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Abstract

As dataflow on Internet is growing exponentially, pro-
cesses that can efficiently extract meaningful information
have become a crucial factor for many successful appli-
cations. For example, the purpose of membership de-
termination is to discriminate whether a fragment of the
dataflow is an element of a specific dataset. The Bloom
filter has been well recognized for dealing with such a
problem, but it can only provide the membership infor-
mation. Recently, membership determination that can
accompany with additional attribute information has be-
coming increasingly important, because it could save con-
siderable time for the secondary querying once the mem-
bership is confirmed. Therefore, this study proposes a
multibit representation of the original Bloom filter by en-
coding the attribute codes, instead of binary counterpart,
for resolving such a situation. Simulation results show
that the querying efficiency and false-positive ratios are
fairly competitive with reasonable memory-space usages.

Keywords: Attribute Information; Bloom Filter; Member-
ship Determination

1 Introduction

Emerging business models on the Internet, such as blogs,
social groups, instant messaging and on-line shopping,
have brought the world to a completely different look
in recent years. These models usually require unique
processes for efficiently manipulating information in real
time, such as keyword searching, frequency measuring and
account-password matching for accommodating the grow-
ing Internet speed. Membership determination could be
accounted for a branch of such processes, which could be

characterized as: Given a large dataset composed of el-
ements of a certain feature, e.g., login accounts or email
addresses, the purpose is to discriminate whether a ran-
dom query is an element of the dataset. The size of the
dataset could grow even larger as time proceeds, and the
expansion, however, could influence the querying time to
some degrees, so a means that can perform such a process
without compromising the querying speed is very critical.
The Bloom filter [2] has been widely employed as a
core engine for dealing with the membership determina-
tion problem, which includes two phases of processes. In
the programming phase, a set of hash functions are uti-
lized for mapping each set element to a one-dimensional
bit array. Because of the employment of the hashing func-
tions, in the second phase the querying time could achieve
nearly constant regardless the size of the dataset. The bit
array is considerably large, in which each bit is initially
set to zero and turned to one once hit by the hash pro-
cess. Such a programming behavior guarantees that all
the set elements could get all ones in the querying phase
to be considered as a member. Such a process, however,
could introduce errors called “false positives”, where all
the cells hit by a non-member element are all ones. Con-
sequently, the element is falsely determined as a member,
which is also referred to as false-positive (FP) errors.

The FP errors could be critical for some applications
that requires stringent membership discrimination, which
must be within an acceptable level. In [9], the authors
show that it is important how such a matter could in-
fluence cloud computing, in which they point out that
attribute-based encryption is a promising cryptographic
solution in cloud environment because access control is
important as far as data security is concerned. For ex-
ample, Thiyagarajan and Ganesan [14] proposes an ar-
chitecture of multiple keyword search by building index
using Bloom filter, taking advantage of its consistent pro-
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cessing time for querying through hash functions. The
engagements of hash functions, due to their uniqueness
have also given themselves a crucial role for defending ma-
licious intrusions, also referred to as intrusion detection
systems (IDS), as in [1,12]. For our proposed method, we
employ a special yet simple hash function, designed for
elements of texts and symbols with various lengths. Such
a design was intended to accommodate packet headers
on the network, making recognition of known malicious
packets with certain characteristics possible.

The two-phase mechanism of Bloom filter is very sim-
ilar to the process of artificial neural network (ANN),
where a certain large amount of known data are itera-
tively presented to a specific paradigm, and the results
are utilized as an on-line component for determining the
outcome of inquiring data. In our previous work, an ANN
paradigm (CMAC) was employed for resolving the issue of
membership determination with multiple attributes [11].
Being a supervised type of ANN, a number of target val-
ues of CMAC must be specified for the paradigm to oper-
ate properly. In our implementation, each target value
designated a specific attribute code. When the train-
ing process is complete, all the set data belonging to an
identical attribute code would approach that target value,
where a recognition zone could be formed for a querying
element to be considered as member if they pass through
the zones. Furthermore, the associated attribute code
could be immediately identified. The scheme works well
in simultaneously obtaining membership and the associ-
ated attribute information, while the FP errors could also
be kept at an acceptable level; however, ANN requires ex-
tensively computational time for converging the recogni-
tion zones to a sufficiently small width for low FP errors,
which is not suitable for dynamic membership insertion.
Furthermore, ANN uses floating-point numbers to repre-
sent the content of cells in the array, which could consume
considerably large memory in real time. In this paper, we
change the contents of the array to integer numbers as
the attribute codes. Although multiple bits are still re-
quired for each cell, the memory space is far less than the
CMAC-based approach. Our objective is to demonstrate
a feasible approach for applications that require member-
ship determination with simultaneous attribute informa-
tion. We focus on the computational efficiency instead
of hardware implementations because hardware technol-
ogy is progressing from time to time. Nevertheless, we
still take the memory overhead as a crucial factor in the
proposed approach. In the following, we present recent
efforts in the literature for the addressed problem.

The difficulty of the addressed problem lies in that ad-
ditional structures or computational components could be
involved in the determination process for providing the
attribution information at the same time. Intuitively, us-
ing a set of parallel Bloom filters could solve the problem,
where each Bloom filter could represent an attribute code.
The main drawback of such an approach has been that the
size of each Bloom filter is difficult to decide because the
number of elements for each attribute code could vary to
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some extent. Using the same size of the parallel Bloom
filters could cause dramatic memory waste. Furthermore,
a querying element must go through all the filters, which
is not only a time-consuming process but could also lead
to extra errors when multiple filters respond true mem-
bership. In [15], variants of the original Bloom filter
were proposed for dealing with multi-attribute member-
ship problem. In this approach, PBF (Parallel-Bloom fil-
ter) is responsible for defining attributes for a number
of counting parallel Bloom filters when an element could
be associated with multiple attributes. PBF-HT (PBF
with a Hash Table) and PBF-BF (PBF with a Bloom
Filter) were designed for verification purposes, whose ob-
jective was to compensate the extra false positive errors
that could be introduced by PBF. Consequently, the num-
ber of attribute codes could become very large in parti-
cle applications. Although PBF-HT and PBF-BF could
compensate time and space losses, the memory usage and
additional false-positive errors could lead PBF to an unfit
situation. In 2012, the concept of approximate member-
ship query (AMQ) [8] was raised based on its previous
work [15]. The AMQ is an approach referred to as that
the degree of an element is within a certain range of a
member’s boundary. This approach could be meaningful
for some prediction models especially in networking, how-
ever, the addressed problem could not be resolved by this
approach because each element is associated with only
one attribute, and the membership allows no ambiguous
regions.

Due to the success of the original Bloom filter for a va-
riety of applications, a number of approaches tackled the
addressed problem with modified architectures. For ex-
ample, the invertible Bloom lookup table proposed in [6] is
to provide key-value pairs upon querying. The data struc-
ture was designed to accommodate both keys and values
of integers, where inserting an element would always be
successful because distinct keys are used. In the query-
ing mode, an inquiring element x would receive a value y
that composes a pair with x, and then information could
be obtained given that y is not null, which is an extra
step with conditions in obtaining the attribute informa-
tion. As it becomes increasingly important to acquire the
membership with its additional attribute information at
the same time, especially in the networking applications,
the following work had been done in an effort to resolve
this problem under a packet routing situation. The rout-
ing mechanisms have been a key factor for keeping the
Internet not only fluent but healthy, which requires accu-
rate and timely dispatching of millions of arriving pack-
ets in a fraction of second. In [7], the authors proposed
combinatorial Bloom filters, in which a considerably large
group of hashing functions were employed. They defined
a unique binary vector code for each hashing group for
differentiating the attributes; therefore, an inquiring ele-
ment must go through all the hashing groups before being
sent to the general Bloom filter for the membership de-
termination. In this approach, different hashing group
combinations represent a certain attribute, but the size
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of the binary vector for hashing could be very long to ac-
commodate a large number of attributes. Qiao et al. [13]
use two data structures for determining membership and
the ID information. The first one, index filter, is a gen-
eral Bloom filter, whose purpose is solely for membership
determining, while the second one, the set-id table, stores
the ID information for each member using multiple hash
functions. The process proceeds when one of the multiple
hash functions hit a zero in the set-id table, the ID in-
formation is then inserted into that cell and the identical
hash function is used for coding the index filter. In the
querying phase, the membership with the ID information
could be obtained if one hash function reports one on the
index filter and an ID on the set-id table. In this method,
the lengths of both structures must be sufficiently large
to accommodate a good portion of zeros for better per-
formances.

More recently, using multiple bits instead of a single
bit for each cell of the Bloom filter has been proposed
to incorporate the set IDs. Xu et al. [16] suggested en-
coding both information in the same data structure could
provide more efficient query processing speed. Therefore,
they proposed multi-bit array, where insertion and lookup
procedures could be achieved by bitwise operations in-
cluding union and intersection. The approach, however,
could result in additional false-positive errors when the
set number is fairly large. Although several remedy tech-
niques were proposed, they still compromise the lookup
speed by dividing the original structure into several levels.
Dai et al. [4] also proposed multi-bit structure for encod-
ing the set IDs, where bitwise operations were employed
for the insertion and lookup purposes. This approach,
unlike [16], was dealing with determining membership of
multiple disjoint sets; however, it also suffered from errors
at the lookup phase because any query was given a set 1D
response, which could result in additional false-positive
errors. The ID Bloom filter [10] shares the same bitwise
operations for element insertion and lookup procedures as
in [4], so it could also inherit the chances of misjudgment
in the lookup phase. The approach designated the set
IDs with decimal numbers instead of bit streams, whose
purpose was to save the number of memory accesses in
the querying phase; however, using the bitwise operations
seems to lack scalability because it is difficult to encode
a large number of sets into the array structure.

In this paper, we adopt the concept that both mem-
bership and attribute information are coded in the same
array to avoid additional structures that consume memory
usage, remain the querying speed as in the original Bloom
filter, and keep the false-positive ratio within an accept-
able level. The multibit representation allows each cell in
the array to designate a number of attribute codes. Pro-
gramming for both membership and attribute information
in the same array is a better approach because it does
not require a great number of hash functions. Secondly,
fast querying could be achieved because the number of
memory accesses is mainly dependent on the hash num-
ber. Furthermore, the false-positive rate is anticipated to
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be acceptable because only a single array is addressed by
the hashing process. The multibit representation suggests
that the attributes would be coded as integer numbers, so
the input data in the programming phase include member
elements and their associated attribute codes.

2 Methodology

In the proposed approach, since each cell of the array is
represented by multiple bits for designating various at-
tribute codes, we must first determine the number of bits
for each cell to best conserve the memory space. Of the
integer numbers that the multiple bits could represent, we
reserve 0 and the largest one for the use of the program-
ming as well as querying phases. For example, if 4 bits
are used in each cell, there are 16 integer numbers ranged
from 0 to 15, in which 0 and 15 would be reserved, and
the remaining 1 14 could be used as attribute codes. Con-
sequently, the relationship between the number of bits in
a cell and the number of attribute codes could be charac-
terized as in Equation (1).

b= [logy(a+2)] (1)

where b is the number of bits in each cell, a is the total
amount of attribute codes, [-] is the ceiling operator that
finds the smallest integer greater or equal to the content.

2.1 The Proposed Approach

The original Bloom filter turns a cell’s value from 0 to 1
for those hash hit by all the member elements, which is
an important process for expediting membership determi-
nation in the querying mode. In the proposed approach,
however, since the array is composed of attribute codes in-
stead of binary ones, a specific procedure is employed for
programming to achieve simultaneous retrievals of mem-
bership and attribute information in the querying phase.
However, it is not an easy task because if an element’s
attribute code is assigned to all the hash hit cells, “colli-
sion” could happen, where multiple elements with differ-
ent attribute codes hit the same cell. Therefore, we in-
troduce two techniques for resolving such a situation: (1)
the universal code U using the reserved largest number
to represents all the attribute codes, and (2) the thresh-
old rate T to pass for being considered as a member with
the associated attribute code. In a sense, (1) is to ensure
that the programming process could successfully proceed,
while (2) is to save as much memory space as possible.
We use examples in the following to further explain how
these two techniques work.

As U designates all the attribute codes, the T is the
hurdle to pass for being considered as a member, the hash
number is h and the total attribute number is a, we de-
scribe the membership discrimination rules in the query-
ing phase. The rules are designed to make the querying
phase as fast as possible, including;:

1) If zero is encountered, it is not a member;



International Journal of Network Security, Vol.22, No.1, PP.136-144, Jan. 2020 (DOI: 10.6633/IJNS.202001_22(1).14)

2) If there are all U’s, it is not a member;

3) Find the largest count ¢ of the hashed cells of the
same attribute code a plus the number of U, and if
¢/h > T, the element is recognized as a member of
the attribute code a; otherwise, it is not a member.

We further deliberate the procedure with the following
four examples with h = 5, a = 8 and T' = 0.5, where the
sequence is the attribute codes of the hash hit cells by an
element is:

1) 2, 0, 3, 5, 6. The sequence includes zero, so the
element is immediately rejected for being a member;

2) U,U,U,U,U. The sequence contains all U's, so it is
not a member;

3) 4,2, U, 4, 8. The largest count ¢ = 3 with @ = 4, and
element is considered as a member with the attribute
code of 4 because 3/5 > T

4) 3,5,6,8,6. ¢ =2 with a =6, but 2/5 < T, so the
element is rejected;

5) 3,4,4, 3, U. There is a tie between a = 3 and 4, and
both surpass 7', so it’s ambiguous and no conclusion
is drawn.

With the discrimination rules, we now describe the pro-
gramming process in the proposed approach.

It’s important to describe the hash functions employed
in the proposed approach before we go to the program-
ming process. We call it “sequential hashing”, which was
inspired by [5] that suggests a simple logarithm function
disregarding the integer and the first few digits of the dec-
imal parts could form an effective hash function. In our
implementation, we employ such a concept with some spe-
cific factors including the sum and the accumulated sum
the element, the array size m and a position indicator for
the array. When the position indicator exceeds m during
the hashing process, it is set to the remainder position
divided by m. The proposed hashing function is easy to
implement and with operational efficiency, and could pro-
duce any specified h hash numbers.

Because collisions could happen at any cell through the
hashing process, we investigate the magnitude of the col-
lision for each cell, where a pilot run is executed for all
the member elements with their attribute codes. The in-
formation is recorded in a “hit table” as in Table 1, which
is particularly useful for allocating appropriate attribute
codes for the array. The first column of the table is the
sequential cell number up to the array size m, the second
one is the element(s) that hit the cell with the attribute
code in the parentheses, and the last column shows the hit
frequency of the cell by elements with different attribute
codes. Although the table claims memory space, it is only
required in the programming phase.

The hit table could somehow depict our programming
procedure whose purpose is to determine the arrangement
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Table 1: The hit table in the programming phase

Cl 61(5) 1
Co 0
03 62(8) 1
04 61(5) 1
C5 61(5) 1
CG €1 5), 62(8) 2
07 €9 (8), €3 (2) 2
Cg 62(8) 1
Cy | e1(5),e3(2) | 2
ClO €2 (8), €3 (2) 2
011 63(2) 1
012 63(2) 1

of the attribute codes in the array, allowing all the el-
ements to pass the threshold rate T with the smallest
number of U. Therefore, we start with cells with the
lowest hit frequency, and move the way up by excluding
those elements that are already qualified as a member.
We demonstrate this concept with a simplified example
in Figure 1.

ei1(3)

ex(8) ex(2)

Figure 1: A simplified example for the proposed program-
ming procedure

In Figure 1, like the original Bloom filter, all the cells
in the array are initially set to zeros, designating the cell
is unused. In the example, the hash number h is 5, mean-
ing each element hits 5 cells after the hashing process.
Supposing the threshold rate T is 0.5, at least 3 cells with
the same attribute code or the universal code must be hit
(3/5=0.6) for the element to be admitted as a member
with that attribute code. Consulting the hit table in Ta-
ble 1, the second column shows the elements that hit this
cell with different attribute codes. Therefore, the first
step of the programming procedure is to fill the attribute
code to those cells with a single hit. For example, C1 is
only hit by el, whose attribute code 5 is then settled in
C1, so are the other cells with only one hit. When a cell
is hit by multiple elements, e.g. C6, since el is already
qualified as a member but e2 is not, the attribute code 8
of e2 would be issued for C6. The thick arrow in Figure 1
represents the winner of the cell. After C6 is settled with
the attribute code 8, the next cell with multiple hits is C7,



International Journal of Network Security, Vol.22, No.1, PP.136-144, Jan. 2020 (DOI: 10.6633/IJNS.202001_22(1).14)

which would be set to the attribute code of e3 because e2
has become a member. For both C9 and C10 cells, since
both hit elements are members, a randomly selected at-
tribute code of the hit elements would be assigned to the
cell. When no more attribute code is inserted into the ar-
ray after an iteration, the uncertain cells are stored with
the universal code U.

2.2 Theoretical Analysis

In this section, we provide theoretical analysis for the pro-
posed approach, especially on the universal code U and
the threshold rate T because they play key roles for pro-
gramming effectiveness and memory conservation to the
addressed problem. More specifically, the universal code
U could solve collisions in the programming process, and
thus keep the array at a reasonable size. However, it is
conceivable that a large number of U could greatly in-
crease the false-positive errors. The threshold rate T is
to conserve the memory space because it represents the
fraction of the hash cells of an element to be considered
as a member. The fraction must contain either the el-
ement’s attribute code or U. we suggest that it should
be set at least 0.5 to avoid excess false-positive errors.
Although T is pre-specified, its value could substantially
affect the number of U, meaning a large T could dramat-
ically increase the number of U. Therefore, we investigate
the occurrence of U with regard to T as well as other re-
lated factors. The notations of these related factors are
given as follows: the array size m, the number of attribute
codes a, the number of elements with each attribute n, and
the hash number h. We assume the number of elements
n is the same for all attribute codes for the preliminary
analysis.

The universal code U is only engaged when a cell is hit
by multiple elements, and the probability of a cell hit by
multiple elements is as in Equation (2).

P,=1—-Py— Py, (2)
where P, is the probability of multiple hits, Py and P
are that of zero and single hit respectively.

Let H be the total number of hash hits by all the ele-
ments, so H = a-n-h. Therefore, we could derive Py and
Py as in Equations (3) and (4).

PO = =

S5 ©
po_ (1)

(4)

We then rewrite Equation (2) as in Equation (5).

2m
Px—l—?‘ (5)

P, includes a portion of cells, where only one or none
element does not meet T, which must be excluded out
because they would not be represented by U. Therefore,
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we derive the probability of each element that could ac-
tually turn to U as in Equation (6).

h h

1
2 ()08 2

i=[T-h] i=[T-h]

il(h — i)!

P, = T (6)

where P, is the probability that the result of an element’s
hash hits meets 7'

Let 7 be the hit number for each cell, and the proba-
bility of U could be designated as in Equation (7).

H
P, :Pl.-(1—ZPyj).

=2

(7)

In Equation (7), the second term in the parentheses rep-
resents the probability of not getting pass as a member
when the number of hit elements is j.

Using Equation (7), when h = 6, a = 100, n = 1,000,
m = 40,000, T = 0.5, P, would be 2/15 = 0.1333 ac-
cording to Equation (5), and P, would be approximately
0.1283 according to Equation (6). So the probability of
U for each cell P, is approximately 0.13.

3 Experimental Results

Normally, the performance metrics for the original Bloom
filter or its variants include querying time, memory space
and false-positive rate. For the proposed approach, we
replace the bit array with a multibit one associated with
proposed procedures for providing simultaneous attribute
information when the membership is true Therefore, the
time metric would not be a concern because the number
of memory accesses is the same with the original Bloom
filter, depending on the hash number. Additional opera-
tions such as counting the attribute codes and comparing
with the threshold rate only accounts for a small fraction
of the computational time. Under such a circumstance,
we consider the memory space utilized for the array and
the threshold rate as indicators for evaluating the false-
positive rate in this section. The data element of the
experiments was email addresses, which represent text
strings with varied lengths. The dataset included 300,000
elements, while 100,000 others (outside the dataset) were
used for evaluating the false-positive rates. Each of the
set elements was assigned to a random attribute code be-
tween 1 and 14 since we used 4 bits (code values 0 ~
15) for each cell of the array. The value 0 designated
the unused cells and 15 was the universal code that could
represent all the attribute codes 1 14.

The memory space was designated by the number of
bits utilized for the array. For example, the array would
contain 750,000 cells if 3,000 K bits of memory space was
utilized, because 3,000Kb divided by 4 bits for each cell
equals to 750,000 cells. The hash number h was set to 5
because we investigated the memory space from 1,000 to
5,000K bits with an increment of 500K, whose m/n ratio
was about 0.83 (1,000Kb) to 4.17 (5,000Kb), where the
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highest ratio was close to h=>5. Besides, the setting the
threshold rates was from 20% to 100% with an interval of
20%, so there was a distinct count for each rate using h=>5.
For example, if the threshold rate is 60%, at least 3 out
of the 5 hashing cells of the array must be the identical
attribute code or the universal one to be recognized as a
member with that attribute code.

With the settings of the memory space and the thresh-
old rates, we conducted three experiments, each of which
would include serval runs according to these settings. The
first one was to investigate the array composition after
the programming process, where the false-positive rates
of different array sizes were also presented. The array
composition could include zeros, attribute codes and the
universals. The results are depicted in Figure 2.

100%

| A —

90% \A\k Non-zero rate in array

80% P—a

o A A

60% 2

50%

40% \\ Universal-code rate in array

0% \$\

20% -

10% Qe-positive rate \e\e\e
6

0%

1000K  1500K  2000K  2500K 3000K 3500K 4000K 4500K  5000K

Array Size (bits)

Figure 2: Array composition with varied array sizes after
the programming phase

As shown in Figure 2, the non-zero rate started to sta-
bilize when the memory space reached 4500K, while the
universal-code rate continued to decrease. The situation
was conceivable because the hashing process would ad-
dress a similar portion of the array cells when memory
space was sufficient. Each addressed cell would then be
addressed by less set elements, which led to a less chance
for issuing the universal code to that cell. As we can see
in Figure 2, when the universal-code rate was under 40%,
the false-positive rate became very close to zero. It was
actually no false-positive errors at all when the rate of the
universal codes was under 30% or the memory space was
above 3,000K.

Since the array composition is important for an ap-
plication to be successful as far as the performance is
concerned, it was suggested that a healthy composition
should include the portion of zeros near 50% of the ar-
ray [3]. Therefore, in the second experiment, we further
investigated both the non-zero and universal ratios in re-
gard with the threshold rates. The non-zero codes cer-
tainly include the universal ones, however, we show sep-
arate results in Figures 3 and 4 in order to demonstrate
the behavior of the universal-code rate because not only
it is an important factor for our proposed approach to en-
sure the set elements to be successfully coded in the pro-
gramming phase, but also represent a beacon for the FP
error because the more number of universal-coded cells,
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the more chance of the FP errors.

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

Threshold
rate

——20%
—H—40%
—A—60%

Non-zero rate in array

——80%

—¥—100%

5000K 4500K 4000K 3500K 3000K 2500K  2000K
Array Size (bits)

1500K  1000K

Figure 3: The array utilization rates of varied sizes with
different threshold rates

As shown in Figure 3, the threshold rates above 40%
(at least 2 out of 5 in the hashing addressed cells) reached
a nearly full array utilization situation when the memory
space is small. However, as we described that near 50%
non-zero rate could be considered as a healthy composi-
tion of such a data structure and according to previous
experiment that 3,000K of memory space was a suitable
for a reasonably low FP error, we can see that at the
threshold rate of 60% with 5,000K or 40% with 3,000K
were suitable as the appropriate combinations.

100%

90% x//x Threshold
% 80% rate
e 70%
Q /K
< 60% ——20%
S S0% /*/ /\
g 40% M/‘K ///( A e
Q
g z0% —A—60%
S 20% — =" e - —80%
10% | X e J5 5
0% 75 a—T & & =3 & | —H—=100%

5000K 4500K 4000K 3500K 3000K 2500K 2000K 1500K 1000K
Array Size (bits)

Figure 4: The universal-code rates of varied array sizes
with different threshold rates

In Figure 4, it is reasonable that the universal-code
rates decreased as the array size increased. For example,
when the array size was 3,000Kb or above, the univer-
sal rates were all less than 50%, which were even smaller
when the threshold rates decreased, e.g., 20%. A small
threshold rate was prone to associate with more FP er-
rors because the low standard would easily claim mem-
bership for non-member elements. Therefore, it is impor-
tant to determine suitable array size with the threshold
rate for assuring the FP rate an acceptable level. Accord-
ing to the above-mentioned analyses, we recommend the
3,000Kb memory space for the array with the threshold
rate of 40% in our specific case, whose m/n ratio is around
2.5. We also recommended the array size of 5,000K with
4.17 m/n ratio and 60% of threshold rate because it could
achieve an even lower FP error. In the third experiment,
nevertheless, we went through all combinations of these
two factors, i.e., the array size and the threshold rate, for
evaluating the FP rate as shown in Figure 5.
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£ 10%
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5%
0%

—¥—100%

Array Size (bits)

Figure 5: False-positive rates of threshold rate and array
size combinations

In Figure 5, the FP rates for all of the threshold rates
were so close to 0% at the 4,000K memory space level, but
the 100% and 80% of the threshold rates started to pick
up as the memory space dropped to 3500K or less, which
even went up to above 15% as that reduced to 1,000K. In
the end, we still consider the memory space of 3,000K ~
4,000K of memory space, whose m/n ratio was 2.5 3.33
with threshold rates of 40 or 60% could be the best options
for the designated case using the proposed approach.

Besides the three experiments, we conducted an extra
one regarding dynamic element insertion and deletion of
the dataset, which is important for certain applications
requiring immediate adjustments of the set members.
Therefore, the dynamic element insertion and deletion
must include some mechanisms for encoding newly added
or deleted members in real time, because the dataset
shouldn’t be reprogrammed upon slight changes of the
dataset. The dynamic insertion for the proposed ap-
proach is to encode a new pair of member data (ex, ax)
to the array, where ex is the new element and ax is the
associated attribute code. The insertion could only be
successful when the hash-addressed cells of ex in the ar-
ray include ax. Once there is at least one ax, the insertion
is guaranteed to be successful because the proposed ap-
proach uses the universal code U to accommodate all the
attribute codes. As far as the dynamic deletion is con-
cerned, we adopted an addition bit as the “sign” bit for
each cell, whose values were initially zeros. When a mem-
ber is determined to be disqualified from its membership,
the sign bits of all the hash-addressed cells were turned
to 1. With the proposed mechanism, some non-members
would be judged as deleted members when all the sign
bits of the hash-addressed are one, especially when the
array size is insufficiently small, e.g., 1,000Kb. We de-
picted this situation in Figure 6, where only the FP rate
of the 1,000K memory space was shown to decrease as the
number of the number of the dynamic deletion elements
increased, while others remained low FP rates.

As to other members, only a fraction of cells or none
whatsoever whose addressed sign bits are 1 and the at-
tribute code is still in effect without considering the sign
bit. However, if a member that was not dynamically
deleted but addressed all cells with the sign bits of 1,
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Figure 6: The false-positive rates of varied array sizes and
the numbers of deletion

it would be considered as a deleted member. Such a sit-
uation is referred to as a true-negative error, which is far
serious than the one presented above because some mem-
bers would be denied due to the sign-bit mechanism. We
show the experimental results in Figure 7, where only an
insufficient array size of 1,000K was significant on this sit-
uation. The true-negative errors could be a serious matter
for some applications, because they represent a security
hole where non-members are considered as true ones. For-
tunately, the odds of such a situation are relatively slim
as far as the array size is sufficient. Figure 7 shows the ex-
perimental results on this issue, where the true-negative
errors only occurred when the array size was 1,000Kb. We
show the details on the bottom of the figure.
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Figure 7: The true-negative rates of threshold rate and
array size combinations

4 Conclusion

This study proposes a multibit representation for the orig-
inal Bloom filter, whose purpose is to simultaneously pro-
vide the membership and the associated attribute infor-
mation. We suggested a programming process that incor-
porates counting the attribute code and setting a thresh-
old rate for the count percentage to exceed as a member.
We also incorporate the universal code that accommodate
all the attribute codes for the sake of expediting the pro-
gramming process. Furthermore, we relieved the all-one
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policy of the original Bloom filter by establishing multi-
ple scales of threshold rate as the hurdle for determining
a membership of the set elements. As the experimental
results showed, we could select proper settings of these
factors mentioned above after a pilot run was taken place,
and we could then proceed the programming process ac-
cordingly until all the set elements are coded in the multi-
bit array. Such a process also considered the FP rates as
well as the array sizes with certain threshold rates at an
acceptable level. The proposed approach would not ele-
vate the computational overhead, neither the FP errors.

We also carried out an additional experiment concern-
ing the dynamic insertion and deletion of elements of the
dataset. The element insertion would be successful when
the hash process addressed at least a cell whose attribute
code was the same as the one of the inserting element be-
cause of the universal code; however, it would be fail when
the stated-above condition does not stand. We are cur-
rently elaborating work around to establish ground work
for such a matter. As far as the dynamic deletion is con-
cerned, we strongly suggested establishing a bit array for
recording the status of a deleted member, which worked
well in our experiments, but required a minor addition of
memory space, i.e., one bit for a cell in the array. The
performance, however, was extraordinarily well because
all the error rates would stay low as the memory space
was relatively sufficient.
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