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Abstract

In commercial fog computing, block-level client-side dedu-
plication (BC-Dedu) can be used to save storage space
and network bandwidth. However, the existing BC-Dedu
schemes cannot support ownership management, which
leads to the degradation of forward and backward secrecy
of the outsourced data. Besides, BC-Dedu schemes are
vulnerable to the side information leakage issue since the
existence of data is revealed to the outside adversary. In
this paper, we propose an anti-leakage BC-Dedu scheme
that supports ownership management in fog computing.
Specifically, we present a dual-level ownership list and key
update mechanism to achieve ownership management in
the proposed scheme. Besides, we construct a novel dedu-
plication protocol to alleviate the side information leak-
age issue. Furthermore, a dynamic data storage strategy
is proposed to reduce service costs and latency. Security
and performance analyses demonstrate that the proposed
scheme achieves the desired security requirements while
saving resource efficiently.

Keywords: Deduplication; Dynamic Data Storage; Fog
Computing; Ownership Management

1 Introduction

The ever-increasing volume of users in cloud computing
results in an indisputable predicament that the comput-
ing power and storage capacity of the centralized cloud
will be unable to provide satisfactory services for users
timely in the near future [22]. To overcome this problem,
fog computing is presented by Cisco in 2012 [2], which
is a hierarchical service structure consists of the central
cloud, fog devices, and end-users. The fog device con-
nects to the central cloud and other fog devices through
inter-network, and connects to end users through intra-
network [16]. In this architecture, the central cloud offers
a wide range of low-latency computing services by us-
ing fog devices adjacent to the users. Even so, the fog
computing still faces the challenge of insufficient storage

resources and network bandwidth caused by the growing
volume of the outsourced data. Thus, researchers try to
adopt cross-user deduplication technique in fog comput-
ing to save storage space and network bandwidth [10,11],
where each data is stored only once, and the subsequent
versions are deleted. All of the legitimate users access the
outsourced data through a link. Besides, the central cloud
maintains the deduplicated data after fog devices imple-
ment deduplication over the outsourced data. This work
model provides a rapid data deduplication while reducing
the pressure on the central cloud.

In commercial fog computing, the service providers are
most concerned about maximizing profits while ensuring
system security. A feasible method is to reduce the ser-
vice costs as much as possible. Considering space savings,
the block-level deduplication performs more excellent in
space savings than file-level one since the identical blocks
of the different file can also be deduplicated in block-level
deduplication. As regards bandwidth consumption, the
client-side deduplication performs more excellent than the
server-side one in bandwidth savings since only the undu-
plicated data is required to upload to the cloud server in
client-side deduplication. The BC-Dedu is no doubt the
best choice for service providers. However, there are some
security issues remain to be solved [18].

Primarily, the data encryption key is rarely updated
after its generation [15] and the data users may remove
their data from fog storage to reduce service expenses. In
this case, the more frequent the data ownership change
is, the greater the impact on the key information disclo-
sure. To alleviate this issue, the deduplication scheme
should prevent revoked users from accessing the plain-
text of outsourced data (forward secrecy). Likewise, the
unauthorized user should be deterred to access the plain-
text of outsourced data before she/he obtains the valid
ownership (backward secrecy) [7]. Unfortunately, most of
the existing block-level deduplication schemes [3, 23] do
not consider the ownership management, and the exist-
ing ownership management techniques are only suitable
for file-level deduplication. Therefore, it is a significant re-



International Journal of Network Security, Vol.22, No.1, PP.24-35, Jan. 2020 (DOI: 10.6633/IJNS.202001 22(1).03) 25

search to realize the ownership management in block-level
deduplication for better security and great space savings.

Besides, the client-side deduplication is vulnerable to
the side information leakage issue, which means that the
malicious adversary can learn the existence of outsourced
data during the upload phase by analyzing the respond of
the server, namely confirmation-of-file (CoF) attack [17].
This issue is an obstinate security flaw for file-level client-
side deduplication, and most of the existing BC-Dedu
schemes cannot alleviate this issue efficiently. Thus, the
side information leakage issue is an opening security flaw
that is worth exploring.

In this paper, we propose a BC-Dedu scheme over en-
crypted data in fog computing. Our main contributions
are listed as follows:

• We propose a dual-level ownership list and key up-
date mechanism to implement ownership manage-
ment in the proposed BC-Dedu scheme.

• We construct a novel block-level deduplication pro-
tocol to alleviate the side information leakage issue,
and this protocol also alleviates the security caused
by duplicate-faking attack.

• To reduce the costs and latency of data service, we
provide a dynamic data storage strategy to achieve
efficient resource utilization by storing data accord-
ing to service demand.

2 Related Works

Although most of the existing deduplication schemes [1,
3, 7, 9, 19, 21, 23] are presented in cloud computing rather
than fog computing, the related experience is worth learn-
ing. Thus, we will introduce some representative works.

2.1 Secure Client-Side Deduplication

In the original architecture of deduplication, the cloud
server deduplicates the plaintext uploaded by users [5,6],
which reveals the privacy of data users to the cloud server.
For better privacy, the users encrypt their data before
uploading it. Unfortunately, the general cryptographic
primitives obstruct the deduplication since the different
users will obtain the various ciphertext by encrypting the
identical data with distinct encryption keys. To realize
the deduplication over encrypted data, Douceur et al. [4]
proposed a promising solution called Convergent Encryp-
tion (CE) that requires different users use the hash value
of the data to encrypt the data. As an extension of CE,
Bellare et al. [1] presented Message-Locked Encryption
(MLE) and gave a formal privacy model PRV$-CDA and
strict proof for CE. Recently, Chen et al. [3] extended
MLE to block-level for secure large file deduplication
and introduced the corresponding security model PRV$-
CDA-B. Zhao et al. [23] presented a variant of block-level
MLE [3] named updatable block-level MLE that supports
the block-level data update.

Considering the side information leakage issue caused
by CoF attack in client-side deduplication, Harnik et
al. [6] proposed a scheme that resists CoF attack by uti-
lizing the client-side and server-side deduplication alter-
natively according to a random threshold. Based on this
work, Lee et al. [13] minimize the success probability of
CoF attack through optimizing the security parameters to
enhance the security of outsourced data. Koo et al. [11]
proposed a hybrid deduplication protocol in conjunction
with client-side and server-side deduplication to alleviate
the side information leakage issue in fog computing.

To prevent the malicious users who never own the tar-
get data from acquiring valid ownership with a single hash
value obtained by eavesdropping, Halevi et al. [5] pro-
posed an interactive Proof of Ownership (PoW) protocol
based on the Merkle Hash tree (MHT). Xu et al. [20]
proposed a client-side deduplication scheme based on
MHT [5]. However, this scheme is subject to file proof
reply attack. Recently, Yang et al. [21] proposed a prov-
able method of ownership proof of encrypted data, which
can resist the file proof reply attack. Nevertheless, the en-
cryption key is easily leaked. Li et al. [14] proposed a sig-
nificant application of MHT-based PoW in deduplication
and auditing scenario, which resists the file proof reply at-
tack and realizes efficient verification by allowing multiple
data blocks to be challenged simultaneously. Even so, the
malicious user who owns the data may launch a duplicate-
faking attack (DFA) by identifying the data and uploads
a poison version in the initial upload phase. Then, the
subsequent uploader only can access the poison data af-
ter uploading the data. Kutylowski et al. [12] proposed
a novel deduplication scheme, called TrDup, which can
trace the malicious user by incorporating traceable signa-
tures with MLE. Kim et al. [9] proposed a novel client-side
deduplication scheme to prevent data users from losing
data under duplicate-faking attack by using a double-tag
interaction model, where the second tag is generated by
the cloud server in the initial upload phase.

2.2 Ownership Management

Considering the forward and backward secrecy of the out-
sourced data, Hur et al. [7] proposed an ownership man-
agement technique that adopts a key-encryption keys tree
to realize efficient ownership management. Based on this
work, Jiang et al. [8] presented a lazy update strategy
to reduce the frequency of update. However, the default
user-space of this technique does not necessarily satisfy
the actual demand, especially when the number of data
owners changes dramatically. Besides, this technique will
lead to large costs if it is employed in block-level dedu-
plication. Koo et al. [10] proposed a novel ownership
management technique in file-level deduplication, which
achieves the fine-grained access control efficiently without
the consideration of default user-space. Unfortunately, it
only can be used in file-level deduplication since its block
encryption key implies the information of the file.
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3 Preliminary

In this section, we introduce some necessary preliminaries
for the proposed deduplication scheme.

3.1 Discrete Logarithm Problem (DLP)

For a group G with prime order p and generator g, given
ga ∈ G, where a ∈ Zp, there is no polynomial time algo-
rithm can compute a with non-negligible probability.

3.2 Notations

We denote the empty string as ε, and let [i] = {1, . . . , i}
for i ∈ N. If x is a vector, we denote |x| as its dimension,
and denote x[i] as the i-th component of x, and define that
x[i, j] = x[i] . . . x[j] for 1 ≤ i ≤ j ≤ |x|. For a finite set S,

|S| denotes its size and s
r←− S represents that an element

s is uniformly selected in S. An operation that employs
the algorithm A on inputs x1, . . . randomly is denoted
as y

r←− A (x1, . . .). We define the guessing probability
GP(X) and min-entropy H∞(X) of a random variable X
as maxx Pr[X = x] = 2−H∞(X). Besides, for a random
variable X given a random variable Y , we denote its con-
ditional guessing probability GP(X |Y ) and conditional
min-entropy H∞(X |Y ) as

∑
y Pr[Y = y] ·maxx Pr[X =

x |Y = y ] = 2−H∞(X|Y ).

3.3 Unpredictable Sources

Suppose that a polynomial-time algorithm is a source
M, which takes 1λ as input, outputs (M, Z), where M
is a message vector in {0, 1}∗ and Z ∈ {0, 1}∗ denotes
some auxiliary information of M. We denote the length
of vector M as n(λ), which represents the number of
blocks in our context. Besides, we label the i-th block
of the message M with M[i] for all i ∈ [1, n(λ)]. Due
to the block-level deduplication architecture of the pro-
posed scheme, we suppose the sources output message
vector over {0, 1}B , where B is the size of data block.
Thus, M[i] ∈ {0, 1}B for all i. Furthermore, we require
that M[i1] 6= M[i2] for all distinct i1, i2 ∈ [n(λ)] to bar
against trivial adversary. A source M is unpredictable if
GPM = maxi{GP(M[i] |Z )} is negligible.

3.4 Block-Level MLE

According to Chen et al’s works [3], a block-level MLE
scheme is composed of the following algorithms:

• Setup: inputs the security parameter 1λ and returns
the system parameters P .

• KeyGen: Inputs the system parameters P and a file
M = M [1]‖ . . . ‖M [n], runs the following two sub-
algorithms and outputs a master key kmas and block
keys {ki}1≤i≤n, respectively.

1) M-KeyGen: Takes P and M as input, returns
the master key kmas.

2) B-KeyGen: Takes P and M [i] as input, returns
the block key ki.

• Enc: Inputs P , a block M [i] and corresponding block
key ki, outputs the block ciphertext C[i].

• Dec: Inputs P , a block ciphertext C[i] and block key
ki, outputs the block M [i] or ⊥.

• TagGen: Inputs P and a file M , runs the following
sub-algorithms and outputs file tag t and block tags
{Ti}1≤i≤n respectively.

1) M-TagGen: Inputs P and M , outputs the file
tag t.

2) B-TagGen: Takes P and a block M [i] as input,
returns the block tag Ti.

• PoWPrf: Inputs the challenge Q and a file M , out-
puts a response P

• PoWVer: Inputs the challenge Q, the file tag t, the
block tags Ti1≤i≤n,and the response P, outputs True
or False.

3.5 PRV$-CDA-B Game

Based on the architecture of block-level MLE, Chen et
al. [3] introduced a privacy model for block-level MLE
scheme, called PRV$-CDA-B, which argues that a block-
level MLE scheme is secure under chosen distribution
attacks if no polynomial-time adversary A can win the
following chosen distribution attack game PRV$-CDA-B
with non-negligible advantage:

Setup: An adversary A sends the challenger C the de-
scription of an unpredictable block-sourceM, and C
generates and returns the system parameter P to A.

Challenge: C selects b ← {0, 1} randomly. If b =
0, C runs M as (M0, Z) ← M(λ). Otherwise,

C chooses M1 from {0, 1}|M
0| uniformly and ran-

domly, and set M = Mb. We denote n as the
number of blocks. For each i ∈ [1, n] , C com-
putes: block keys ki ← B−KeyGen(Mi), cipher-
texts Ci ← B− Enc(ki,Mi), and block tags: Ti ←
B− TagGen(Ci), as well as the file tags: t ←
M− TagGen(M). Finally, C returns auxiliary infor-
mation Z, tags T = {t, T1, . . . , Tn}, and the cipher-
texts C = {C1, . . . , Cn} to A.

Output: The adversary A outputs his guess b′ according
to (C, T, Z). If b′ = b, then A wins the game.

We regard A as a PRV$-CDA-B adversary and define the
advantage of A by

AdvA,MPRV$−CDA−B(λ)=

∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣ .
Definition 1. A block-level MLE scheme is PRV$-CDA-
B-secure if for any M and any PRV$-CDA-B adversary
A, AdvA,MPRV$−CDA−B is negligible.
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Figure 1: A Merkle Hash tree for input data with 8 blocks

3.6 Proof of Ownership

A demonstration of Li et al.’s [14] PoW protocol: sup-
pose that a file C contains eight blocks. As is shown
in Figure 1, the storage server constructs the MHT of
C and triggers PoW process with a random challenge
set Ic = {2, 5}. The prover computes h2, h5 of C2, C5

and corresponding auxiliary information Ω2 = (h1, h34),
Ω5 = (h6, h78) (highlighted by green) as the ownership
proof, and returns to storage server. The storage server
reconstructs the root node of the MHT to verify proof:

h′18 = h(h(h(h1 ‖ h2) ‖ h34) ‖ h(h(h5 ‖ h6) ‖ h78)).

If the proof is accepted, the prover is authorized to
access this stored file. We employ this PoW protocol in
the proposed scheme, and use the root value of MHT as
the second file tag T0.

4 System Model and Design Goals

In this section, we introduce the architecture of fog stor-
age and define some security requirements.

4.1 Fog Storage System

The fog storage system consists of three system entities:
Cloud, Fog, and End user (Figure 2).

• Cloud: Centralized service provider, which provides
data storage and retrieval service to users, and man-
ages the fog devices.

• Fog: Distributed entities, which are used as the
proxy of the cloud to provide fast services.

• End user: Data outsourcing/retrieving entities,
which are divided into initial and subsequent up-
loader based on whether their data has been up-
loaded.

We regard initial and subsequent uploader as data owners.
The local fog device of a data owner is denoted as F0, and
the data storage fog device is denoted as Fs.

Figure 2: Fog storage system

4.2 Adversarial Model

We consider the following adversaries [8] in the proposed
scheme.

• Outside adversary: The outside adversary may ac-
quire some knowledge (eg., a hash value) of the file
by eavesdropping, and pretend as a common user to
interact with the remote server.

• Inside adversary: The insider adversary executes
the assigned tasks honestly but would like to learn
as much information of file as possible. Such as the
cloud server or fog devices.

We assume that all service devices are honest-but-curious,
and do not collude with outside adversary.

4.3 Security Requirements

Considering the aforementioned adversarial model, we
propose the following security requirements [8]:

• Privacy: The proposed scheme should provide the
outsourced data with PRV$-CDA-B security [3], and
prevent the plaintext of outsourced data from any
illicit access.

• Integrity: End users should be allowed to verify the
integrity of data during the data retrieval phase, and
the proposed scheme should prevent users from losing
data under duplicate-faking attack.

• Leakage resilience: Information leakage of data
should be minimized as possible during data out-
sourcing phase.

• Forward and backward secrecy: In cross-user
deduplication, forward secrecy means that the re-
voked users should be deterred to access the data
stored in the remote storage. Backward secrecy
means that the user should be prevented from ac-
cessing the data stored in the remote storage before
she/he obtains the valid ownership.
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Algorithm 1

Setup(1λ)

Select a hash function H : {0, 1}∗ → {0, 1}λ, and select a λ-bit prime p that is the description of H.
Select a symmetric encryption scheme with key length λ: SKE.{KeyGen,Enc,Dec}.
Select a multiplicative group G with prime order p such that G = 〈g〉 where g is the generator of G.
Return(p,g,H,G)

KeyGen(M =M1 ‖ · · · ‖Mn)
for each i ∈ [1, n]
ki = H(Mi)
kmas = H(M)
Return(kmas, {ki}1≤i≤n)

Enc({Mi}1≤i≤n, {ki}1≤i≤n)
for each i ∈ [1, n]
Ci = SKE.Enc(ki,Mi)
Ck = SKE.Enc(kmas, k1 ‖ · · · ‖ kn)
Return({Ci}1≤i≤n, Ck)

ReEnc(Ci)
r1∈RZ∗p
Rk

(1)
i = gr1

C
(1)
i = Ci ·Rk(1)i

Return(C
(1)
i , Rk

(1)
i )

Update(C
(j)
i , Rk

(j)
i )

rj+1∈RZ∗p
Rk

(j+1)
i ←

(
Rk

(j)
i

)rj+1

T (j)→(j+1) = Rk
(j+1)
i /Rk

(j)
i

C
(j+1)
i ← C

(j)
i · T

(j)→(j+1)

Return(C
(j+1)
i ,Rk

(j+1)
i )

RkeyDrv({Rk(∗)i }1≤i≤n, ids)
CRk = ids · (Rk(∗)1 ‖ · · · ‖ Rk(∗)n )
Return(CRk)

TagGen({Ci}1≤i≤n, kmas)
Ti = H(C[i]), for each i ∈ [1, n]

t = gkmas

Return(Ti, t)

Dec({C(∗)
i }1≤i≤n, Ck, CRk, ids, kmas)

Rk
(∗)
1 ‖ · · · ‖ Rk(∗)n = CRk/ids

k1 ‖ · · · ‖ kn = SKE.Dec(kmas, Ck)
for each i ∈ [1, n]
Ci ← C∗i /Rk

∗
i

Mi = SKE.Dec(ki, Ci)
Return(M =M1 ‖ · · · ‖Mn)

5 The Proposed Scheme

In this section, the proposed scheme is described in detail.
The necessary algorithms are defined in Algorithm 1.

5.1 Overview

In general, our scheme first runs the file-level dedupli-
cation, and performs block-level deduplication when the
data does not exist in fog computing. In the upload phase,
the initial uploader is required to upload the unduplicated
blocks as well as some duplicate blocks selected randomly,
the subsequent uploader is requested for some random du-
plicate blocks. All of the random blocks will be discarded.
In this way, data users cannot infer the existence of the file
through the existence of the data block since they imple-
ment data outsource through the similar processes. After
the data outsourcing, the outsourced data should be up-
dated to ensure forward and backward secrecy while the
ownership changes. To realize the ownership management
in BC-Dedu scheme, we construct a dual-level ownership
list to maintain the connections between files and updated
blocks. Meanwhile, we design a corresponding update al-
gorithm for a low-cost update operation. Moreover, we
propose a dynamic data storage strategy that requires
storage devices store blocks based on service demand to
reduce the service costs and latency in fog computing.

5.2 Main Construction

5.2.1 System Setup

A trust initializer runs the Setup algorithm to obtain
and publish the system parameters. The data owners are
allowed to transfer data to fog storage.

Figure 3: Initial upload

5.2.2 Data Outsourcing and Deduplication

When a data owner us tries to upload file M to fog stor-
age, us invokes the KeyGen, Enc and TagGen algo-
rithm to compute the file tag t, block keys ciphertext Ck,
block ciphertexts {Ci}1≤i≤n and tags {Ti}1≤i≤n. Then,
us sends the upload message Upload ‖ t ‖ {Ti} ‖ Ck ‖ ids
to the local fog device F0, where ids is the identity of
us. Notably, we regard the file data block that does not
exist in the fog storage as initial block Cm, and turn the
existing file block into subsequent block Cs, such that:
{Cm}

⋃
{Cs} = {Ci}1≤i≤n.

Initial Upload: As is illustrated in Figure 3, If t is not
in F0 and the central cloud, F0 searches the initial
blocks {Cm} with {Ti}1≤i≤n in the block index list
maintained by the cloud, and deduplicates the sub-
sequent blocks with related storage devices. Besides,
F0 picks some duplicate blocks {Cr}(∈ {Cs}) ran-
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domly, where the number of the random file blocks is
determined by F0 according to the security require-
ments. Then, F0 requests us to return {Cm}

⋃
{Cr}.

For each block C ′i returned by us, for each block C ′i,
F0 checks the H(C ′i) with Ti, and retains the initial
blocks {Cm} if all the checks are passed. After that,
F0 triggers PoW protocol. If F0 accepts us as a valid
data owner, F0 computes the tag of keys ciphertext
TCk = H(Ck). Finally, F0 returns TCk and the root
value T0 of MHT to us for subsequent file retrieval.

Figure 4: Subsequent upload

Subsequent Upload: If t exists in F0, the detailed pro-
cess performed by F0 is described in Figure 4. F0

checks the consistency between t and {Ti}1≤i≤n with
ψt. If all the checks are passed, F0 pretends to per-
form initial upload by requesting some random blocks
{Cr}(∈ {Cs}) from us. For each block C ′i returned by
us, F0 checks the H(C ′i) with Ti. If all the checks are
passed, F0 discards the random blocks and triggers
PoW protocol. If us’s proof is accepted, F0 com-
putes TCk = H(Ck) and performs server-side dedu-
plication over the key ciphertext. Finally, F0 returns
TCk and T0 to us.

Note that when the consistency checks between t and
{Ti}1≤i≤n are not all passed, F0 performs the remain-
der procedures of initial upload, which alleviates the
duplicate-faking attack by allowing the subsequent up-
loader to outsource the data that has been suffered the
duplicate-faking attack. Besides, when t exists in another
fog device Fs, Fs will employ F0 as a proxy to perform the
similar subsequent upload procedures as that executed by
F0 when t exists in F0.

5.2.3 Onwership Management

For forward and backward secrecy, the storage devices
should update the data during the following three case.

Data Upload: In this case, the data storage devices may
perform the following four operation:

• For the file C uploaded by us initially, F0 creates
a file-level ownership list LF : 〈t, T0, ψt, Gt〉,
where ψt is a map from t to {Ti}1≤i≤n. Then,
F0 inserts us into the file ownership group Gt =
{ids}.

• For an initial block Cm, F0 creates a block-
level ownership list LB : 〈Tm, GTm〉, where the
block ownership group GTm = {IDF } consists
of the valid fog devices. Besides, F0 runs the
ReEnc algorithm to re-encrypts Cm, and stores
the re-encrypted ciphertext and re-encryption

key
〈
C

(1)
m , Rk

(1)
m

〉
locally. Finally, F0 informs

the central cloud to update both file-level and
block-level indexes.

• For a subsequent block Cs, F0 informs the re-
lated block storage device Fs to run Update
algorithm to update re-encrypted block.

• For the file C uploaded by us subsequently, F0

inserts us into Gt, and informs related block
storage devices to run the Update algorithm to
update re-encrypted blocks. Then, F0 requests
the central cloud to update the overall file-level
ownership list.

Data Deletion: When us(∈ Gt) wants to delete the file C,
us sends the file deletion message with Delete ‖ t ‖
T0 ‖ ids to F0. F0 removes ids from Gt and informs
related block storage devices to run the Update al-
gorithm to update re-encrypted blocks. Then, F0 in-
forms the central cloud to update the overall file-level
ownership list.

Data Modification: We consider the following two case
of the data modification.

• Block-deletion: when us wants to obtain the
file C ′ by deleting the i-th block of C, us com-
putes the t′, Ck′ of C ′ and sends Modify ‖ t ‖
T0 ‖ Ti ‖ t′ ‖ Ck′ ‖ ids to F0. Then, F0 re-
moves the identity ids from Gt and informs the
block storage device who stores Ci to run Up-
date algorithm to update re-encrypted blocks.
Subsequently, F0 performs initial upload or sub-
sequent upload according to whether t′ exists
in the system. Finally, F0 informs the central
cloud to update the overall file-level ownership
list.

• Block-modification: when us wants to obtain
the file C ′ by modifying the i-th block Ci of file
C with C ′i. us computes the new t′, T ′i , C

′
i, Ck

′ ,
then sends the modification message Modify ‖
t ‖ T0 ‖ Ti ‖ t′ ‖ T ′i ‖ C ′i ‖ Ck′ ‖ ids to F0,
Finally, F0 performs the similar procedures as
block-deletion.

5.2.4 Retrieval

When us(∈ Gt) wants to retrieves the file M that is
stored in F0, us sends data retrieval message Retrieval ‖
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Figure 5: Ideal system model of fog storage

t ‖ T0 ‖ TCk ‖ ids to F0. F0 validates the validity of
the us through the file-level ownership list LF , and re-
quests all related storage devices Fs for corresponding file
blocks and re-encryption key. Then, Fs validates the va-
lidity of F0 through the block-level ownership list LB ,
and returns the file blocks. F0 constructs a file ciphertext

C∗ = C
(∗)
1 ‖ · · · ‖ C(∗)

n , and computes a re-encryption key
ciphertext CRk via RkDrv algorithm. Then, F0 returns
〈C∗, Ck,CRk〉 to us. us takes the C∗, Ck, and CRk as
input to run the Dec algorithm to obtain the file M .

5.2.5 Dynamic Data Storage

In fog computing, the central cloud offers a wide range
of low-latency computing services by using fog device ad-
jacent to the users, which means that the distance from
local fog device to end user (intra-network) is much less
than that from the central cloud to this fog device (inter-
network). Therefore, the data access costs and latency is
mainly caused by inter-network transmission. To reduce
the service costs and latency, we propose a novel dynamic
data storage strategy, which can periodically store data
blocks in the devices of the fog computing according to
the service demand.

For a concise illustration, we establish a ideal fog stor-
age system as shown in Figure 5, where the six fog devices
are distributed uniformly. Suppose that the distance from
each fog device to cloud is r, the distance from j-th fog
device to F1 is dj , and {dj}1≤j≤6 =

{
0, r,
√

3r, 2r,
√

3r, r
}

.
For a block of size SCi that stored in F1 periodically, we
assume that the number of access from j-th fog device to
Ci is numj . Then, we introduce the following notions:

costCi =
∑n

j=2
dj · numj · SCi

cost′Ci =
∑n

j=1
numj · r · SCi

RateCi = costCi/(costCi + cost′Ci).

Where costCi is the total access costs of block Ci stored in
F1, the cost′Ci is the total access costs of block Ci stored
in the central cloud. Notably, when RateCi > 0.5, it is
cost-efficient for F1 to move local block Ci to the central
cloud. Without loss of generality, we assume that each

fog device accesses Ci with an identical possibility. Then,
the mean distance for fog devices to access block Ci is
(4 + 2

√
3)r/5. Thus, RateCi > 0.5 means that:

rateF1 =
num1∑n
j=1 numj

<
2
√

3− 1

4 + 2
√

3
= rate0

Where rateF1
is the percentage of the accesses launched

by local device in total accesses. Obviously, the rate0 is
a suitable criterion for data storage devices to determine
the next storage location of Ci, since rate0 causes less
computational overhead than RateCi .

In the proposed dynamic data storage strategy, the
central cloud computes the rate0 as a system parame-
ter. The fog device Fs will move a local block to the
central cloud if rateFs < rate0. Similarly, a block stored
in cloud will be moved to fog device Fj if rateFj > rate0.
The decrease of data access costs is mainly caused by the
decrease of mean access distance of fog devices in this
dynamic data storage strategy, which also reduces the la-
tency of data service. Besides, we allow the central cloud
to adjust rate0 according to service demand.

6 Security Analysis

6.1 Privacy

In the proposed scheme, each data block of the unpre-

dictable file is re-encrypted with re-encryption key Rk
(1)
i

from Ci to C
(1)
i in the initial upload phase. When

the file ownership changes, 〈C(j)
i , Rk

(j)
i 〉 is updated with

〈C(j+1)
i , Rk

(j+1)
i 〉. The re-encryption key is retained se-

cretly in the block storage device, and is distributed se-
curely to a valid user us only when us retrieves the corre-
sponding file. Therefore, the outside adversary cannot de-
crypt the ciphertext without the valid re-encryption key.

For a stronger security demonstration, we make a com-
promise to assume that the outside adversary obtains
the corresponding identity and decrypts all blocks from

{C(∗)
i } to {Ci}. In this case, bounded by the hardness

assumption of DLP, the outside adversary plays an iden-
tical role with the inside adversary since they cannot ob-
tain the master key kmas from t = gkmas . Besides, both
the inside and the outside adversary are unable to learn
any information from the ciphertext blocks {Ci}. We fol-
low give an outline of security proof based on the existing
works [1, 3, 23].

Theorem 1. Let SKE.{KeyGen,Enc,Dec} be a symmet-
ric encryption scheme with key length λ, and model H(·)
as a random oracle. If there exists an adversary B′ that
can break the KR-security with advantage AdvB

′

KR(λ), and
exists an adversary D′ that breaks the ROR-security with

advantage AdvD
′

ROR(λ). There exists a PRV$-CDA-B ad-
versary A in the proposed scheme such that:

AdvA,MPRV$−CDA−B(λ) ≤ O(qn) ·AdvB
′

KR(λ)
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+AdvD
′

ROR(λ) +
n2

2B+1
+
qn

2µ

where M is a block-source with min-entropy µ, B is
the length of a block, n is the number of block messages,
and q is the number of queries to H(·) by A.

Proof. We introduce a sequence of PRV$-CDA-B games
to prove the privacy of our scheme by transiting the game
from the world of hidden bit 0 to the world of bit 1. Mean-
while, we demonstrate that each transition is indistin-
guishable from the security of the underlying primitive.

Game G0: An initial game that holds a hidden bit 0.

Game G1: Except that a table is created by the chal-
lenger C to track the random oracle queries when
encrypting the file M , this game is identical to G0.
On the condition that all Mi are distinct, C will
abort the game if the result of a query X has been
defined as H(X) during an earlier query. Thus,
Pr[GA0 ] ≤ Pr[GA1 ] + Pr[GA1 sets bad]. Note that the
total number of random oracle queries is bounded
by the number of ciphertexts. By union bound, we

conclude that Pr[GA1 sets bad] =
∑n−1

i=0
i

2B < n2

2B+1 .

Game G2: During the challenge phase, this game is iden-
tical to G0 until A makes a “bad” query of H(X),
and C aborts game due to the “bad” query. Bounded
by the KR-security of the symmetric-key encryption
scheme, we argue that this occurrence is negligible.

Note that the hash value of data is used as an en-
cryption key in symmetric encryption, and the cor-
responding ciphertexts are sent to A. Suppose that
an adversary B makes such bad queries with non-
negligible probability, we can break the KR-security
by building an adversary B′. B′ just guesses hash
query j∗ and the encryption index i∗. Besides, B′
plants its own key-recovery challenge c∗ in the i∗-
th encryption and outputs j∗-th hash query. Thus,
Pr[GA1 ] ≤ Pr[GA2 ] + Pr[GA2 sets bad]. By a hybrid

argument, Pr[GA2 sets bad] ≤ qn′ ·AdvB
′

KR(λ).

Game G3: A further transition is to replace all encryp-
tions of message M[i] or M′[j] with encryptions of
random messages of the same length. This is pos-
sible due to ROR-security of the symmetric-key en-
cryption scheme. Suppose that an adversary D who
can distinguish this game from G2, so an adversary
D′ can be built to breaks the ROR-security as follows.
In ROR game, D′ computes the ciphertext for D by
querying its encryption oracle, then D′ outputs the

output of D. Pr[GA3 sets bad] ≤ AdvD
′

ROR(λ). Thus,
Pr[GA2 ] ≤ Pr[GA3 ] + Pr[GA3 sets bad].

Game G4: When A queries H(M [i]) for some i, C
aborts. Recall in G3, for the adversary A, all the
ciphertexts are independent of the true ciphertext
C. So we can bound the above probability by ap-
plying the min-entropy of M. By union bound,

we have Pr[GA4 sets bad] =
∑n

i=1
q

2µ ≤
qn
2µ . There-

fore, Pr[GA3 ] ≤ Pr[GA4 ] + Pr[GA4 sets bad]. Moreover,
Game 4 implements exactly the case where b = 1
such that:

AdvA,MPRV$−CDA−B(λ) = Pr[GA0 ]− Pr[GA4 ].

6.2 Integrity

When the valid data owner us obtains outsourced file M ′

during Retrieval phase, us can verify the integrity of out-
sourced data based on whether the equation t = gH(M ′)

holds. Furthermore, the proposed scheme alleviates the
duplicate-faking attack by allowing the subsequent up-
loader to outsource the data that has been suffered the
duplicate-faking attack. In this way, the correct version
is stored in fog storage.

6.3 Leakage Resilience

In the proposed scheme, the outside adversary cannot
learn the existence of outsourced data by launching CoF
attack, since they cannot accurately distinguish whether
they are performing an initial upload or a subsequent up-
load according to the respond of F0. Specifically, when
a data owner us tries to upload file C to local fog device
F0, four cases may occur as follows:

Case (1): All blocks of C are not in fog storage;

Case (2): Partial blocks of C are not in fog storage;

Case (3): All blocks of C are in fog storage, but C is
not;

Case (4): C exists in fog storage.

During the data outsourcing phase, F0 requests data
owner to upload blocks that consist of initial blocks and
some random blocks, where the number of random data
blocks is determined by the F0 according to the security
requirement. When the number of the requested blocks
is equal to the sum of the target file, Case (2) is indis-
tinguishable from Case (1); When the number of initial
blocks is 0, Case (2), Case (3) and Case (4) are indis-
tinguishable. Then, all blocks returned by us will be
checked. If all of the checks are passed, the PoW pro-
tocol will be triggered. In the actual service scenario, the
Case (2), Case (3) and Case (4) are occurring in data
outsourcing phase frequently, where the uploader cannot
learn the existence of outsourced data from the respond of
F0. Therefore, our scheme protects the outsourced data
from the side information leakage.

6.4 Forward and Backward Secrecy

In the proposed scheme, when a data owner us(∈ Gt)
deletes or modifies the outsourced file C, the file storage
device Fs removes us from file-level ownership list, and
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informs the related block storage devices to update the
data blocks and re-encryption key. Specifically, for a block

C
(j)
i , a random exponent rj+1 is chosen to generate the

new re-encryption key Rk
(j+1)
i that will be securely stored

in the block storage device. Then, the block ciphertext

C
(j)
i is re-encrypted to C

(j+1)
i with Rk

(j+1)
i /Rk

(j)
i . When

a valid data owner us requests the outsourced file, all
block re-encryption keys will be integrated with the iden-
tity of us and returned to us. In this way, our scheme en-
sures the forward secrecy of outsourced data since the re-
voked users cannot decrypt the updated ciphertext with-
out a valid re-encryption key.

When a subsequent uploader us uploads file to fog stor-
age, the file storage device Fs inserts us into the file-level
ownership list and informs the related block storage de-
vices to update the data blocks and re-encryption keys.
All of the re-encryption keys are distributed to us in a
secure manner during the Retrieval phase. Thus, the
unauthorized users are unable to decrypt the updated ci-
phertext since they have no re-encryption key before they
obtain valid ownership by uploading the data. The back-
ward secrecy of the outsourced data is guaranteed.

7 Performance Analysis

In this section, we analyze the proposed scheme and com-
pare it with some state-of-the-art deduplication schemes
in theoretical and practical aspects.

7.1 Comparisons

Table 1: Comparison of deduplication schemes

Ownership
management

Leakage
resilience

Dynamic
storage

BKR [1] × × ×
HKSK [7] File-level

√
×

KH [10] File-level × ×
Ours Block-level

√ √

Table 1 shows the comparison results of some dedupli-
cation schemes in terms of ownership management, leak-
age resilience, and dynamic data storage. In addition
to BKR, the remainders provide ownership management
for the outsourced data by updating key. Specifically,
KH and HKSK achieve ownership management in file-
level deduplication, and our scheme achieves ownership
management in block-level deduplication, which supports
more space savings in fog storage. As regards the leak-
age resilience in secure deduplication, HKSK can prevent
data from the side information leakage based on its server-
side deduplication architecture, and the BKR and KH are
vulnerable to the side information leakage since the out-
side adversary could learn the existence of the data by
launching the CoF attack. Due to our unique dedupli-
cation protocol, the proposed scheme can resist the side
information leakage efficiently.

Both BKR and HKSK do not support dynamic data
storage due to their architecture of single server cloud
storage. KH alleviates the service pressure on the cen-
tral cloud by storing the outsourced data in fog device
in a period. However, all of the outsourced data will be
moved to the central cloud finally. Our scheme requires
the block storage devices periodically store blocks based
on the service demand to reduce service costs and latency
while alleviating the pressure on the cloud server.

Table 2: Notations used in theoretical analysis

Notation Description
CG Bitlength of an element in G
CZ Bitlength of an element in Z∗p
CH Bitlength of a hash value
CM Bitlength of a file M
Ck Bitlength of a block keys ciphertext
CRk Bitlength of a ReEnc keys ciphertext
n Number of blocks in file M
m Number of unduplicate blocks of M
r Number of requested random blocks
u Number of challenge blocks
O Number of data owners of file M
e Evaluation of bilinear map
H Evaluation of hash function
Exp Evaluation of exponentiation
Mul Evaluation of multiplication
Enc Evaluation of symmetric key encryption/decryption
Ek Evaluation of the encryption/decryption of block keys

7.2 Efficiency Analysis

We define the notations in Table 2, which are used in
the following efficiency analysis in terms of computation
costs, communication overheads and storage overheads.

Computation costs: Table 3 shows the computation costs
of different deduplication schemes in different phases.
The initial upload includes the costs of all operations
for the initial uploader to outsource a new data to
the remote storage. Similarly, the subsequent up-
load includes the costs of the subsequent uploader
to regenerate the data which exists in remote stor-
age. Verification includes the costs caused by the
PoW process, Update invokes the costs for the data
update, and Retrieval invokes the costs for the de-
cryption of outsourced data on client-side.

With regard to initial upload, subsequent upload,
and retrieval phases, the computation costs of our
scheme are similar to HKSK and BKR, where the
additional symmetric encryption operation is caused
by block keys management, and it is acceptable in
large file deduplication. Besides, the computation of
HK is higher than other schemes, which will be illus-
trated with corresponding simulation experiment in
the following subsection.

Only the KH and our scheme support the PoW and
ownership management. As regards the verification,
the computation costs of our scheme are less than
KH, since the PoW protocol employed in our scheme
supports multiple blocks verification simultaneously.
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Table 3: Comparison of computation costs

Initial upload Subsequent upload Verification Update Retrieval

BKR [1] nEnc+ 2H nEnc+ 2H - - nEnc

KHSK [7] nEnc+ 2H nEnc+ 2H - - nEnc

KH [10]
3e+ 5Exp

+(n+ 5)Mul + 1H
3e+ Exp

+(n+ 3)Mul + 1H
u(logn+ 1)H

(O + 3)Exp
+(n+ 1)Mul

2e+ Exp
+(n+ 3)Mul

Ours nEnc+ Ek + 2H nEnc+ Ek + 2H
∑u
i=1 (logn+ 2− i)H nExp+ 2nMul

nEnc+ Ek
+nMul

Table 4: Comparison of communication and storage overhead

Communication overhead Storage overhead
Initial upload Subsequent upload Retrieval Service provider Data owners

BKR [1] CM + 3CH 2CH CM + CH CM + 2CH 2CH
HKSK [7] CM + CH CM + CH CM + 2CH CM + 2CH 2CH
KH [10] CM + CH + 3CG CG + u(logn+ 1)CH CM + 4CG + CH CM + |O|CG CH + CZ

Ours
m+r
n
CM

+(n+ 2)CH + Ck

r
n
CM + Ck

+
∑u
i=1 (logn+ 2− i)CH

CM + 2CH
+Ck + CRk

m
n
CM + (n+ 2)CH
+Ck + CRk

3CH

Considering the Update, with the increasing volume
of the data owners, our scheme consumes less time
than that of the KH.

Table 4 summarizes the comparison results of dif-
ferent schemes in terms of communication and stor-
age overhead. The proposed scheme supports block-
level client-side deduplication, and other schemes are
file-level deduplication scheme, which means that our
scheme saves more storage space and bandwidth.

Communication overheads: Compared with other
schemes, only the partial data blocks are requested
in our scheme during the initial upload phase, which
saves more bandwidth than other schemes. Despite
some random blocks are requested in the subsequent
upload, the additional overheads can be regarded as
a tradeoff since our scheme obtains a better leak-
age resilience than the common client-side dedupli-
cation and more bandwidth savings than the server-
side deduplication.

Storage overheads: Based on the architecture of block-
level deduplication, our scheme provides more effi-
cient space savings than other schemes. Further-
more, considering the implementation of ownership
management in the proposed block-level deduplica-
tion scheme, the increase in space caused by block
tags, block key ciphertext, and re-encryption keys ci-
phertext can be seen as a trade-off, that is negligible.

7.3 Simulation

We conduct a series of simulation experiments to analyze
the performance of the proposed scheme in terms of com-
putation costs and resource utilization.

Primarily, we measure the computation costs of MLE-
based schemes during different phases by using the

Crypto++ library ver.5.6.2, where the SHA-256 is used as
a cryptographic hash function to generate encryption key
and tags, and the AES-128 with Electronic Code Book
(ECB) mode is employed as an encryption/decryption
function. Besides, we use the Pairing-Based Cryptogra-
phy (PBC) library (Version 0.5.14) built upon the GNU
Multiple-Precision (GMP) library (Version 6.0.0a) to im-
plement HK’s scheme. The size of the blocks is 1MB.
All experiments are performed on a laptop with the 2.5
GHz Intel(R) Core(TM) i5-3210M CPU and 8GB mem-
ory. Note that each experimental data was obtained from
the average of 20 repeated samples.

The computation costs of different schemes are shown
in Figure 6. As is illustrated in Figure 6(a), the computa-
tion costs of each scheme in Setup phase will not change
with the size of the file, and our scheme consumes almost
3.5ms in this phase, which is the same as that of BKR
and HKSK. Besides, the KH’s computation costs is 15ms
and is higher than other schemes. During the outsourc-
ing and retrieval phases, the computation costs of each
scheme are shown in Figure 6(b) and Figure 6(c), which
are proportional to the size of the outsourced data.

During the data Outsourcing phase, when the size of
the outsourced file is 10MB, the outsourcing time is 1.2s
for BKR and HKSK, 2.8s for KH, and 1.5s for our scheme.
While the file size increases to 1024MB, the correspond-
ing time is 122.9s, 280.4s and 151.2s. Compared with
BKR and HKSK, the additional computation costs of our
scheme is caused by the block tags generation, which is
necessary for the proposed block-level deduplication.

During the Retrieval phase, when the size of out-
sourced data is 10MB, the computation time is 1.02s for
BKR, HKSK, 1.46s for KH, 1.1s for our scheme. While
the file size increases to 1024MB, the corresponding time
is 102.9s, 180.4s, 103.5s. Note that the computation time
of our scheme is almost 57.4% as that of KH.
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(a) Setup (Server side) (b) Outsourcing (Client side) (c) Retrieval (Client side)

Figure 6: Comparison of computation time

(a) Comparison of access cost ratio RateCi (b) Comparison of access costs (c) Comparison of access latency

Figure 7: Data access of inter-network

Next, we analyze the rationality of our dynamic data
storage strategy under ideal fog storage model mentioned
before. For simplicity, the number of total access from
fogs to blocks is assumed as 100, the distance between
fogs and cloud is assumed as 1 unit, the data transmis-
sion speed is 2s/unit and the size of block Ci is assumed
as 1Mb. We conduct a large number of simulation exper-
iments, and select some samples randomly for analysis.

As is depicted in Figure 7(a), a block is suitable to store
in its current fog device if its RateCi < 0.5. Notably, the
trend of actual distance simulation (highlighted by blue)
is similar to that of the mean distance simulation (high-
lighted by black). Besides, the value of actual distance
simulation and mean distance simulation are close to 0.5
when the remote access ratio (1− rateF1 , highlighted by
red) approaches a specific value (highlighted by green).
Distinctly, the proportion rateF1

of the local accesses in
total accesses can be used as the criterion to determine
the next storage location of the block.

Under the same block access situation, we demonstrate
the performance of our dynamic storage strategy in Fig-
ure 7(b) and Figure 7(c). Notably, Both the access costs
and latency of our scheme are always equal to the min-
imum of the other two situation. Thus, our dynamic
data storage strategy achieves efficient resource savings
and low-latency services.

8 Conclusion

This paper has proposed a secure and efficient BC-Dedu
scheme in commercial fog computing, which provides a
comprehensive privacy-preservation for the outsourced
data, especially in leakage resilience, forward and back-
ward secrecy. Besides, we proposed a dynamic data
storage strategy to obtain low-cost and low-latency data
access services by utilizing the fog storage resource ef-
ficiently. Both the security and performance analysis
demonstrate that the proposed scheme is suitable for the
deduplication of large encrypted data in fog storage where
ownership changes frequently.
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