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Abstract

The shielding systems, e.g., special-purpose hypervisor,
provide more secure environments for security-critical ap-
plications (SCAs), compared with traditional computer
systems. In this paper, we propose a general framework
of formally modeling and verifying the shielding systems
for enhancing the security. The framework supports mul-
tiples types of shielding systems based on different tech-
nologies, such as Intel TXT or TrustZone. It is imple-
mented by stepwise refinement, in which the early steps
model the common states, events and security properties
among the systems. Then the shielding systems are mod-
eled in latter steps, where all the events are refined from
the ones in the previous steps without the requirement
of reproving soundness of security properties, e.g., mem-
ory isolation, data confidentiality, upon the occurrence of
each event. Therefore, the complexity of formally verify-
ing new shielding systems is reduced. We implement the
framework in the Coq proof assistant, and find potential
security threats in using the shielding systems.

Keywords: Formal Methods; Framework; Security Analy-
sis; Shielding Systems

1 Introduction

Recently, many shielding systems [5, 10, 11, 14, 15, 18,
20, 21], e.g., special-purpose hypervisor, have been pro-
posed to enhance security upon traditional computer sys-
tems. It is achieved by leveraging instructions of modern
CPUs, e.g., Intel TXT [17], TrustZone [1], for launching
security-critical applications (SCAs), which run in isola-
tion with legacy OS. For instance, a shielding system may
keep the OS from accessing memory being used by SCAs.
As a result, the security of SCAs no longer relies on the
OS, but only the shielding system. Since the OS is error-
prone in design due to its large size, it greatly reduces

risks of security breaches by adopting a much smaller
shielding system as the substitute of Trusted Computing
Base (TCB).

It also requires to formally prove that a shielding sys-
tem satisfies the security properties, e.g., memory isola-
tion and confidentiality, to achieve enhanced security. As
the shielding system provides calling interfaces to the OS
and SCAs, it should formally guarantee that both the
caller, i.e., SCA or OS, and the callee, i.e., shielding sys-
tem, run at expected states without any security breaches.
The designers of SCAs may be unfamiliar with the shield-
ing system, thus the properties may be broken when the
interfaces are called at inappropriate states. On the other
hand, since few source codes of shielding systems can be
obtained online along with the literatures, it is urgent to
re-implement the systems without flaws.

We propose and implement a general framework for
formally verifying shielding systems. The framework sup-
ports various types of shielding systems, which may use
different techniques, e.g., hypervisor or TrustZone. To
reduce the complexity of developing different systems,
we model and verify the systems by stepwise refinement.
Each refinement step is composed of states, events with
action and guard, and invariants. The invariants should
be preserved whenever any event occurs. In early steps
of refinement, we model the internal processes of shield-
ing systems, and prove the invariants of security proper-
ties, e.g., memory isolation and data confidentiality. In
latter steps, the processes are refined and merged into
interfaces provided to the SCAs and the OS. The prop-
erties in the steps are still preserved by proving that the
interfaces are correctly refined from previous processes.
Therefore, the early steps can be reused when verifying
new shielding systems, which reduce the workload of mod-
eling and verifying.

The framework contains the following refinement steps
as the general model for all shielding systems:

S0 Abstract specification of memory isolation: The



International Journal of Network Security, Vol.22, No.1, PP.54-67, Jan. 2020 (DOI: 10.6633/IJNS.202001 22(1).06) 55

model’s state only contains sufficient structure for
proving memory isolation in shielding systems.

S1 Memory isolation with multi-core support : The
model considers the case that multiple entities, e.g.,
SCAs, use different cores of CPU simultaneously. We
prove the soundness of memory isolation in this case.

S2 Data confidentiality : The states and events are re-
fined for proving data confidentiality. Besides the
addition of relevant states and events, we introduce
an adversary model in Dolev-Yao style [12], and then
analyze whether the private data may be leaked un-
der the model.

In the case studies, we model two typical shielding
systems, TrustVisor [21] and OSP [11], which use differ-
ent technologies, i.e., virtualization extensions and Trust-
Zone, respectively. Moreover, TrustVisor only uses a sin-
gle CPU core, while OSP may use several CPU cores.
Faced with the differences, both systems can be success-
fully refined from our general framework. Specifically,
as the shielding systems provide calling interfaces, each
callee is divided into several events, which are refined from
the events in S2.

We implement the framework and verify the cases by
the Coq proof assistant [13] with the theory of refinement
that borrows elements from [3, 7]. The results show that
by using the framework, the complexity in modeling and
verifying shielding systems is reduced. We also find po-
tential security threats in using TrustVisor and OSP.

The paper is organized as follows. We provide prelim-
inaries in Section 2. We introduce the refinement frame-
work in Section 3. We propose the general model of the
framework in Section 4, and discuss how to use the model
to analyze different shielding systems in Section 5. We re-
view some related work in Section 6. Finally, we conclude
the paper in Section 7.

2 Preliminaries

2.1 Virtualization Extensions and Trust-
Zone

We summarize recent technologies used for memory iso-
lation, including virtualization extensions [29,30] and the
TrustZone [1], which are modeled and verified in our re-
finement.

2.1.1 Virtualization Extensions

Virtualization extensions enable an OS to execute in a
virtual machine which offers virtual system resources.
Specifically, the OS in a virtual machine executes on a
virtual version (called host virtual memory) of real phys-
ical memory. Hardware components called MMUs in the
CPUs that support the extensions can be configured to
provide host virtual memory, and data structures called
nested page tables are used in the MMUs to translate the

host virtual memory addresses to host physical memory
addresses.

2.1.2 TrustZone

ARM TrustZone technology [1] offers an isolated execu-
tion environment for security programs. Specifically, it
partitions system resources into a normal world and a se-
cure world, and prevents programs, e.g., the untrusted
OS, executed in the normal world to access the resources
in the secure world. For partitioning memory, which
is one of the resources, ARM TrustZone provides SoC
peripherals called TrustZone Address Space Controllers
(TZASCs). Configurations of TZASCs determine mem-
ory regions in the secure world, and the configurations can
be changed by privileged software executed in the secure
world.

2.2 Notations

We use standard notation for equality and logical connec-
tives [3]. We extensively use record types and enumerated

types. Record types are defined with the form rec
def
= {l1:

T1, . . . , ln: Tn}, and therefore elements of the types are
of the form 〈t1, . . . , tn〉. On extending rec with a compo-
nent ln+1 : Tn+1, we define erec = rec + ln+1 : Tn+1=
{l1: T1, . . . , ln+1: Tn+1}. Accordingly, on reducing rec
with the component lk, we define rrec = rec - lk (1 ≤ k
≤ n). Enumerated types are defined by using Haskell-like
notation; for example, we define for every type T the type

option T
def
= NONE | Some (t : T ). The option T is the

extension of T with an element None. Note that NONE
has a polymorphic type, and a detailed explanation can
be found in the manual of Coq [13] for polymorphic type.
We define T set as the type of sets over T. Then, we
make an extensive use of maps: the type of maps from
objects of type A into objects of type B is written A 7→
B. Application of a map m on an object of type a is de-
noted as m(a) and map update is written as m(a):= b,
where b overwrites the value associated to a. Finally, we
use the notation let a = b in c to simplify our expres-
sions of events, invariants, and so on. For example, the
(s.k).t1+(s.k).t2 may be expressed as let b=(s.k) in b.t1 +
b.t2.

3 Refinement in Coq

Before we introduce the refinement framework, we sum-
marize our theory of refinement that we developed in the
Coq proof assistant [13]. The theory borrows elements of
refinement from Event-B [7].

3.1 Models for Refinement

Our models are state machines which consist of states and
events that result in the transition of states. The goal of
machines is to prove soundness of invariants, where the
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invariants preserve security properties for all states in the
machines.

3.1.1 States

We model states of a machine by a record, which is a tuple
of state variables. The machine starts at an initial state,
and the state changes when an event occurs.

3.1.2 Events

We define an event by using 2 propositions: A conjunction
of guards and an action.

Grdse(pe, s) ∧Acte(pe, s, s’) (1)

Here, the state is transformed from s to s’, if the event
occurs. Denote pe as the set of parameters of the event.
The event can occur if and only if the conjunction Grdse
is true. The action Acte describes the relation between s
and s′. Hence, we can use Acte to indicate the changes of
states after the occurrence of the event, e.g., changes of
the value of a state variable. For convenience, we use the
notation s ∼c1,...,cn=v1,...,vn s’ for indicating that values of
state variables c1, c2, . . . , cn of s’ is v1, v2, . . . , vn respec-
tively, while values of other state variables in s’ remain
unchanged.

3.1.3 Invariants

Invariants are propositions for states of a model. For each
event which incurs transitions of states, the invariants
should still be preserved. The property can be defined
as follows:

∀s s’ pe.I(s) ∧Grdse(pe, s) ∧Acte(pe, s, s’)→ I(s’).
(2)

Here, I(s) is the conjunction of all invariants of a model at
a state s. The property states that for an event e whose
parameters are pe and that leads a state s to a state s’, if
the invariants are valid in the state s, the invariants are
valid in the state s’.

3.2 Refinement Method

The refinement is a process of constructing a more con-
crete model from the previous abstract model. The con-
crete model should preserve invariants of the abstract
model so that we can model a complex object, e.g., a
shielding system, by using several models and each of the
model is constructed by focusing on individual design as-
pects. In practice, the concrete model preserves a refined
form of the invariants. The refined form and the conjunc-
tion of invariants are mutually implicated, and therefore
we should prove the following theorem.

∀sa sc.Ia(sa) ∧ SRac(sa, sc)↔ Ir,c(sc) ∧ SRac(sa, sc). (3)

Ia is the conjunction of all invariants of the abstract model
and Ir,c is the refined form of Ia. SRac is the conjunction

of all propositions that specify relations between values
of state variables of states of the concrete model and the
abstract model. The theorem specifies Ir,c is the refined
form of Ia. Now, we prove that Ir,c is preserved in the
concrete model by using the preservation of Ia in the ab-
stract model for reducing workload in auditing each event
in the concrete model for Ir,c. Specifically, for each event
ec in the concrete model, we first manually identify a cor-
responding abstract event ea in the abstract model. We
assume ec leads a state sc to a state s′c, and ea leads a
state sa to a state s′a. Then, we first prove the following
theorem.

∀sc pec .Ic(sc) ∧Grdsec(pec , sc)→ ∃pea ∃sa.SRac(sa, sc)∧
Grdsea(pea , sa).

(4)
The theorem that states that a concrete event can only oc-
cur when the corresponding abstract event occurs. Then,
we prove the following theorem.

∀sc s′c pec .Ic(sc) ∧Actec(pec , sc, s
′
c)→

∃pea ∃sa ∃s
′
a.SRac(sa, sc)

∧ SRac(s′a, s
′
c) ∧Actea(pea , sa, s

′
a).

(5)

The theorem that states that if a concrete event occurs,
the abstract event can occur in such a way that the re-
sulting states correspond again. With the two theorems,
we can ensure the preservation of Ir,c on each concrete
event by using the preservation of Ia on the correspond-
ing abstract event.

4 A General Model of Shielding
Systems

In this section, we construct a general model of shield-
ing systems by stepwise refinement. The model contains
general operations used for allocating and deallocating
storage of the OS and SCAs and for managing data of
the OS and SCAs.

4.1 Requirements and Assumptions

We start by specifying general requirements of shielding
systems and by making our assumptions about the system
explicit.

Requirement 1 (Shielding System). A shielding sys-
tem, e.g., a hypervisor, executes in a higher privilege
mode against guests, i.e., OS or SCAs.

Requirement 2 (Memory Isolation). Memory that
can be accessed by each guest is pairwise disjoint.

Requirement 3 (Data Confidentiality). Critical
data, e.g., private keys, of an SCA cannot be leaked
to other guests.

The compromised guests may operate in following ways.
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Assumption 1 (Dolev-Yao Adversary). Similar to
the Dolev-Yao adversary model [12], the guests may
perform data analyzing, (e.g., decomposing data,
decrypting data using obtained keys), and data syn-
thesizing according to the analyzed result. However,
the adversary cannot perform any crypto-analysis.

Assumption 2 (Calls). A guest may call any interface
of the shielding system exposed to the guest when
the guest is executing. Moreover, the guest may call
the interfaces with arbitrary parameter values.

4.2 Memory Isolation (S0)

The abstract machine (S0 ) models the property of mem-
ory isolation.

States S0: Denote Si as the record for states at the ith
refinement. We define S0 in S0 as follows:

S0 def
= {loc : tguests 7→ tloc set}. (6)

Here, loc(id) represents memory locations that can
be accessed by a guest whose identifier is id. Gener-
ally, we define t∗ as the type of some variables. For
example, tloc, tguests is the type of memory loca-

tions and identifiers of guests respectively. tguests
def
=

Tisca(id : tidentsca)|OSID. Therefore, a guest may
be an SCA with the identifier id or an OS with the
identifier OSID.

Invariant: We model Memory Isolation (i.e., Require-
ment 2) by the following invariant.

Isolation0
mem(s)

def
=

(∀ i j.i 6= j→ (s.loc(i) ∩ s.loc(j)) = φ).
(7)

Events: According to the invariant Isolation0
mem, we

model an event ChLoc0 in which the memory that
can be accessed by a guest id is changed to l. Specif-
ically,

GrdChLoc0 l i s
def
=

(i) (∀j, j 6= i→ l ∩ s.loc(j) = φ)

ActChLoc0 l i s s’
def
=

newl = (s.loc(i) := l) ∧ s ∼loc=newl s’.

(8)

In the guard, we require that l should not intersect with
memory that can currently be accessed by other guests,
including the OS and other SCAs. In the action, the
state variable loc is changed into l, where l is built by
leveraging loc in original state s, i.e., s.loc. Hence, we can
prove that the invariant Isolation0

mem(s) is preserved after
the occurrence of the event.

4.3 Memory Isolation with Changing
Modes (S1)

In the first refinement (S1 ), we additionally model events
when guests are changing their internal modes. Specif-
ically, the shielding system determines whether a guest
can execute or not, which correspond to executing mode
and suspending mode. Therefore, for any guest i, loc(i)
turns into φ when guest i is switched into suspending
mode. Moreover, the shielding system may allocate new
memory of a guest when a guest is in suspending mode,
and the value of loc(i) becomes more complicated when
the guest is switched back to executing mode. The above
situations motivate us to model new events and prove
memory isolation in S1.

States S1: The record for states in S1 is shown in the
following.

S1 def
= {mode : tguests 7→ tmode,

mem : tguests 7→ tloc set}.
(9)

The internal mode of a guest i is denoted as mode(i).
mode(i) = EXE or SUS, when i is executing or sus-
pending respectively. Denote mem(i) as locations of
memory allocated for guest i by the shielding sys-
tem. Then, we define the invariant for modeling the
relation between S0 and S1:

SR01(s0, s1)
def
= (∀i.s1.mode(i) = EXE→

s0.loc(i) = s1.mem(i))∧
(∀i.s1.mode(i) = SUS→ s0.loc(i) = φ).

(10)

The invariant means that for any guest i, if it is in ex-
ecuting mode, then the memory that can be accessed
by i, i.e., s0.loc(i), is s1.memaloc(i). Otherwise, if i
is in suspending mode, no memory can be accessed
by i.

Invariant: Based on the refined state S1, we refine
Isolation0

mem(s) by the following invariant.

Isolation1
mem(s)

def
= ∀i j.i 6= j→

s.mode(i) = EXE→ s.mode(j) = EXE→
s.mem(i) ∩ s.mem(j) = φ

(11)

The invariant states that there is no shared memory
between memory that can be accessed by two guests
that are executing simultaneously. We notice the in-
variant because we use refinements of S1 to model
shielding systems [11, 18] which support multi-core
CPU. In this case, several SCAs may run on differ-
ent cores simultaneously.

Events: There are 2 types of events in S1 :

1) The event when a guest is in suspending mode.
Without loss of generality, the action in this case
is modeled as arbitrary changes of mem. We
further refine the action according to different
implementations in the case studies.
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2) Transition of the modes. The events used for
executing a guest or suspending a guest, and
the events are refined from ChLoc0guest. For ex-
ample, we model an event in the following:

GrdStoE1 i s
def
=

(i) mode(i) = SUS∧
(ii) (∀j.j 6= i ∧mode(j) = EXE→
s.mem(i) ∩ s.mem(j) = φ)

ActStoE1 i s s’
def
=

newm = (s.mode(i) := EXE) ∧ s ∼mode=newm s’.

(12)

In the event, the mode of the guest i is transited from
SUS to EXE. Specially, the guard requires that mem(i)
does not intersect with memory that can be accessed by
other guests. The guard helps proving the theorem of
refinement (4). Note that we do not model the event
when a guest is executing, since mem remains unchanged
according to current systems.

4.4 Data Confidentiality (S2 )

The goal of S2 is to prove data confidentiality as illus-
trated in Requirement 3. We leverage property of mem-
ory isolation in S1, and model more state variables that
may affect the goal. For example, a potential attack oc-
curs when a guest is switched into suspending mode. In
this case, the shielding system may save the guest’s data
on the memory and registers, and then allocates the mem-
ory to other guests. If the memory or registers are not
cleared before they are allocated, the data may be leaked
since other guests are assumed to be adversarial. Hence,
we formulate the data stored on the memory and refine
the events in S1.

tdata
def
= Hash tdata Hashes of data

| Key tkey Keys

| Enc tkey tdata Ciphertexts

| Id tguest Identifiers of guests

| Cons tdata tdata Concatenation of data

| Others Other types of data

Figure 1: The sub-types of data defined in S2

For preventing more complicated attacks, we model the
adversary in Dolev-Yao style. The adversary may perform
analysis on obtained data, e.g., decrypting a cypher using
obtained encryption key, and then forge data. In Figure 1,
we firstly define the type tdata for formulating data, and
divide tdata into several sub-types. Then, we model the
ability of adversary by defining functions analz and synth
and the corresponding axioms [6]. Both functions share
the same declarations:

analz, synth : tdata set 7→ tdata set

The function analz outputs the set of data that can be an-
alyzed from the input. For example, if Key(invKey(k))
∈ s and Enc(k,m) ∈ s, then m ∈ analz (s). invKey is
a function that leaves a key unaltered if the key is sym-
metric, or turns a key into its corresponding asymmetric
half if the key is asymmetric. The function synth outputs
the set of data that can be composed by using the input.
For example, if m, k ∈ s, then Enc(k,m) ∈ synth(s). The
properties in both examples can be proved by using the
defined axioms. For simplicity, we use the notation δ that
δ(d) = synth(analz(d)).

States S2 : The record for states in S2 is shown in the
following.

S2 def
= S1 + datamem : tloc 7→ tdata set

+ pdata : tguests 7→ tdata set

+ know : tguests 7→ tdata set

+ gset : tdata set

−mode

+ core : tguests 7→ tcores set

+ dataregs : tcores 7→ tdata set

(13)

Here, datamem(i) represents the set of data that may
currently be stored on memory location i. pdata(i)
represents the set of private data owned by guest i.
know(i) represents guest i’s knowledge, i.e., the set
of data that may have been obtained by guest i. In
our model, the data d ∈ know(i), if d was in the
memory location or register that could be accessed
by the guest i. Note that the data d may be di-
vide into multiple blocks, e.g., {b1, b2, . . . , bm}, which
are stored into multiple locations of memory, e.g.,
{d1, d2, ..., dm}, respectively. Obviously, an adver-
sary who only reads a single block of d, e.g., bi in
{b1, b2, . . . , bm}, does not obtain d. However, the
private information, e.g., the encryption key, may
happen to be in b1, which lead to successful attacks.
Hence, we simply assume that the adversary may per-
form attacks by leveraging d, if the adversary obtains
any bi from the location di.

The state variable gset represents the set of global
data that have been generated by the shielding sys-
tem and guests, and is used to achieve the assumption
of Dolev-Yao adversary. Since the adversary cannot
perform crypto-analysis, the possibility that newly
generated random data equal any historical randomly
generated data is assumed to be 0. Therefore, in our
model, the data d should satisfy the guard that (∀ k.
k ∈ parts(d) → k /∈ s.gset), before d is newly gen-
erated in the events, in which parts(d) is added into
gset. parts is a function that outputs the set of data
that can be extracted from the input. For example,
if Enc(k,m) ∈ s, then m ∈ parts(s). Axioms for parts
can be found in [6].

For generality, we also model and prove confiden-
tiality of data stored in the registers, besides the
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memory. Recall that the cores of an CPU may be
used by multiple guests simultaneously. It should be
proved that the data stored on the registers, which
belong to the cores used by a guest, are not leaked to
other guests. In S2, we replace mode with core, where
core(i) represents the set of cores currently used by
the guest i. Similar to datamem, dataregs(i) repre-
sents the set of data that may currently be stored at
the registers of the core i. Therefore, core is a refined
state of mode that a guest is using a core or several
cores if it is executing; otherwise, it does not use any
cores. Formally, we define the relation as invariant
SR12 as follows.

SR12(s1, s2)
def
=

(∀i. s1.mode(i) = EXE↔ s2.core(i) 6= φ)∧
(∀i. s1.mode(i) = SUS↔ s2.core(i) = φ).

(14)

Invariant: We prove data confidentiality Conf as follows.

oknow(s, i) = {x|j ∈ GIDS, j 6= i, x ∈ s.know(j)}.

Conf(s)
def
= ∀i.i ∈ GIDS ∧ i 6= OSID→

δ(oknow(s, i)) ∩ s.pdata(i) = φ.
(15)

The invariant states that the private data owned by
any SCA, i.e., pdata(i), cannot be analyzed or syn-
thesized according to the knowledge of other guests.
oknow(s,i) represents union of knowledge of guests
other than guest i. Here, we assume that the other
guests may collude by sharing knowledge with others
and perform attacks on guest i. GIDS is a constant
that represents the set of identifiers of all guests.

Events: We divide events in S2 into 5 parts.

1) Generating private data. In the events, a guest i
generates private data d, e.g., private keys, and saves
d into memory or registers. For example, when d is
saved into memory location ld, the event is modeled
as follows:

GrdGen2mem
i d ld s

def
=

(i) i ∈ GIDS ∧ (ii) s.core(i) 6= φ∧
(iii) ld ⊆ s.mem(i) ∧ (iv) (∀k.k ∈ parts(d)→ k /∈ s.gset)

ActGen2mem
i d ld s s’

def
=

newd = updatemem(s.datamem, ld, d)∧
newp = (s.pdata(i) := s.pdata(i) ∪ d)∧
newk = (s.know(i) := s.know(i) ∪ d)∧
newe = (s.gset ∪ parts(d))∧
s ∼datamem,pdata,know,gset=newd,newp,newk,newe s’.

(16)
Guard (ii), (iii) states that guest i is executing
and can access the location ld, respectively. Guard
(iv) states that the data d is newly generated.
In the action, the memory, private data and the

knowledge owned by guest i are changed. Here,
(updatemem(f, l, d))(x) = {d, if x ∈ l; f(x), if x /∈ l}.

2) Malicious operations. The guests may perform oper-
ations according to the Dolev-Yao adversary model.
Specifically, a guest may write data to the memory
or registers that can be accessed by the guest. The
following event represents the case when guest writes
data to the memory.

GrdMal2mem
i d ld s

def
=

(i) i ∈ GIDS ∧ (ii) s.core(i) 6= φ∧
(iii) ld ⊆ s.mem(i) ∧ (iv) d ∈ δ(s.know(i))

ActMal2mem
i d ld s s’

def
=

newd = updatemem(s.datamem, ld, {d})∧
newk = (s.know(i) := s.know(i) ∪ {d})∧
s ∼datamem,know=newd,newk s’.

(17)

Guard (ii) states that only the executing guest can
perform the operations. In the action, data d is writ-
ten to location ld, where ld is restricted by guard
(iii), and d is added to the knowledge of the guest i.
Data d is restricted by the guard (iv) that the data
must be analyzed or synthesized from the knowledge
of the guest.

3) Transition of modes. There are two events in this
case: (1) StoE2: the mode of a guest is switched
from suspending mode to executing mode, (2) EtoS2:
the mode of a guest is switched to suspending mode.
When the mode of guest is switched from executing
mode to suspending mode, the guest does not use
any core, and vice versa. Therefore, the events are
directly refined from events in S1. For example, when
the guest i starts using with core idc, we model the
event as follows.

GrdStoE2 i idc s
def
=

(i) i ∈ GIDS ∧ (ii) s.core(i) = φ∧
(iii) (∀j. j ∈ GIDS ∧ j 6= i ∧ s.core(j) 6= φ→
s.mem(i) ∩ s.mem(j) = φ)∧
(iv) (∀j. j ∈ GIDS→ idc /∈ s.core(j))∧
(v) (∀j. j ∈ GIDS ∧ j 6= i ∧ j 6= OSID→
δ(oknow(s, j) ∪ s.dataregs(idc)

∪ clt(s.datamem, s.mem(i))) ∩ s.pdata(j) = φ)

ActStoE2 i idc s s’
def
=

newc = (s.core(i) := s.core(i) ∪ {idc})∧
newk = (s.know(i) := s.know(i) ∪ s.dataregs(idc)

∪ clt(s.datamem, s.mem(i)))∧
s ∼core,know=newc,newk s’.

(18)
The guard (ii) and (iii) refines the guard (i) and (ii)
in StoE1, respectively. The guard (iv) states that the
core idc has not been used by any guest. The guard
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(v) states that for any guest except guest i and the
OS, private data of the guest cannot be analyzed or
synthesized from the union of the knowledge of other
guests and the set of data in memory and registers
that can be accessed by guest i. In the action, the
state variable core is changed and the set of data in
memory and registers that can be accessed by guest
i is added to the knowledge of guest i. The function
clt is used for collecting data in memory. Formally,
clt(f,m) = {d|x ∈ m, d ∈ f(x)}.

4) Changing the number of used cores. Specifically, a
guest may start using more or less cores when the
guest is executing. To preserve confidentiality in this
event, we add the guard which is similar to the guard
(v) in StoE2.

5) Other operations performed by the shielding system.
The shielding system may perform other operations
for managing the memory or registers. For example,
the shielding system may write data to the memory
or registers, clear the data in the memory or regis-
ters, reallocate the memory for a guest, or generate
data, e.g., keys used for encrypting data of guests.
We show the event that writes data to memory in
the following.

GrdSWrite2mem
d ld s

def
=

(i) ∀ j1.j1 ∈ GIDS∧
s.core(j1) 6= φ ∧ ld ∩ s.mem(j1) 6= φ→
(∀j2. j2 ∈ GIDS ∧ j2 6= j1 ∧ j2 6= OSID→
δ(oknow(s, j2) ∪ d) ∩ s.pdata(j2) = φ)

ActSWrite2mem
d ld s s’

def
=

newd = updatemem(s.datamem, ld, d)∧
newk = updateknwl(s.know, s.core, s.mem, ld, d)∧
s ∼datamem,know=newd,newk s’.

(19)

The guard (i) states that if the intersection between ld
and memory that can be accessed by the guest j1 is not
empty, for any guest except guest j1 and the OS, private
data of the guest cannot be analyzed or synthesized from
the union of the set of data to be written, i.e., d, and the
knowledge of other guests. In the action, the shielding
system writes d to ld and the knowledge of guests that
can access a part of memory locations in ld is added with
d. Formally, (updateknwl(k,c,m,ld,d))(i)={k(i), if (m(i)
∩ ld = φ)∨ (c(i)=φ); k(i)∪ d, if (m(i) ∩ ld 6= φ)∧ (c(i)6=
φ)}. We omit the definition of other operations in this
paper.

5 Case Studies

In this section, we model two shielding systems, i.e.,
TrustVisor [21] and OSP [11], based upon the refinements
of our general model.

5.1 Case 1: TrustVisor

TrustVisor [21] is an open-source hypervisor used for
shielding SCAs, which are called Pieces of Application
Logic (PALs) by TrustVisor. TrustVisor provides code
integrity as well as data integrity and confidentiality for
SCAs. Besides, TrustVisor leverages the features of mod-
ern processors to reduce the performance overhead caused
by protecting SCAs from the OS and its applications. We
now explain TrustVisor’s functions related to our goals as
follows.

1) registration: The registration interface allows the OS
to register SCAs. When the OS calls registration,
TrustVisor prepares an environment for launching a
new SCA, i.e., the memory to be accessed by the
SCA. The memory cannot be accessed by the OS
and the data on the memory should be prepared. In
practice, before using registration, the OS sets a re-
gion of the memory and the data on the memory,
and pass the region as the parameters in registration.
After registration is called, TrustVisor checks the pa-
rameters, and sets the corresponding memory unac-
cessible by the OS. Besides, TrustVisor prepares the
context of the SCA, i.e., the data to be loaded to the
registers, according to the parameters in registration.

2) invocation: Following registration, the OS may in-
voke an SCA by calling invocation. When the OS
calls invocation, the OS is switched into suspending
mode, and the selected SCA is started to execute.
TrustVisor firstly saves the context of the OS, and
then loads the context of the SCA. Besides, the OS
produces input and passes the input to the SCA.
Specifically, the OS firstly puts the input in mem-
ory region specified in the parameters of invocation.
Then, after calling invocation, TrustVisor copies the
data in the memory region to the memory that can
be accessed by the SCA. Finally, the SCA is allowed
to use the core of the CPU. Note that the design of
TrustVisor only supports using a single CPU core,
and TrustVisor can manage multiple SCAs.

3) termination: When an SCA has completed executing
and returns to the OS, termination is called through
a return point set by TrustVisor in the stack used by
the SCA. When an SCA calls termination, the OS
and the executing SCA is switched into executing
mode and suspending mode respectively. During the
process, TrustVisor saves the context of the executing
SCA, and copies the context of the OS. Besides, the
SCA produces output and passes the output to the
OS. Specifically, the SCA firstly puts the output in a
memory region specified by TrustVisor. Then, after
calling termination, TrustVisor copies the data in the
memory region to the memory region specified in the
parameters of invocation.

4) unregistration: TrustVisor zeros all execution state
associated with the SCA specified by parameters of
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unregistration. When the OS unregisters an SCA
by calling unregistration, TrustVisor deallocates all
memory allocated for the SCA, clears data in the
deallocated memory, and allocates the memory to the
OS.

5) hvseal: When an SCA calls hvseal, TrustVisor en-
crypts data in the specified blocks of memory using
the symmetric key, e.g., k, owned by the TrustVi-
sor, writes the encrypted data to the memory allo-
cated for the SCA, and continues executing the SCA.
Here, TrustVisor binds the identifier of the SCA i to
the encrypted data d. In other words, the ciphertext
outputted by hvseal are formed as Enc(k,Cons(d, i)).

6) hvunseal: Corresponding to hvseal, when an SCA calls
hvunseal for decrypting Enc(k,Cons(d, i)), TrustVisor
ensures that d is originally sealed by i, i.e., i is the
identifier of the SCA, before writing the decrypted
data to the memory that can be accessed by the SCA.
Then, TrustVisor continues executing the SCA.

States (S3
tv): We show the record for states in S3

tv in the
following.

S3
tv

def
= S2 + func : option tfun

+ ctxt : tguest 7→ (tdata set)

+ symkey : option tkey

(20)

The state variable func denotes which function pro-
vided by TrustVisor, e.g., registration, is currently
being executed. If func = NONE, then no func-
tion is running. Note that TrustVisor only uses a
single core of the CPU, therefore there is at most
one executing function at each state. We divide the
process of calling functions into several steps, and
each step can be refined from our general model.
Therefore, the state variable func records not only
the executing function’s name, but also the func-
tion’s current step and parameters. For example,
Ivc(s : stepivc)(p : prmtivc) is a subtype of tfun. If
func = Some(Ivc(IVCsv, prmivc(i))), it means that
the function invocation is being executed, the current
step in invocation is saving the context of the OS, and
the selected SCA is guest i. Here, stepivc is the type
of steps of invocation, and each of the step is defined
as a constant. prmtivc is the type of parameters of in-

vocation, and formally, prmtivc
def
= prmivc(t : tguest).

In S3
tv, we also add ctxt and symkey representing con-

texts and symmetric key held by TrustVisor, respec-
tively.

Events: As mentioned, the process of calling each func-
tion is divided into several steps, and each step is
modeled as an event refined from S2 or a new event
in which the state variables in former refinement level
do not change. We show the example of modeling
functions invocation and hvseal as follows.

1) invocation: The process is divided into 5 steps. In the
first step, the OS is switched into suspending mode.
Hence, the event is refined from EtoS2.

GrdEtoS3
ivc

i s
def
=

(i) (s.func = NONE) ∧ (ii) (s.core(OSID) 6= φ)∧
(iii) (i ∈ GIDS ∧ i 6= OSID)

ActEtoS3
ivc

i s s’
def
=

newc = (s.core(OSID) := φ)∧
s ∼func,core=Some(Ivc(IVCsv,prmivc(i))),newc s’.

(21)
The guard (i) states that there is no function that is
executing. The guard (ii) states that the OS is oc-
cupying the CPU, which means the OS is executing.
In guard (iii), guest i is selected to execute. There-
fore in the action, the OS no longer uses the CPU so
that the mode of the OS is switched into suspending
mode. On the other hand, the step turns into IVCsv.

In the second step IVCsv, TrustVisor saves the con-
text of the OS. Since context is saved to the new state
ctxt in S3

tv and no other state is changed, we model
the step as a new event.

GrdSv3ivc
i s

def
=

(i) s.func = Some(Ivc(IVCsv, prmivc(i)))

ActSv3ivc
i s s’

def
=

newc = (s.ctxt(OSID) := s.dataregs(UCORE))∧
s ∼func,ctxt=Some(Ivc(IVCcopy,prmivc(i))),newc s’.

(22)
The guard ensures that the event occurs only when
the previous step has been executed, in which the
func is changed into Some(Ivc(IVCsv, prmivc(i))). In
the action, the data on the registers are assigned to
ctxt(OSID), and the step turns into IVCcopy. Here,
UCORE is a constant representing the identifier of
the single core used by TrustVisor.

In the third step IVCcopy, TrustVisor manages the
memory for preparing the input of invocation before
SCA i is executed. Specifically, the data d are gener-
ated by the OS as input, which are stored in ls, and
then copied to the location ld, which belongs to SCA
i. The step is refined from the event SWrite2mem in
S2.

GrdCopy3ivc
i ls d ld s

def
=

(i) s.func = Some(Ivc(IVCcopy, prmivc(i)))∧
(ii) ld ⊆ s.mem(i) ∧ (iii) ls ⊆ s.mem(OSID)∧
(iv) d = clt(s.datamem, ls)

ActCopy3ivc
i ls d ld s s’

def
=

newd = updatemem(s.datamem, ld, d)∧
s ∼func,datamem=Some(Ivc(IVCload,prmivc(i))),newd s’.

(23)
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Note that the guard (i) implies there is no guest that
is executing. Therefore when Copy3ivc occurs, the
guard (i) in SWritemem is ensured, and the knowl-
edge of any guest is not changed for SWrite2mem, i.e.,
updateknwl(s.know, s.core, s.mem, ld, d)= s.know.
The step then turns into IVCload.

In the fourth step, TrustVisor loads the context of
the SCA i. It is also refined from the event in S2, in
which TrustVisor writes data to registers.

GrdLoad3ivc
i s

def
=

(i) s.func = Some(Ivc(IVCload, prmivc(i)))

ActLoad3ivc
i s s’

def
=

newd = (s.dataregs(UCORE) := s.ctxt(i))∧
s ∼func,dataregs=Some(Ivc(IVCStoE ,prmivc(i))),newd s’.

(24)
The guard simply checks if it is at the fourth
step, i.e., IVCload. In the action, the context, which
is stored by TrustVisor and modeled as a global state
ctxt, is assigned to the registers, i.e., dataregs. Then
the step turns into IVCStoE .

In the final step, the mode of SCA i is switched into
executing mode, therefore the event is refined from
StoE2.

GrdStoE3
ivc

i s
def
=

(i) s.func = Some(Ivc(IVCStoE , prmivc(i)))

ActStoE3
ivc

i s s’
def
=

newc = (s.core(i) := s.core(i) ∪ {UCORE})∧
newk = (s.know(i) := s.know(i) ∪ s.dataregs(UCORE)

∪ clt(s.datamem, s.mem(i)))∧
s ∼func,core,know=NONE,newc,newk s’.

(25)
Here, the guard is refined that it only checks whether
the step is IVCStoE . The guards defined in StoE2 are
true according to the definitions of previous steps.
Finally, the state variable func turns into NONE.

2) hvseal: We divide the process into 3 steps. In the first
step, the mode of SCA i is switched from executing
mode to suspending mode. Therefore the step is also
refined from EtoS2.

GrdEtoS3
seal

i d s
def
=

(i) (s.func = NONE) ∧ (ii) (s.core(i) 6= φ)∧
(iii) (i ∈ GIDS ∧ i 6= OSID)

ActEtoS3
seal

i d s s’
def
= newc = (s.core(i) := φ)∧

s ∼func,core=Some(Seal(SEALenc,prmseal(i))),newc s’.

(26)

The guards state that SCA i is executing. Besides the
actions refined from EtoS2, we add action that the step
turns into SEALenc.

In the second step, TrustVisor encrypts data in mem-
ory that can be accessed by SCA i, and save the encrypted
data. The step is refined from the event SWrite2mem in S2.

GrdSeal3enc
i ls d ld k s

def
=

(i) s.func = Some(Seal(SEALenc, prmseal(i)))∧
(ii) ld ⊆ s.mem(i) ∧ (iii) s.symkey = Some(k)∧
(iv) ls ⊆ s.mem(i) ∧ (v) d ∈ clt(s.datamem, ls)

ActSeal3enc
i ls d ld k s s’

def
=

newd = updatemem(s.datamem, ld,

{Enc(k,Cons(d, Id(i)))})∧
s ∼func,datamem=Some(Seal(SEALStoE ,prmseal(i))),newd s’.

(27)
The guard (i) checks whether the step is SEALenc. In the
guards, we also make constraints on the parameters of the
event. Specifically, the data d in memory ls are encrypted,
and the encrypted data are saved to ld, which is located
at memory that can be accessed by SCA i. In guard (iii),
TrustVisor must have generated the encryption key before
the event occurs.

In the final step, the mode of an SCA is switched back
to executing mode. Hence, the step is refined from the
event StoE2. Since the refined event is similar to StoE3

ivc,
we simply provide the definition as follows and omit the
explanations.

GrdStoE3
seal

i s
def
=

(i) s.func = Some(Seal(SEALStoE , prmseal(i)))

ActStoE3
seal

i s s’
def
=

newc = (s.core(i) := s.core(i) ∪ {UCORE})∧
newk = (s.know(i) := s.know(i) ∪ s.dataregs(UCORE)

∪ clt(s.datamem, s.mem(i)))∧
s ∼func,core,know=NONE,newc,newk s’.

(28)

Results: Since we have proved properties of memory iso-
lation and data confidentiality in previous refinement
levels, to guarantee the properties as well, we only
need to individually prove that the guards and ac-
tions correctly refined in each event, i.e., the theorem
Eq. (4),(5) are satisfied in S3. Therefore, it is unnec-
essary to prove that each event satisfies the proper-
ties. Moreover, for many events in different functions
are refined from the same functions, e.g., StoE2, our
method also reduces the complexity of modeling the
shielding systems.

We notice a potential security threat in using the function
terminate. When TrustVisor copies the output prepared
by an SCA to memory allocated for the OS, private data
of the SCA may be in the output, if the function is not
carefully used by the designers of SCAs. Therefore in the
next steps, data confidentiality is violated because the
private data in the output is added to the knowledge of
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the OS. Formally, in the step of copying the output of an
SCA, TrustVisor copies the set of data stored in ls to ld.

GrdCopy3trm
i ld d ls s

def
=

(i) s.func = Some(Trm(TRMcopy, prmtrm(i)))∧
(ii) ld ⊆ s.mem(OSID) ∧ (iii) ls ⊆ s.mem(i)∧
(iv) d = clt(s.datamem, ls)

ActCopy3trm i ld d ls s s’
def
=

newd = updatemem(s.datamem, ld, d)∧
s ∼func,datamem=Some(Trm(TRMlod,prmtrm(i))),newd s’.

(29)
The step is refined from SWrite2mem. Here private data of
SCA i may be in d.

Then, in the step of switching the mode of the OS to
executing mode, the set of data stored in memory allo-
cated for the OS is added to the knowledge of the OS.

GrdStoE3
trm

i s
def
=

(i) s.func = Some(Trm(TRMStoE , prmtrm(i)))

ActStoE3
trm

i s s’
def
=

newc = (s.core(OSID) := s.core(OSID) ∪ {UCORE})∧
newk = (s.know(OSID) := s.know(OSID)∪
s.dataregs(UCORE) ∪ clt(s.datamem, s.mem(OSID)))∧
s ∼func,core,know=NONE,newc,newk s’.

(30)
We briefly illustrate the reason why data confidential-
ity is violated in these steps. Since it can be proved
that StoE3

trm occurs only if Copy3trm have occurred, it
implies that d in Copy3trm is a subset of clt(s.datamem,
s.mem(OSID)), i.e., the set of data stored in memory al-
located for the OS. Therefore, private data in d may be
added to the knowledge of the OS.

In design of TrustVisor, it is suggested that SCAs en-
crypt private data of themselves in their outputs by call-
ing hvseal. To validate the suggestion, we replace the step
Copy3trm with CopyStrn3trm in the formal model.

GrdCopyStrn3trm
i ld d ls k s

def
=

(i) s.func = Some(Trm(TRMcopy, prmtrm(i)))∧
(ii) ld ⊆ s.mem(OSID) ∧ (iii) ls ⊆ s.mem(i)∧
(iv) d = clt(s.datamem, ls) ∧ (v) s.symkey = Some(k)∧
(vi) (∀d1.d1 ∈ d ∧ (parts(d1) ∩ pdata(i) 6= φ)→
∃d2.d1 = Enc(k,Cons(d2, Id(i))))

ActCopyStrn3trm i ld d ls k s s’
def
=

newd = updatemem(s.datamem, ld, d)∧
s ∼func,datamem=Some(Trm(TRMlod,prmtrm(i))),newd s’.

(31)
Compared with Copy3trm, guard (v) and (vi) are added.
The guard (v) states that TrustVisor has generated the
encryption key used in hvseal. The guard (vi) models the
suggestion that if d1 contains SCA i’s private data, then

d1 should be the output of hvseal called by SCA i. Finally,
data confidentiality is proved to be preserved when the
guards are added.

5.2 Case 2: OSP

OSP is a shielding system that aims to overcome the
weakness of TrustZone-based approaches and hypervisor-
based approaches in ensuring safe execution of security
sensitive codes (SCCs), i.e., SCAs, on mobile devices.
TrustZone-based approaches bloat the TCB of the sys-
tem as they must increase the code base size of the most
privileged software. The most privileged software is used
for supporting the execution of SCCs in the secure world.
Hypervisor-based approaches incur performance overhead
on mobile devices that are already suffering from resource
restrictions. Therefore, OSP uses a hybrid approach that
utilizes both TrustZone and a hypervisor to not only avoid
executing SCCs in the secure world, but also mitigate per-
formance overhead by activating the hypervisor. Specifi-
cally, OSP consists of the OSP hypervisor, which protects
and manages the SCCs, and the OSP core, which controls
and configures OSP overall. The OSP core resides in the
secure world, while the OSP hypervisor is implemented
in the normal world for an additional TEE for execut-
ing SCCs. Thus the TCB bloating of the secure world is
suppressed. The OS in the normal world cannot access re-
sources, e.g., memory, used in the TEE. OSP deactivates
its hypervisor when there is no SCC that is executing, and
therefore, performance overhead in activating the hyper-
visor is mitigated.

We now explain OSP’s functions related to our goals
as follows.

1) SCC register : An SCA is registered by the OS
by calling SCC register. When the OS calls
SCC register, OSP prepares the execution environ-
ment of a new SCA. OSP allocates memory for the
SCA, initializes contexts, i.e., data to be written to
registers, for the SCA and resumes the OS. The allo-
cated memory is reserved for all SCAs, and isolated
from memory allocated for the OS.

2) SCC invoke: After SCC register for an SCA, the
SCA can be invoked by the OS. When the OS calls
SCC invoke, OSP performs two phases of execution.
In the first phase, a CPU core originally used by
the OS is stopped and assigned to the selected SCA
by OSP. OSP saves the context of the OS for the
core, loads the context of the SCA, and executes
the SCA. Besides, the OS produces the input for the
SCA to the memory region specified by parameters of
SCC invoke. OSP copies the input to memory allo-
cated for the SCA. If the SCC finishes its work, OSP
performs the second phase. Specifically, the SCA
turns into suspending mode, and the CPU core orig-
inally used by the SCA is reassigned to the OS. OSP
saves the context of the SCA, loads the context of the
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OS for the core and makes the OS use the core. Be-
sides, the SCA produces the output for the OS to the
memory region specified by OSP. Then, OSP copies
the output to the memory allocated for the OS. Note
that the OS may use several CPU cores simultane-
ously, and therefore when the OS calls SCC invoke,
the OS may not be turned into suspending mode.

3) SCC unregister : OSP completely clears every rel-
evant state of an SCA specified by parameters of
SCC unregister. When the OS calls unregistration,
OSP deallocates all memory originally allocated for
the SCA, clears data in the deallocated memory, and
resumes the OS.

States and Events: The record for states for OSP is
similar to S3

tv, except that symkey is unused, since
OSP does not provide hvseal or hvunseal. We also
omit the modeling of events, for it is similar to the
modeling of events in TrustVisor as well.

Results: We also discover a potential security threat in
using the function SCC invoke. The threat is quite
similar to the one we noticed in TrustVisor. Formally,
first, if the OS is in executing mode when OSP copies
the output of the SCA, d is added to the knowledge
of the OS.

GrdCopy23ivk
i idc ld d ls s

def
=

(i) s.func = Some(Ivk(IVKcopy2, prmivk(i, idc)))∧
(ii) ld ⊆ s.mem(OSID) ∧ (iii) ls ⊆ s.mem(i)∧
(iv) d = clt(s.datamem, ls)

ActCopy23ivk
i idc ld d ls s s’

def
=

newd = updatemem(s.datamem, ld, d)∧
(32)

If s.core(OSID) 6= φ
then newk=(s.know(OSID):=s.know(OSID)∪ d)
else newk=s.know) ∧ s ∼ func, datamem, know =
Some(Ivk(IVKlod2, prmivk(i, idc))), newd,newks’.

Second, if the OS is in suspending mode when Copy23ivc
occurs, d is written to ld for Copy23ivc.

GrdRC23ivk
i idc s

def
=

(i) s.func = Some(Ivk(IVKRC , prmivk(i, idc)))

ActRC23ivk
i idc s s’

def
=

newc = (s.core(OSID) := s.core(OSID) ∪ {idc})∧
(if s.core(OSID) 6= φ then

newk = (s.know(OSID) := s.know(OSID)∪
s.dataregs(idc))

else newk = (s.know(OSID) := s.know(OSID)∪
s.dataregs(idc) ∪ clt(s.datamem, s.mem(OSID))))∧
s ∼ func, core, know = NONE,newc,newks’

(33)

It can be proved that d in Copy23ivk is a subset of
clt(s.datamem, s.mem(OSID)) in RC23ivk. Therefore, pri-
vate data in d may be added to the knowledge of the OS.

In design of OSP, it is suggested that SCAs encrypt
private data of themselves in their outputs. We assume
that SCAs encrypt private data in the output by using
their private symmetric keys. Formally, we replace the
step Copy23ivk with Copy2Strn3ivk in the formal model.

GrdCopy2Strn3ivk
i idc ld d ls s

def
=

(i) s.func = Some(Ivk(IVKcopy, prmivk(i, idc)))∧
(ii) ld ⊆ s.mem(OSID) ∧ (iii) ls ⊆ s.mem(i)∧
(iv) d = clt(s.datamem, ls)∧
(v) (∀d1.d1 ∈ d ∧ (parts(d) ∪ s.pdata(i) 6= φ)→
∃d2.∃k.d1 = Enc(k, d2)∧
k = invKey(k) ∧Key(k) ∈ s.pdata(i)).

ActCopy2Strn3ivk
i idc ld d ls s s’

def
=

newd = updatemem(s.datamem, ld, d)∧
(if s.core(OSID) 6= φ then

newk = (s.know(OSID) := s.know(OSID) ∪ d)

else newk = s.know)∧
s ∼ func, datamem,

know = Some(Ivk(IVKlod, prmivk(i, idc))),

newd,newks’.
(34)

Here, Copy2Strn3ivk refines SWrite2mem in S2. Compared
with Copy23ivk, guard (v) is added. Guard (v) states that
if d1 contains SCA i’s private data, then d1 should be
a ciphertext encrypted by a symmetric key that is pri-
vately owned by SCA i. Finally, we prove the validity of
Copy2Strn3ivk.

6 Related Work

6.1 Shielding Systems

The current shielding systems can be divided into two
categories: (1) Systems using modern instructions in Intel
or AMD chips. (2) Systems using TrustZone Technology.

Intel and AMD chips: Flicker [22] leverages Trusted
Platform Module (TPM) and Intel TXT [17] or AMD
SVM [30] to execute security sensitive code in isola-
tion with the OS. Since it uses new features of pro-
cessors, specially designed hardware or modifications
for the OS are not needed in protecting applications,
and it only requires that as few as 250 lines of addi-
tional code are trusted. TrustVisor [21] provides code
integrity as well as data integrity and confidential-
ity for selected portions of an application. The goal
is to leverage the features of modern processors to
overcome the tradeoff between achieving a high level
of security and high performance. It is achieved by
implementing a software-based ”micro-TPM” which
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attests the existence of isolated execution to an ex-
ternal entity.

InkTag [15] is proposed to directly address the Iago
attacks [8] in systems that solely protect memory
of applications from untrusted OS. It simplifies the
design of hypervisor by forcing the untrusted oper-
ating system to participate in its own verification.
Haven [5] enables users to run applications on cloud
hosting services without having to trust the service
provider. It protects confidentiality and integrity of
the user’s applications from the platform on which it
runs (i.e., the cloud service provider’s OS, VM and
firmware). MiniBox [20] is the first two-way sandbox
for x86 native code, which not only protects a benign
OS from a misbehaving application, but also protects
an application from a malicious OS. MiniBox can be
applied in Platform-as-a-Service cloud computing to
provide two-way protection between a customer ap-
plication and the cloud platform OS.

TrustZone: Though the secure world of ARM Trust-
Zone [1] is used for executing security critical ap-
plications, the increased number of the applications
makes the size of the most privileged software in
the secure world complex and therefore, vulnerable.
Hence, shielding systems, such as OSP [11] and Pri-
vateZone [18], are proposed for handling the prob-
lem. OSP [11] relies on a hybrid approach that uti-
lizes both TrustZone and a hypervisor to implement
an additional execution environment for securely ex-
ecuting applications.

This scheme, called on-demand hypervisor activa-
tion, has been efficiently and securely implemented
by leveraging the memory protection capability of
TrustZone. PrivateZone [18] is a framework to enable
individual developers to utilize TrustZone resources.
Using PrivateZone, developers can run Security Criti-
cal Logics (SCL) in a Private Execution Environment
(PrEE). The advantage of PrivateZone is its leverag-
ing of TrstZone resources without undermining the
security of existing services in the TEE.

6.2 Refinement of Security Systems

The design of TAP [28] is motivated by the phenomenon
that recent proposals for trusted hardware platforms, such
as Intel SGX [23] and the MIT Sanctum processor, offer
compelling security features but lack formal guarantees.
It is proved that SGX and Sanctum are refinements of
TAP under certain parameterizations of the adversary,
demonstrating that these systems implement secure en-
claves for the stated adversary models. Specifically, TAP
satisfies three security properties that entail secure remote
execution: integrity, confidentiality and secure measure-
ment. TAP is currently limited to concurrent execution
on a single-threaded single-core processor.

Klein et al. [19] present post-hoc verification of the seL4
microkernel from an abstract specification down to its

C implementation. The functional correctness is verified
that the implementation of seL4 always strictly follows the
high-level abstract specification of kernel behavior. Here,
the refinement is used to prove the conformance between
formalizations at different levels.

Zhao et al. [33] propose a security model for informa-
tion flow security in certification of separation kernels and
a refinement framework on ARINC 653 compliant Sepa-
ration Kernels (ARINC SKs). According to code-to-spec
review, they find six security flaws in the ARINC 653
standard and three flaws in ARINC SK implementations.

Refinement and verifications on security protocols have
been studied as well. Sprenger et al. [27] propose to ver-
ify security protocols by stepwise refinement. Their re-
finement strategy guides the transformation of abstract
security goals into protocols that are secure when operat-
ing over an insecure channel controlled by a Dolev-Yao-
style intruder. They have implemented their method in Is-
abelle/HOL and used it to develop different entity authen-
tication and key transport protocols. Huang et al. [16]
make fine-grained refinement on TPM-based security pro-
tocols on the application level. The purpose is to guide
the design of TPM-based protocol applications, which are
generally security-critical and error-prone in implementa-
tion. The framework introduces a modified Dolve-Yao
adversary model, where the normal entities outside TPM
may also perform malicious operations.

6.3 Verifications without Refinement

There are also researches on formally verifying security
systems without refinement [31, 32]. Barthe et al. [3, 4]
formalize in the Coq proof assistant an idealized model
of a hypervisor, and formally establish that the hypervi-
sor ensures strong isolation properties between the differ-
ent operating systems, and guarantees that requests from
guest operating systems are eventually attended. Sinha et
al. [25,26] formally verifies confidentiality of applications
running on Intel SGX. The main concerns are vulnera-
bilities of divulging secrets in the application caused by
incorrect use of SGX instructions or memory safety errors.

7 Conclusions

We develop a formal framework for analyzing security
properties ensured by shielding systems. We analyze the
property of memory isolation and data confidentiality,
and propose four refinement steps for guiding verification
of shielding systems. Potential security threats in using
the systems are found.

One of our future work is to refine the shielding sys-
tems into fine-grained pseudo-code level with full verifi-
cation, in which the soundness of specific goals in each
shielding system is also proved. We also plan to extend
our framework with more realistic hypotheses to support
side-channel attacks [2, 9, 24] towards shielding systems.
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