security protocols have been
introduced in the recent years. Owning to the complexity,
how to assess its security has become a challenging issue.
Formal method is crucial to assess its security. So in this
paper, we firstly review the development of the formal
methods on Identity Federation Security Protocol Based
on SAML 2.0 and apply the automatic tool developed
by Blanchet to analyze its security properties. Hence,

International Journal of Network Security, Vol.22, No.1, PP.80-92, Jan. 2020 (DOI: 10.6633/1JNS.202001-22(1).08)

firstly, Identity Federation Security Protocol Based on
SAML is modeled with the Applied PI calculus. And
then the model is translated into the inputs of ProVerif.
Finally the translated model is performed by automatic
tool ProVerif. The result shows that it has not secrecy of
some keys, but it has some authentications based on the
model implemented by us. At the same time, we present
a solution to address the security problems.

We use the Applied PI calculus to model Identity Fed-
eration Security Protocol Based on SAML according to
the fact that the Applied PI calculus allows the modeling
of relations between data in a simple and precise manner
using equational theories over term algebra. The general
analysis model is presented in Figure 1.

~

N

Dolev-Yao model Security property

Concurrent processes
Adversary model
Terms and equational theory

Analysis model of Identity Federation Security Protocol
with Applied Pi Calculus

/

J

Figure 1: Analysis model of identity federation security
protocol based on SAML with the applied PI calculus

There, the security properties model is equivalence be-
tween processes, while the attacker is modeled as an arbi-
trary process running in parallel with the protocol process
representing the adversary model, which is the parallel
composition of the protocol participants processes. The
considered attacker is stronger than the basic Dolev-Yao
attacker since it can exploit particular relations between
the messages by using particular equational theories stat-
ing the message relations. Figure 2 presents the auto-
matic verification of Identity Federation Security Protocol
Based on SAML 2.0.

Identity Federation security
protocol

Security proterties

Attacker model

Applied Pi Calculus

C S —)

Symbolic model

Figure 2: Automatic verification of identity federation
security protocol based on SAML

81

3 Related Work

Here, we present the state-of-art of the analysis of the
Identity Federation Security Protocol Based on SAML.
Armando et al. [1] mechanically analyzed SAML SP-
Initiated SSO profile with the model checker SATMC
based on HLPSL++ as the specification language and
found a severe security vulnerability that allows a dis-
honest service provider to impersonate a user at another
service provider. Cabarcos et al. [20] proposed a generic
extension for the SAML standard for facilitating the cre-
ation of federation relationships in a dynamic way be-
tween prior unknown parties. But its security is not
proved by formal methods. ter Beek et al. [5] used model
checker PaMoChSA to analyze the security aspects of the
Identity Federation protocol proposed by Telecom Italia
and found a man-in-the-middle attack [3,12,14, 16, 19].

Ferdous and Poet [17]presented a simple approach
based on SAML Profile and allow users to create feder-
ations using SAML between two prior unknown organi-
zations in a dynamic fashion. Ghazizadeh et al. [11]pre-
sented an overview on Identity Federation in the cloud
computation environment and pay a special attention on
the identity theft issue. Cabarcos et al. [21]introduced the
IdMRep which is a decentralized reputation-based mech-
anism which allows trust relationships to be established
on-demand driven by user’s needs. While they do not
analyze its security.

Wang et al. [13] presented a browser-based mutual au-
thentication for Federated Identity management to pro-
tect the token mutually by binding the client certificate
and using TLS protocol. Apart from that they also ana-
lyze the security in the Random model and prove that it
supports authentication. Saklikar and Saha [23] proposed
the VoIP Identity Federation Framework which can make
a user to establish Identity Federation and the assertion
of any relevant Identity information from one VoIP con-
text to another based on the federate-out and federate-in
primitives. While they do not prove its security with for-
mal methods.

4 Applied PI Calculus and

ProVerif

The Applied PI calculus is a formal language for describ-
ing concurrent processes and their interactions based on
Dolev-Yao model. Applied PI calculus is an extension of
the PI calculus that inherits the constructs for commu-
nication and concurrency from the pure PI calculus. It
preserves the constructs for generating statically scoped
new names and permits a general systematic development
of syntax, operational semantics equivalence and proof
techniques. At the same time, there are several powerful
automatic tool supported the Applied PI calculus, for ex-
ample, ProVerif. The Applied PI calculus with ProVerif
has been used to study a variety of complicated security
protocols.

International Journal of Network Security, Vol.22, No.1, PP.80-92, Jan. 2020 (DOI: 10.6633/1JNS.202001-22(1).08)

In the Applied PI calculus, terms consists of names
variables and signature > . > is the set of function sym-
bols, each with an arity. Terms and function symbols are
sorted, and of course function symbol application must
respect sorts and arties. Typically, we let a,b and c range
over channel names. Let x,y and zrange over variables,
and u over variables and names.over variables and names.
We abbreviate an arbitrary sequence of terms My, ---,
M; to M. In applied PI calculus, it has plain processes
and extended processes. Plain processes are built up in
a similar way to processes in the PI calculus, except that
messages can contain terms and that names need not be
just channel names. The process 0 is an empty process.
The process Q|p is the parallel composition of P and Q.
The replication !p produces an infinite number of copies
of P which run in parallel. The process vn.p firstly creates
a new, private name then executes as P.The abbreviation
vn is a sequence of name restrictions vny, - -+, vn;. The
process in (u, x). P receives a message from channel u,and
runs the process P by replacing formal parameter x by the
actual message. We use in(u, M). P is the abbreviation
for the output of terms Ny, ---, N;. The conditional con-
struct if M=N then P else QQ runs that if M and N are
equal, execute P, otherwise execute Q.

Extended processes add active substitutions and re-
striction on variables. We write { M / x } for active
substitution which replaces the variable x with the term
M. The substitution typically appears when the term M
has been sent to the environment, but the environment
may not have the atomic names that appear in M; The
variable x is just a way to refer to M in this situation.

In general an event is used to mark important steps of
the security protocol under study but do not otherwise
affect its behavior. It can be used to record the context
of the sending or receiving message in security protocol.
In the applied PI calculus, event event(M) just outputs
message M through a special channel. So event event(M)
does not reveal M to the adversary. Hence, the execution
of the process P after inserting events is the execution
of P without events, plus the recording of event(M). The
process the event(M). P executes the event(M), then ex-
ecutes P.

ProVerif is an automatic cryptographic protocol ver-
ifier based on a representation of the protocol by Horn
clauses and the Applied PI calculus. It can han-
dle many different cryptographic primitives, including
shared- and public-key cryptography, hash function, and
Deffie-Hellman key agreements, specified both as rewrite
rules and as equations. It can also deal with an un-
bounded number of sessions of the protocol and an un-
bounded message space. When ProVerif cannot prove a
property, it can reconstruct an attack, that is, an execu-
tion trace of the protocol that falsifies the desired prop-
erty. ProVerif can prove the following properties: secrecy,
authentication and more generally correspondence prop-
erties, strong secrecy, equivalences between processes that
differ only by terms. ProVerif has been tested on proto-
cols of the literature with very encouraging results. When

82

ProVerif cannot prove a security property, it can recon-
struct an attack, ProVerif can prove secrecy, authentica-
tion and more generally correspondence properties, strong
secrecy, equivalences between processes that differ only by
terms.

5 Identity Federation Security
Protocol Based on SAML2.0

Identity federation security protocol is mainly made up
of three principles: User Agent (UA), Service Provider
(SP) and Identity Provider (IdP). Generally there is a
Single Sign-On (SSO) service component in the identity
provider. SSO allows the end users to provide their cre-
dentials once and obtain access to multiple resources. In
other words, the identity provider can provide the SSO
service. Service provider has the components of access
check and assertion consumer service. Hence it has the
ability to check and verify the identity of user and as-
sertion consumer. User agent can be browser which is
the agent of the users. There are two models in identity
federation security protocol based on SAML. One is IdP
-initiated model. The other is SP-initiated model. Fig-
ure 3 describes identity federation security protocol based
on SP-initiated SAML 2.0 using HTTP.

[LocallD | 1dP | LinkedID | [LinkedD [SP_ | LocallD |

Identity database of SP

Identity database of IdP

Service Provider

Identity Provider

User Agent

(1) URL request for the resource

(2) HTTP redirect response&HTTP GHT request
>

- -

(3) HTTP redirect response for authentication of user in IdP

i

(4) valid credentials in 1dP

(5) HTTP response&HTTP POST request

i i

(6) HTTP redirect response for authentication of user in SP

-

(7) valid credentials in SP

(8)|HTTP redirect response for the resourcef

-

Figure 3: Identity federal security protocol based on SP-
initiated SAML 2.0 using HTTP

Apart from that we assume that the service provider
has the digital signature public key PU,;, and and private
key PR, and the identity provider has two pairs of digi-
tal signature public key and private key (PUildp, PRzldp),
(PUY,, PRZ,). Service provider and identity provider
has an identity database in which it has the information
of local ID, SP and linked ID, respectively. The linked
ID is the identifier that is used to establish the federa-

tion between the local ID in SP identity database and

International Journal of Network Security, Vol.22, No.1, PP.80-92, Jan. 2020 (DOI: 10.6633/1JNS.202001-22(1).08)

local ID in IdP database. Apart from that, the identity
federation security protocol based on SP-initiated SAML
provides the authentication from service provider to user
agent and from identity provider to user agent.

The identity federation security protocol based on SP-
initiated SAML 2.0 includes eight messages exchanged
among service provider, user agent and identity provider.

{ URLrequest } L {

fortheresource
The user agent generates Message (1) which is used to
request a target resource that is a secured resource at the
service provider and sends it to the service provider.

URLrequest
b

foraresource

{ HTTPredirectresponse } EGP;IILLSS?ML_
&HTTPGETrequest ||RelayState

ID[Required]||
Version|[Required]

| Issuelnstant
[Required]

|| < saml : Issuer >
[Optional]

[| < cds : Signature >
[Optional]

|| < NameIDPolicy >
[Optional]

SAMLRequest :=

If the parameters of SAMLRequest and RelayState
are present in Message (1), the user agent has already
been verified by the identity provider and can access
the resource in service provider. Here we assume that
the parameters of SAMLRequest and RelayState are not
included in Message (1). Hence service provider con-
structs Message (2) and sends it to identity provider
by means of service provider. Message (2) mainly con-
sists of URI, SAMLRequest and RelayState parameters.
The parameter URI is the address of SSO service compo-
nent and is generated by service provider. The parame-
ter SAMLRequest is URL-encoded <AuthnRequest> el-
ement in SAML and is also generated by service provider.
<AuthnRequest> element is used to authenticate the user
agent and is mainly composed of ID, Version, Issueln-
stant, <saml:Issuer> and <cds: Signature> elements.
<cds: Signature> element is used to store the digital sig-
nature of the <AuthnRequest> element. The digital sig-
nature of the <AuthnRequest> element is generated with
the private key PR, of service provider. The parame-
ter RelayState is used to describe the state information
maintained at the service provider, for example, URL in
Message (1). Apart from that, SP sets the AllowCreate
attribute on the NamelDPolicy element to ‘true’ value to
allow the IdP to generate a new identifier for the user that
is not already exist.

HTTPredirect HTTPredirect
responsefor := ¢ responsefor (3)
authenticationinldP useragent

83

The SSO component in the identity provider uses the
public key PU,, of service provider to verify the digital
signature stored in the <cds: Signature> element which
is included in the <AuthnRequest> element. If the veri-
fication is successful, the identity provider executes a se-
curity check. If the user agent does not have a valid lo-
gon security context, the identity provider requires the
user to provide the valid logon credentials made up of
usernameldP and passwordIdP to be verified by the the
identity provider. Thus the identity provider generates
Message (3) and sends it to user agent.

bW

-

The user agent receives Message (3) and generates Mes-
sage (4) which is made up of usernameldP and passwor-
dIdP and sends it to the identity provider through HTTP
protocol.

HTTPresponse& | SAMLResponse

{ HTTPPOSTrequest } o { ||RelayState }
ID[Required]||
InResponseTo
[Required]|| Version
[Required]
|| Tssuelnstant
[Required]||
Destination
[Optional]
|| < saml : Issuer >
[Optional]||
< cds : Signature >
[Optional]||
< Status > [Required]
|| < saml : Assertion > ||
< Extensions >
[Optional]
Version[Required]||
ID[Required]
|| Issuelnstant
[Required]
|| < Issuer >
[Required]
|| < ds: Signature >
[Optional]
|| < AuthnStatement >
|| < Subject >
[Optional]
AuthnInstant
[Required]||

< AuthnContext >
[Required]

usernameldP

Validcredentials
|| passwordIdP

inldP

SAMLResponse :=

< saml : Assertion >:=

< AuthnStatement >:=

When the identity provider receives Message (4), it
firstly checks the validity of the credential of the user,
which are usernameldP and passwordIdP. If the verifi-
cation is successful, then the SSO Service in the iden-
tity provider checks whether usernameldP in its identity

International Journal of Network Security, Vol.22, No.1, PP.80-92, Jan. 2020 (DOI: 10.6633/1JNS.202001-22(1).08)

database is or not and whether the AllowCreate attribute
is true or not. If all is true, it creates a persistent name
identifier SPandIdP, which is stored in the element per-
sistentid in element <Extensions>, to be used for the ses-
sion at the service provider. The persistent name iden-
tifier SP and IdP is used to link the account username
IdP in the identity provider and username SP in the ser-
vice provider. Apart from that, the identity provider pro-
duces Message (5) which is made up of SAMLResponse
and RelayState parameters. The parameter RelayState
is gotten through the service provider. The parame-
ter SAMLResponse is mainly composed of ID, InRespon-
seTo,Version, Issuelnstant, Destination, <saml: Issuer>,
<cds: Signature>, <Status> and <saml: Assertion>.
<saml: Assertion> is the most important element in
SAML Response. The local logon security context gen-
erated by the identity provider is stored in the SAML
Assertion <saml: Assertion> element. The content in
InResponseTo element is identical to the content in the
ID element in <AuthnRequest> element. The digi-
tal signature of SAMLResponse generated with the pri-
vate key PR}dp of IdP is stored in <cds:Signature> el-
ement. <saml: Assertion> element is mainly composed
of Version, ID, Issuelnstant, <Issuer>, <ds: Signature>,
<subject> and <AuthnStatement>. Among these ele-
ments the <ds: Signature> element is important because
the digital signature of <saml:Assertion> generated with
the private key PR3, is stored in <ds: Signature> ele-
ments. The authentication context information is stored
in <AuthnStatement> element which is composed of Au-
thnlnstant and <AuthnContext> elements. The user-
nameldP is stored in the element <subject>. After Mes-
sage (5) is produced, then it is sent to the service provider.
Assertion Consumer Service component in the service
provider will process Message (5).

HTTPredirect

HTTPredirect
responsefor :=< responseforuser » (6)
authentication [N eI; ¢
inSP &

When Message (5) arrives at the service provider, As-
sertion Consumer Service will processes it. Firstly, it uses
the public key PUj,, of the identity provider to verify
the digital signature of <Response> stored in the ele-
ment <cds: Signature>, and then uses the public key
PUIde of the identity provider to verify the digital signa-
ture of <saml: Assertion> in <ds: Signature> element.
Secondly, the service provider generates the local logon
security context using the information stored in <saml:
Assertion> element. Thirdly, the supplied name identi-
fier SPandIdP is then used to check whether a previous
federation has been established in the service provider
identity database. If no federation exists for the persis-
tent identifier in the assertion, then the service provider
needs to determine the local identity to which it should
be assigned. Finally, service provider sends Message (6)
HTTP redirect response to user agent to challenge the

84

usernameSP at the service provider.

(st}

When Message (6) arrives at user agent, the user pro-
vides valid credentials and identifies his account at the ser-
vice provider as usernameSP. The persistent name iden-
tifier SPandIdP is then stored and registered with the
usernameSP account along with the name of the identity
provider that created the name identifier.

usernameSP

|| passwordSP

validcredentials
inSP

HTTPredirect .
HTTPredirect
responsefor = (8)
response
theresource

After the service provider receives Message (7) which
is made of usernameSP and passwordSP and makes a ver-
ification of the identity of user agent, If the verification
is successful, a local logon security context is generated
for user usernameSP. Apart from that, the federation is
established between the usernameSP and usernameldP
through the persistent identifier SPandIdp in the service
provider identity database. Finally the service provider
generates Message (8) for the user agent for the desired
resource. If the access check passes, the desired resource
is returned to the browser.

6 Formalize Identity Federation
Security Protocol Based on
SAML 2.0 Using the Applied PI
Calculus

6.1 Function and Equational Theory

The functions and equational theory are introduced in
this section. We use the Applied PI calculus to formalize
Identity Federation security protocol based on SAML 2.0.
We model cryptography in a Dolev-Yao model as being
perfect. Figure 4 describes the functions and the equa-
tional theory in the Identity Federation security protocol
based on SAML.

fun sign(x,PR).

fun PU(c).

fun PR (c)

fun decsign(x,PU)

fun versign(y,PU)

equation versign(sign(x,PR),PU)=true.
equation decsign(sign(x,PR),PU)=x

Figure 4: The functions and the equationai theory

Digital signature is modeled as being signature with
message recovery, i.e. the signature itself contains the

International Journal of Network Security, Vol.22, No.1, PP.80-92, Jan. 2020 (DOI: 10.6633/1JNS.202001-22(1).08)

signed message which can be extracted using the function.
Digital signature algorithm includes the generation signa-
ture algorithm sign(x,PR) sign the message x with private
key PR and the verification algorithm versign(y,PU) ver-
ify the digital signature y with public key PU. And the
decsign(x,PU) recover the message from the digital sig-
nature x with the public key PU. The function PU(c)
accepts private value ¢ as input and produces public key
as output. The function PR(c) accepts private value c as
input and produces private key as output.

6.2 Process

The complete formal model of Identity Federation secu-
rity protocol based on SAML 2.0 in the Applied PI calcu-
lus is given in Figures 5, 6, 7 and 8, which report the basic
process include main process, user agent process, service
provider process and identity provider process forming the
model of Federation security protocol based on SAML.
The main process IFSAML in Figure 5 sets up the pro-
cess User Agent, Service Provider and Identity Provider.

IFSAML =
(!User Agent | !Service Provider | !Identity Provider)

Figure 5: Main process

The process User Agent is modeled using the Applied
PI calculus in Figure 6.

User Agent 2 (*User Agent(UA) process *)

[new url; new finish;

out (pub,url); (*UA sends the messagel to SP ¥)
in pub,httpgetrequest); (*UA reeives the message2 form SP#)
let (uria,samlrequesta,relaystatea):httpgetrequest in

(*UA sends the message2 to IdP *)

| if relaystatea=url then out (pub,httpgetrequest);

7in(pub,m3); (*UA receives the message3 from IdP *)
let reauthuseridp=m3 in

new authuseridp;

if authuseridp=reauthuseridp then

let secretX= passwordidp in

let valididp= (usemameidp,passwordidp) in

70ut(pub,valididp);

(*UA sends the message4 to IdP *)

_in(pub,mS); (*UA receives the message5 from IdP)

let httppostrequest=m5 in

let (samlresponsea,responserelaystatea)=httppostrequest in
| if responserelaystatea=url then out (pub,httppostrequest); (*UA sends the messages to SP)
_in(pub,m7); (*UA receives the message6 from SP *)
let reauthusersp=m?7 in
if authusersp=reauthusersp then
let secretY= passwordsp in

let validsp= (usemamesp,passwordsp) in

| out{pub,validsp); (* UA sends the message7 to SP+)

[in(pub,mS);if m8-=resourse then out (pub,finish).(* UA receives the message8 form SP*)]
Figure 6: Server agent process

85

Firstly, the User Agent produces the target resource
address url by the statement new url and sands sends it
to the service provider through the public channel pub.
At the same time it also generates the information finish
by y the statement new finish which shows that the proto-
col ends. After that, the User Agent receives the message
httpgetrequest using the public channel pub by the state-
ment in (pub, httpgetrequest).And then it extract the
elements uria,samlrequest, relaystate from the message
httpgetrequest the item uria is the address of SSO ser-
vice component and is generated by service provider. The
item samlrequest is URL-encoded <AuthnRequest> ele-
ment in SAML and is also generated by service provider.
The item relaystate the state information maintained at
the service provider. User Agent compare the value re-
laystate with url. If they are equal then User Agent for-
wards the message httpgetrequest to the process Identity
Provider through the public channel pub.

The User Agent receives Message m3 from the process
Identity Provider through the public channel pub.Then
it extracts the message reauthuseridp which shows that
the user should provide the wvalid logon credentials.
After that, the User Agent provides the username
usernameidp and password passwordidp through vali-
didp=(usernameidp,passwordidp).And also it sends vali-
didp to Identity provider process by the public channel
pub.

And then it receives Message m5 from the public chan-
nel ¢ which is sent from the Identity provider process.
The User Agent gets the message samlresponsea and re-
sponseerelaystatea from httpposttrequest. samlresponsea
is mainly composed of ID, InResponseTo,Version, Issue-
Instant, Destination, <saml: Issuer>, <cds: Signature>,
responserelaystatea is the target resource address. If the
responserelaystatea is equal to url, and then the message
httpposttrequest is sent to the Service Provider through
the public channel pub.

After that, the User Agent receives message m7 from
the Service Provider from the public channel c¢. Then it
gets the message reathuserp which shows the user should
provide the username and password. And then it gener-
ates his username usernamesp and password passwordsp
and construct the message secrectY. The user Agent sends
the message validsp through the public channel pub to the
Servicer Provider.

Finally, it receives Message m9 through the public
channel pub. If Message m9 is equal to resource, and
then it sends the message finish from the public channel
pub. The protocol ends.

The Service Provider process in Figure 7 receives
Message (1) urlx from the public channel pub. In
order to construct Message (2), firstly, it generates 1D
id, Version version, Issuelnstant issueinstant, <saml:
Tusser> iussuer and nameidppolicy nameidpolicy using
the statements: new id; New version; New issuestant;
New issuer; New nameidpolicy. And then it uses the
digital signature function sign() to generate the digital
signature signature of id, version, issuestant, iussuer,

International Journal of Network Security, Vol.22, No.1, PP.80-92, Jan. 2020 (DOI: 10.6633/1JNS.202001-22(1).08)

nameippolicy with the Service Provider’s private key
PR(keysp). Then the SAMLRequest samlrequest is
produced though let samlrequest=(id, version, issues-
tant, issuer, nameipdolicy) in The SAMLRequest
samlrequest mainly consists of id, version, issuestant,
issuer, nameipdolicy. Finally uri,samlrequest,relaystate
are used to construct Message (2) httpredirectresponse
which is sent to the User Agent through the public
channel pub.

Service Provider = (* Service Provider (SP) *)

in(puburlx); (* SP receives a messagel from UA #)

new uri; new id; new version; new issuestant; new issuer; new nameidpolicy;
let relaystate=urlx in

let signature=sign ((id,version,issuestant,issuer,nameidpolicy),PR (keysp)) in
let samlrequest= (id,version,issuestant,signature,issuer,nameidpolicy) in

let httpredirectresponse= (uri,samlrequest,relaystate) in

(* SP sends a message2 to UA *)

| out(pub,httpredirectresponse);

[in(pubms); (* SP receives a message$ from UA *)

let (recsamlresp0nse,recresponserelaystate):mS in

recresponseid,recrecid,

recresponseverrsion,recresponseissueinstant,

recresponsedestination,recrepissuer, .
let . =recsamlresponse in

recresponsesignature,recresponsestatus,

recassertion,

recresponseextentions

recaid,recaversion,recaissueinstant,recaissuer, L
let . . =recassertion in
recasignature,recaauthnstatement,recasubject

recresponseid,recrecid,
recresponseverrsion,

recresponseissueinstant,

recresponsesignature,
= then

if [versign L
1 PU(KeyldP1) recresponsedestination,
recrepissuer,recresponsestatus,

recassertion,recresponseextentions

(* verify the digital signature of response element in a message5 *)

recasignature,

then
PU(KeyldP2)

recaid,recaversion,recaissueinstant,
} recaissuer,recaauthnstatement,

if {versign[
recasubject
(#verify the digital signature of assertion element in a messageS *)

new authusersp;

| out (pub,authusersp);(*SP sends a message6 to UA*)

_in(pub,m7);

let (reusemamesp,repasswordsp) =m7 in

new usernamesp; new passwordsp;

(*SP receives a message7 from UA #)

if usemamesp=reusemamesp(,passwordsp) then

if passwordsp=repasswordsp then out (pub,resourse)‘
| (*SP sends a messac8 to UA =)

Figure 7: Server provider process

After that, it receives Message (5) from the User

86

Agent process and gets the SAMLResponse recsamlre-
sponse and RelayState recresponserelaystate form Mes-
sage (5). Based on the SAMLResponse recsamlre-
sponse, it generates ID recresponseid, InResponseTo
recrecid, Version recresponseverrion, Issuelnstantre recre-
sponseissueinstant, Destination recresponsedestination,
<saml: Issuer> recrepissuer, <cds: Signature> recre-
sponsesignature, <Status> recresponsestatus and <saml:
Assertion> recassertion. From the <saml: Assertion>
element recassertion, Version recaversion, ID recaid, Is-
suelnstant recaissueinstant, <Issuer> recaissuer, <ds:
Signature> recasignature, <subject> recasubject and
<AuthnStatement> recaauthnstatementare gotten. Af-
ter that, the digital signature of <cds: Signature>
recresponsesignature is verified by the function verign
(recresponsesiganture, PU(Keyldpl)) with the public key
PUIdP1 of the Identity Provider. At the same time the
digital signature of <ds: Signature> recsiganture is veri-
fied by the function versign (recsignature, PU(Keyldp2))
with the public key PUIdP2 of the Identity Provider. If
the two digital signature are all successful, the HTTP
redirect response authusersp is generated and is sent to
the User Agent through the public channel pub.

When Service Provider process receives Message m7
from the public channel pub, the usernameSP usernamesp
and passwordSP passwordsp and makes a verification of
the identity of user agent. If the verification is successful,
then Service Provider generates Message (8) resource for
the User Agent for the desired resource through the public
channel pub.

The Identity Provider process in Figure 8 generates
the elements responseid, responseverrion, responseissue-
instant, responsedetination, aid, aversion, aissuestant,
aissuer,aauthnstatement,asubject. And then it receives
message m2 through the public channel pub. The Identity
Provider process gets the elements URI recuri, SAMLRe-
quest recsamlrequest and RelayState recrelaystate from
Message m2 through the public channel pub. After that it
extracts the elements ID recid, Version recversion, Issue-
Instant recissuestant, <saml: issue> recissuer and <cds:
Signature> recsignature and NamelD policy recnameid-
policy from the element SAMLRequest recsamlrewuest.
Then, the Identity Provider process verifies the digital
signaturerecsignature using the function versign (recsig-
nature, PU(Keysp)) with the public key PU(Keysp) of
Service Provider. If If the verification is successful, it gen-
erates message3 authuseridp which shows that the user
should provide the valid logon credentials made up of
usernameldP and passwordIdP to be verified by the IdP.
Thus the Identity Provider process sends Message (3) au-
thuseridp to user agent process through the public channel
pub.

After that, the Identity Provider process receives Mes-
sage (4) m4 from the public channel pub. And then it
extracts the usernameldP usernameidp and passwordIdP
passwordidp of the User Agent. It checks the validity of
the credential of the user, which are usernameldP and
passwordIdP. If the verification is ok, it creates a per-

International Journal of Network Security, Vol.22, No.1, PP.80-92, Jan. 2020 (DOI: 10.6633/1JNS.202001-22(1).08)

87

Table 1: The authentications

Non-Injective agreement

Authentications

ev:endauthUSERIDP (x)— >ev:geginauthUSERIDP (x)

Identity Provider authenticates User Agent

eviendauthUSERSP(x)— > ev:geginauthUSERSP(x)

Server Provider authenticates User Agent

ev:endauthSAMLREQ(x) — > ev:beginauthSAMLREQ(x)

Identity Provider authenticates Server

ev:iendauthSAMLRSP(x) — > ev:beginauthSAMLRSP(x)

Service Provider authenticate Identity Provider

sistent name identifier SPandIdP, which is stored in the
element persistentid in element <Extensions>, to be used
for the session at the service provider.

A

Identity Provider =
new responseid; new responseverrsion; new responseissueinstant;]
new responsedestination; new repissuer; new responsestatus;
new responseextentions; new aid; new aversion; new aissueinstant;
new aissuer; new aauthnstatement; new asubject;
in (pubm2); (*1dP receives the message2 from UA *)

let (recuri,recsamlrequest,recrelaystate):m2 in

let (recid,recversion,recissuestant,recsignature,recissuer,recnameidpolicy)

=recsamlrequest in

if versign (recsignature,PU (Keysp))

:(recid,recversi0n,recissuestant,recissuer,recnameidpolicy) then

(* verify the digital signature in samlrequest in message2 *)

new authuseridp,

| out(pubauthuseridp); (+IdP sends the message3 to UA *)

[in(pubm4); (+IdP receives the message4 from UA #)
let (reusemameidp,repasswordidp):m4 in

if usernameidp=reusernameidp then

if passwordidp=repasswordidp then

new SPandIDP,

let responserelaystate=recrelaystate in

. . aid,aversion,aissueinstant,
let asignature= 1 sign

. . ,PR (KeyIdPZ) in
alssuer,aauthnstatement,asubject

. aid,aversion,aissueinstant,aissuer,
let assertion=

.) in
a51gnature,aauthnstatement,asubject] }

responseid,recid,responseverrsion,
responseissueinstant,

responsedestination,

let responsesignature= sign PR (KeyldP1) | in

repissuer,
responsestatus, assertion,

responseextentions

responseid,recid,responseverrsion,responseissueinstant,

let samlresponse=| responsedestination,repissuer,responsesignature, in
responsestatus,assenion,responseextentions

let httpresponse=(samlresponse,responserelaystate) in

{#1dP sends the message5 to UA *)

| out (pub,httpresponse).

Figure 8: Identity provider process

Apart from that, the <ds: Signature> element asigna-
ture is produced by the digital signature function sign()
with the inputs of <saml: Assertion> (aid, aversion,
aissueinstant, aissuer, aathnstatement, asubject) and
the private key PR(KeyldP2) of Identity Provider.

The <saml: Assertion> element assertion is mainly
composed of Version aservsion, ID aid,Issueilnstant
aissueinstant, <Issuer> aissuer, <dc: Signature> asig-
nature, <subject> asubject and <AuthnStatement>
aauthnstatement. At the same time the element
<cds: Signature> responsesignature is generated by
the digital signature function sign() with the inputs
of (responseid,recid, responseserverrion, responseissue-
instant, responsedestination,repissuer,reponsestatus,
assertion,responseextentions) and the private key
PR(KeyIdP1) of Identity Provider. Finally Message
(5) httpresponse is generated which is made up of
SAMLResponse samlresponse and RelayState respon-
serelaystate parameters. The parameter SAMLResponse
samlresponse is mainly composed of ID responseid,
InResponseTo,Version responseverrion, Issuelnstant
responsedestination, <saml: Issuer> repissuer, <cds:
Signature> responsesignture, <Status> responsestatus
and <saml: Assertion> assertion and Message (5)
httpresponse is sent to the user agent process through
the public channel pub.

7 Automatic Verification of Se-

crecy and Authentications with
ProVerif

Here we use the statements query attacker:secretX in
ProVerif to verify the secrecy of which is the password
of passwordidp the User Agent to assess the Identity
Provider and query attacker:secretX is used to verify the
secrecy of passwordidp to assess the Service Provider.

ProVerif uses the non-injective agreement to model the
authentication. So we use query ev: event one—; ev:event
two to model the authentication. It is true when if the
event one has been executed, then the event event two
must have been executed (before the event one). Here we
use the non-injective agreement to model the authentica-
tions showed in Table 1 .

ProVerif can take two formats as input. The first one
is in the form of Horn. The second one is in the form
of a process in an extension of the Applied PI calculus.
In both cases, the output of the system is essentially the
same. In this study we use the Applied PI calculus as the
input of ProVerif. In order to prove the authentication
in Identity Federation security protocol based on SAML.
The model using the Applied PI calculus is needed to be
translated into the syntax of ProVerif and generated the

International Journal of Network Security, Vol.22, No.1, PP.80-92, Jan. 2020 (DOI: 10.6633/1JNS.202001-22(1).08) 88

ProVerif inputs in extension of the PI calculus. Figures 9, query attacker:secretX; (the secrecy of passwordidp *)
10, 11, 12, 13 and 14 are the inputs for Identity Feder- query attacker:secretY. (* the secrecy of passwordsp)
ation security protocol based on SAML 2.0. We use the
ProVerif to run the input for Identity Federation security (* Identity Provider authecticates User Agent *)

prOtOCOl based on SAML 2.0 showed in Figure 9, 10, 1 1, query ev:endauthUSERSP(x) — ev: beginauthUSERSP (x).

127 13 and 14 (* Service Provider authecticates User Agent *)

query ev:iendauthSAMLREQ(x) —» ev: beginauthSAMLREQ(x).
(* Identity Provider authecticates Service Provider *)

query ev:iendauthSAMLRESP(x) — ev: beginauthSAMLRESP (x).
ﬁ'ee authuseridp’authusersp, (* Service Provider authecticates Identity Provider *)

free usernamesp,passwordsp,usernameidp,passwordidp,resourse. Figure 10: Query secrecy and authentications in ProVerif
fun sign/2.
fun PU/1.

fun PR/1.

fun versign/2.
fun decsign/2.

query ev:iendauthUSERIDP (x) —» ev: beginauthUSERIDP (x).

free pub.

equation versign(sign(x1,PR(y1)),PU(yl))=true.

Figure 9: The functions and equation in ProVerif let processserviceprovider = (* Service Provider (SP)*)
in(pub,urlx); (* SP receives a messagel from UA *)
new uri; new id; new version; new issuestant; new issuer;
new nameidpolicy;

let relaystate=urlx in
let processuseragent = (*User Agent(UA) process *) (id version,issuestant,issuer. nameidpolicy)
Mnew url: new finish: let signature= slgn[PR(keysp) J mn

out (pub,url); (*UA sends the messagel to SP *) let samlrequest:(id,version,issuestant,signature,issuer,nameidpolicy) in

in(pub,httpgetrequest); (*UA rceives the message2 form SP *) let httpredirectresponse= (uri,samlrequest,relaystate) in

let (uria,samlrequesta,relaystatea) =httpgetrequest in ‘event beginauthSAMLREQ(signature);

if relaystatea=url then out (pub,httpgetrequest); out (pub,httpredirectresponse);

(*UA sends the message?2 to IdP *) | (* SP sends a message2 to UA *)]

r 1 [in (pub,m5); (* SP receives a message5 from UA *)]

mn (pub,m3); (*UA receives the message3 from IdP *) let (recsamlresponse,recresponserelaystate)=m5 in

let reauthuseridp=m3 in recresponseid,recrecid,recresponseverrsion,

new authuseridp; recresponseissueinstant,recresponsedestination, .

. . . let) . =recsamlresponse in

if authuseridp=reauthuseridp then recrepissuer,recresponsesignature,recresponsestatus,

let secretX= passwordidp in recassertion,recresponseextentions

let valididp=(usemameidp passwordidp) in recaid,recaversion,recaissueinstant,recaissuer, L.

> let . . =recassertion in

recasignature,recaauthnstatement,recasubject

| event beginauthUSERIDP(valididp); |
out (pub,valididp) ;
L(*UA sends the message4 to IdP *)

recresponseid,recrecid,
recresponseverrsion,

. . recresponseissueinstant,
X . (recresponsesignature, o
if < versign ={| recresponsedestination, then
PU(KeyldP1) . at
r. . recrepissuer,recresponsestatus,
in (pub,m5); (*UA receives the message5 from IdP *))
recassertion,
let httppostrequest=mS5 in recresponseextentions

let (samlresponsea,responserelaystatea):httppostrequest in (+ verify the digital signature of response element in a messageS)

if responserelaystatea=url then out (pub,httppostrequest); [event endauthSAMLRESP(recresponsesignature)

(*UA sends the message5 to SP *) ccaid.recaversion
. . . recaissueinstant,recaissuer,
B _ if versign (recasngnarure,PU (KeyldPZ)) - then
in(pub,m7); (*UA receives the message6 from SP *) recaauthnstatement,
. subject
let reauthusersp=m?7 in recasubjec

if authusersp=reauthusersp then (*verify the digital signature of assertion element in a messageS *)

let secretY= passwordsp in | new authusersp; out (pub,authusersp);(*SP sends a message6 to UA*)

let validsp=(usernamesp,passwordsp) in

|event beginauthUSERSP(validsp);

[in(pub.m7);

let (reusernamesp,repasswordsp) = m7 in

out (pub,validsp);
| (*UA sends the message7 to SPx*)

new usernamesp; new passwordsp; (#SP receives a message7 from UA *)

if usernamesp=reusernamesp then
if passwordsp=repasswordsp then

[in (pub,m8);if m8=resourse then out (pub,ﬁnish)} ‘CVC"t endauthUSERSP(m7);

out (pub,resourse).

(* UA receives the message8 form SP=*)

| (*SP sends a messae8 to UA *)

Figure 11: The user agent process in ProVerif in ProVerif)))))
Figure 12: The service provider process in ProVerif

International Journal of Network Security, Vol.22, No.1, PP.80-92, Jan. 2020 (DOI: 10.6633/1JNS.202001-22(1).08)

process

new Keysp;

new KeyldP1;

new KeyldP2;

out(pub, PU(Keysp));
out(pub, PU (KeyldP1));
out(pub, PU (KcyIdPZ));

Iprocessuseragent | !processserviceprovider | !processidentityprovider
! t ! der | ! dentit; d

Figure 13: The identity provider process in ProVerif

let processidentityprovider =
[new responseid; new responseverrsion; new responseissueinstant;
new responsedestination; new repissuer; new responsestatus;
new responseextentions; new aid; new aversion; new aissueinstant;
new aissuer; new aauthnstatement; new asubject;
in (pub,m2); (*IdP receives the message2 from UA *)
let (recuri,recsamlrequest,recrelaystate):m2 in

recid,recversion,recissuestant,)
let .) X . =recsamlrequest in
recsignature,recissuer,recnameidpolicy
J recid,recversion,
if versign (rccsignaturc,PU (Kcysp)) =4[recissuestant,recissuer, | then
l recnameidpolicy

(* verify the digital signature in samlrequest in message2 *)

|cvcnt endauthSAMLREQ(recsignature);

new authuseridp,

| out (pub,authuseridp); (*IdP sends the message3 to UA *)

_in(pub,m4);

let (reusernameidp,repasswordidp)=m4 in

(*IdP receives the message4 from UA *)

if usernameidp=reusernameidp then

if passwordidp=repasswordidp then

new SPandIDP,

let responserelaystate=recrelaystate in
aid,aversion,aissueinstant,
aissuer,aauthnstatement,

let asignature=+ sign ,PR(KcyIdPZ) in

asubject
[aid,aversion,aissueinstant,
let assertion=4| aissuer,asignature,aauthnstatement, | in
1 asubject
responseid,recid,responseverrsion,
responseissueinstant,
. X responsedestination,repissuer, X
let responsesignature=+ sign . in
responsestatus, assertion,
responseextentions
.PR (KeylIdP1)
responseid,recid,responseverrsion,
responseissueinstant,responsedestination, .
let samlresponse= . R in
repissuer,responsesignature,
rcsponscstatus,asscnion,rcsponsccxtcntiuns

let httprcsponsc=(samlrcsponsc,rcsponscrclaystatc) in

[event endauthUSERIDP(m4);]

|cvcnt beginauthSAMLRESP(responsesignature);

| out (pub,httpresponse). (*IdP sends the message5 to UA *) |

Figure 14: The main process in ProVerif

Figure 15 shows the result of the secrecy of query at-
tacker:secrectX and query attacker:secrectY. From the re-
sult we find that the secrectX and secrectY have not se-
crecy. The result is consistent with the fact. That is
because the secrectX and secrectY are sent in the way of
plaintext.

89

Figure 15: The results of secrecy

Hence the attacker can monitor the public channel to
get the secrectX and secrectY. Hence the secrectX and
secrectY have not secrecy. In order to implement the
secrecy of the secrectX and secrectY some security mech-
anism must be used, for example, encryption.

Figure 16 shows the result that Identity Provider does
not authenticate User Agent because the User Agent
sends the password passwordidp in the way of plaintext
to the Identity Provider. Hence the attacker can get the
password passwordidp and launch an impersonation at-
tack. We can use the encryption cipher or digital signa-
ture to address the problem.

o windowssysem 32iemd oxe.

Figure 16: The result that identity provider does not au-
thenticate user agent

Figure 17 shows the result that Service Provider does
not authenticate User Agent because the User Agent
sends the password passwordsp in the way of plaintext
to the Service Provider. Hence the attacker can get the
password passwordsp and launch an impersonation at-
tack. We can use the encryption cipher or digital signa-
ture to address the problem.

Figure 17: The result that service provider does not au-
thenticate user agent

Figure 18 shows the result that Identity Provider
can authenticate Service Provider because the
Service Provider sends the its digital signature
sign((id,version,issuestant,issuer,nameidpolicy),PR (keysp))
to the Identity Provider. Hence the Identity Provider
can authenticate Service Provider.

International Journal of Network Security, Vol.22, No.1, PP.80-92, Jan. 2020 (DOI: 10.6633/1JNS.202001-22(1).08)

Figure 18: The result that identity provider authenticates
service provider

Figure 19 shows the result that Service Provider
can authenticate Identity Provider because the
Identity Provider sends the digital signature
sign((aid,aversion,aissueinstant,aissuer,aauthnstatement,
asubject),PR(KeyIdP2)) to the Service Provider. Hence
Service Provider can authenticate Identity Provider

=

Figure 19: The result that service provider authenticates
identity provider

8 Conclusion and Discussion

Owning to the complexity of Identity Federation Security
Protocol, security analysis is important and has become
a challenging issue. Therefore, in this paper, we firstly
review the development of the formal methods on Iden-
tity Federation Security Protocol Based on SAML2.0, and
then apply the ProVerif tool to analyze its security prop-
erties. The result shows that it has not secrecy for some
keys and but it has some authentications. At the same
time we present solutions to address the vulnerabilities.

Our method is basically similar to the method in the
reference [1]. But there are two differences between the
reference [1] and our work. The first difference is that in
the reference [1], SAML SP-Initiated SSO profile is an-
alyzed, but in our work, the identity federation security
protocol based on SP-initiated SAML 2.0 includes eight
messages exchanged among service provider, user agent
and identity provider is analyzed. The second difference
is that in reference [1] the model checker SATMC based
on HLPSL++ as the specification language are used, but
in our work, the an automatic cryptographic protocol ver-
ifier ProVerif and the Applied PI calculus are used.

In the near future, we will automatically analyze it in
the computational model. At the same time, we will use
the automatic method to generate the secure implementa-
tion in programming languages, for examples, JAVA lan-
guage, C++ language.

Acknowledgments

This work was supported in part by the Fundamen-
tal Research Funds for the Central Universities, South

90

Central University for Nationalities No. CZZ19003 and
QSZ17007, and in part by the natural science foundation
of Hubei Province under the grants No.2018 ADC150.”

References

[1] A. Alessandro, R. Carbone, L. Compagna, J. Cuéllar,
G. Pellegrin-o, and A. Sorniotti, “An authentica-
tion flaw in browser-based single sign-on protocols:
Impact and remediations,” Computers & Security,
vol. 33, pp. 41-58, 2013.

[2] D. S. AbdElminaam, “Improving the security of
cloud computing by building new hybrid cryptog-
raphy algorithms,” International Journal of FElec-
tronics and Information Engineering, vol. 8, no. 1,
pp. 40-48, 2018.

[3] R. Amin, N. Kumar, G.P. Biswas, R. Igbal, , and
V. Chang, “A light weight authentication protocol
for iot-enabled devices in distributed cloud comput-
ing environment,” Future Generation Computer Sys-
tem, vol. 78, no. 3, pp. 1005-1019, 2018.

[4] A. Bauer, J. Gross, P.L. Lumsdaine, M.Shulman,
M. Sozeau, and B.Spitters, “The hott library: a for-
malization of homotopy type theory in coq,” in Pro-
ceedings of the 6th ACM SIGPLAN Conference on
Certified Programs and Proofs (CPP2017), pp. 164—
172, Paris, France, Jan. 2017.

[5] M. Beek and P.Moiso C.Petrocchi, “Towards secu-
rity analyses of an identity federation protocol for
web services in convergent networks,” in Proceed-
ings of the 3rd Advanced International Conference
on Telecommunications, pp. 1-8, Morne, Mauritius,
May. 2007.

[6] B. Blanchet, B. Smyth, V. Cheval, and M. Sylvestre.
“Proverif 2.00: Automatic cryptographic protocol
verifier, user manual and tutoria,”. Tech. Rep.
http://prosecco.gforge.inria.fr/personal /bblanche/
proverif/manual.pdf, Apr. 2018.

[7] Q. Carbonneaux, J. Hoffmann, T. Reps, and Z. Shao,
“Automated recourse analysis with coq proof ob-
jects,” in Proceedings of 29th International Con-
ference on Computer-Aided Verification (CAV2017),
pp- 64-85, Heidelberg, Germany, July. 2017.

[8] C. Guo, C. Chang, and S. Chang, “A secure and effi-
cient mutual authentication and key agreement pro-
tocol with smart cards for wireless communications,”
International Journal of Network Security, vol. 20,
no. 2, pp. 323-331, 2018.

[9] M. Y. Chen, C. W. Liu, and M. S. Hwang, “Secure-

dropbox: A file encryption system suitable for cloud

storage services,” in Proceedings of the 2018 ACM

Cloud and Autonomic Computing Conference, pp. 1—

334, Miami,FL,USA, Aug. 2013.

K. Chetioui, G. Orhanou, and S. Hajji, “New pro-

tocol e-dnssec to enhance dnssec security,” Interna-

tional Journal of Network Security, vol. 20, no. 1,

pp. 19-24, 2018.

[10]

International Journal of Network Security, Vol.22, No.1, PP.80-92, Jan. 2020 (DOI: 10.6633/1JNS.202001-22(1).08)

[11] M. Zamani E.Ghazizadeh, J. A. Manan and A,
“Pashang. a survey on security issues of federated
identity in the cloud computing,” in Proceedings of
IEEE 4th International Conference on Cloud Com-
puting Technology and Science (CloudCom), pp. 1-4,
Taipei, Taiwan, Dec. 2012.

M. A. Elakrat and J. C. Jung, “Development of field
programmable gate array—based encryption module
to mitigate man-in-the-middle attack for nuclear
power plant data communication network,” Nuclear
Engineering and Technology, vol. 50, no. 5, pp. 780—
787, 2018.

Y. F. Zhu K. Wang and M. Lin, “Provably se-
cure browser-based mutual authentication protocol
for federated identity management,” Application Re-
search of Computers, vol. 30, no. 6, pp. 1843-1846,
2013.

X. H. Li, S. X. Li, J. Hao, Z. Y. Feng, and B. An,
“Optimal personalized defense strategy against man-
in-the-middle attack,” in Proceedings of the Thirty-
First AAAI Conference on Artificial Intelligence
(AAAI-17), pp. 593-599, San Francisco,USA, Feb.
2007.

J. Ling, Y. Wang, and W. Chen, “An improved
privacy protection security protocol based on nfc,”
International Journal of Network Security, vol. 19,
no. 1, pp. 39-46, 2017.

V. Mittal, S. Gupta, and T. Choudhury, “Compar-
ative analysis of authentication and access control
protocols against malicious attacks in wireless sensor
networks,” in Proceedings of the First International
Conference on SCI, pp. 555-262, San Francisco,USA,
Jan. 2018.

M. S. Ferdous. and R. Poet, “Dynamic identity fed-
eration using security assertion markup language
(saml),” in Proceedings of the 3rd IFIP WG 11.6
Working Conference, pp. 131-146, London, UK, Apr.
2013.

F. Nabi Muhammad and Mustafa Nabi, “A pro-
cess of security assurance properties unification for
application logic,” Seventh International Conference
on Complex, Intelligent, and Software Intensive Sys-
tems, vol. 48, no. 6, pp. 40-48, 2017.

G. Oliva, S. Cioaba, and C. N. Hadjicostis,
“Distributed calculation of edge-disjoint span-
ning trees for robustifying distributed algorithms
against man-in-the-middle attacks,” IEEE Trans-
action on Control of Network System, mno. DOI:
10.1109/TCNS.2017.2746344, pp. 1-1, 2017.

A. Marin-Lépez P. A .Cabarcos, F. A. Mendoza and
D. Diaz-Sanchez, “Enabling saml for dynamic iden-
tity federation management,” in Proceedings of the
Second IFIP WG 6.8 Joint Conference on Wire-
less and Mobile Networking(WMNC’09), pp. 173—
184, Gdansk, Poland, Sep. 2009.

F. G. Marmol P. A. Cabarcos, F. Almenarez and
A. Marin, “To federate or not to federate: A
reputation-based mechanism to dynamize cooper-
ation in identity management,” Wireless Personal
Communications, vol. 75, no. 3, pp. 1769-1786, 2014.

[13]

[14]

[18]

[19]

[21]

91

[22] D. Puthal, M. S. Obaidat, P. Nanda, M. Prasad, S. P.
Mohanty, and A. Y. Zomaya, “Secure and substain-
able load balancing of edge data centers in fog com-
puting,” IEEE Communication Magazine, vol. 56,
no. 5, pp. 60-65, 2018.

S. Saklikar and S. Saha, “Identity federation for voip
systems,” Journal of Computer Security, vol. 18,
no. 4, pp. 499-540, 2010.

23]

[24] K. Suthar and J. Patel, “Encryscation: An secure ap-
proach for data security using encryption and obfus-
cation techniques for iaas and daas services in cloud
environment,” in Proceedings of International Con-
ference on Communication and Networks, Advances
in Intelligent System and Computing 508, pp. 323—

331, India, July. 2017.

O. Wahballal, Ab. Wahaballa, F. Li, I. Idris, and
C. Xu, “Medical image encryption scheme based on
arnold transformation and id-ak protocol,” Interna-
tional Journal of Network Security, vol. 19, no. 5,
pp. 776-784, 2017.

C.Y. Yang, Y. Lin, and M. S. Hwang, “Downlink re-
lay selection algorithm for amplifyand-forward coop-
erative communication systems,” in Seventh Interna-
tional Conference on Complex, Intelligent, and Soft-
ware Intensive Systems, pp. 331-334, Dalian, China,
July 2013.

L. Yao, J. Liu, D. Wang, J. Li, and B. Meng, “Formal
analysis of sdn authentication protocol with mecha-
nized protocol verifier in the symbolic model,” Inter-

national Journal of Network Security, vol. 20, no. 6,
pp- 1125-1136, 2018.

[26]

Biography

Jintian Lu received his M.S degree at school of computer,
South-Center University for Nationalities, China. Now
he is pursuing the Ph.D. degree with School of Data and
Computer Science, Sun Yat-sen University, Guangzhou,
Guangdong, China. His current research interests include
the security of security protocol and its implementations
and cloud security.

Xudong He was born in 1991 and is now a postgraduate
at school of Computer Science, South-Central University
for Nationalities. His research interests include: security
protocol implementations and reverse engineering.

Yitong Yang was born in 1991 and is now a postgrad-
uate at the school of computer, South-Center University
for Nationalities, China. Her current research interests
include security protocols and formal methods.

Dejun Wang was born in 1974 and received his Ph.D. in
information security at Wuhan University in China. Cur-
rently, he is an associate professor in the school of com-
puter, South-Center University for Nationalities, China.

International Journal of Network Security, Vol.22, No.1, PP.80-92, Jan. 2020 (DOI: 10.6633/1JNS.202001-22(1).08) 92

He has authored/coauthored over 20 papers in interna-
tional /national journals and conferences. His current
research interests include security protocols and formal
methods.

Bo Meng was born in 1974 in China. He received his
M.S. degree in computer science and technology in 2000
and his Ph.D. degree in traffic information engineering
and control from Wuhan University of Technology at
Wuhan, China in 2003. From 2004 to 2006, he worked
at Wuhan University as a postdoctoral researcher in in-
formation security. Currently, he is a full Professor at the
school of computer, South-Center University for Nation-
alities, China. He has authored/coauthored over 50 pa-
pers in International/National journals and conferences.
In addition, he has also published a book ”secure remote
voting protocol” in the science press in China. His current
research interests include Cyberspace security.

