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Abstract

A pseudorandom number generator (PRNG) is an algo-
rithm that produces seemingly random number sequences.
They are employed in applications requiring randomness
such as arbitrary sample selection in statistical sampling
and secret key generation for ciphers. Where unpre-
dictability is a concern, a cryptographically secure PRNG
(CSPRNG) is the only type of PRNGs suitable for such
applications. CSPRNGs are specially designed to with-
stand security attacks. In this paper, after describing a
well-known lightweight stream cipher Trivium, we present
Quadrivium, a PRNG inspired by the design of Trivium.
We compare the statistical properties of Quadrivium by
that of Trivium using NIST Statistical Test Suite and
Dieharder: A Random Number Test Suite. The analyses
show that Quadrivium performs as well as Trivium and
has the advantage of producing longer sequences of ran-
dom bits.

Keywords: Crytographically Secure Pseudorandom Num-
ber Generator; CSPRNG; PRNG; Pseudorandom Number
Generator

1 Introduction

A random number generator is an object that produces
number sequences emulating characteristics of truly ran-
dom sequences. They are relevant in statistical sampling,
Monte Carlo simulation, gaming, internet gambling, cryp-
tography as well as other areas in need of random val-
ues. In statistical sampling, generators are used to se-
lect arbitrary samples for analysis. Monte Carlo simu-
lation methods employ RNGs to solve optimization, nu-
merical integration and probability distribution problems.
Computer-controlled characters and procedural genera-
tion in electronic gaming use generators as a source of
randomness. Internet gambling as well requires this same

type of source to ensure game integrity and combat cheat-
ing. Randomness is also implemented to generate secret
keys for well-known ciphers such as AES, RSA and Blow-
fish; It is used to encrypt messages for One Time Pads
or to conceal information in protocols by converting the
data to seemingly random sequences.

There are two approaches used to generate random
sequences. One is a truly random number generator
(TRNG), which outputs strings of random quantities us-
ing an unpredictable physical source. The other approach
is a pseudorandom number generator (PRNG) which uses
deterministic methods to generate ”random” sequences.
Various methods for generating pseudorandom numbers
are being proposed and studied such as [3, 8, 9].

PRNGs are considered more suitable for computing de-
vices in comparison to its genuine counterpart. They are
portable; Do not consume a lot of resources (in terms of
memory); And operate on a wide range of devices. How-
ever, the deterministic nature of the generation process
is a concern. PRNGs should be carefully tested to verify
that their output approximates a sequence of true ran-
dom numbers. There is no single test available that can
determine if a PRNG generates numbers that have the
characteristics of randomness. The best that can be done
is to assess a PRNG via a series of tests. A PRNG must
perform well on multiple tests to be considered random.

The basic construct of a PRNG is a seed, a generating
algorithm and an output. The seed is from a finite set of
seeds and is typically a truly random number. It is used to
initialize the generator. The generating algorithm has an
internal state comprised of all stored values, parameters
and variables the generator relies on to function. Addi-
tionally, it possesses an update function to refresh the
internal state as well as an output function which yields a
pseudorandom output. Like the seed, the output is an el-
ement of a finite set of possible outputs and an elongated
transformation of the seed.
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Figure 1: Diagram of a pesudorandom number generator

2 CSPRNGs

2.1 Definition and Properties

In addition to random-like statistical properties, a cryp-
tographically secure PRNG (CSPRNG)—unlike a non-
cryptographic PRNG—must possess the property of un-
predictability. Unpredictability guarantees pseudoran-
dom values produced by a generator lacks structure, can-
not be controlled nor conform to some pattern. Unpre-
dictability does not equate to true randomness. It is an-
other form of randomness that requires high entropy. It
is considered more practical than perfect randomness—
which is not accessible for all systems. The degree of
unpredictability in the ”random” generation process di-
rectly affects the strength of the cryptographic algorithm.
In cases of insufficient unpredictability, generators are sus-
ceptible to attacks. By definition, a CSPRNG is unpre-
dictable if the next output value in a sequence is compu-
tationally infeasible even if a sequence of previous output
values is known [10]. This is formally termed as the next-
bit test.

2.2 PRNG Failures

Some PRNG failures are attributed to the lack of entropy
or acquisition of entropy within a generating environment.
Entropy is a collection of sources employed to seed, and
for some PRNGs, update its internal state. Examples
of entropy sources include mouse movement, keystroke
timing and noise from a computing system’s soundcard.
Other failures may be based on short periodicity or lin-
earity of the generating function. Low entropy, short peri-
odicity, and linearity in a PRNG facilitate the prediction
of the generated numbers in a feasible amount of time.
As a consequence, the generator becomes vulnerable to
attacks.

Debian experienced a security breach with its OpenSSL
distribution. The pseudorandom generator included in
the implementation was incapable of acquiring high levels
of entropy. This caused the PRNG to produce 32,767 pri-
vate keys. The small key space ensue highly predictable
keys. Other Debian-based products, like Ubuntu, were
affected by this PRNG failure.

Another case involves the internationally used MI-
FARE Classic chip. It has applications in contactless
smart cards and proximity cards. In a 2008 paper by
de Koning Gans, Hoepman and Garcia, the researchers
were able to recover keystreams, read memory blocks and

modify memory blocks from the chip. This was all due
to the low entropy collecting PRNG implemented in MI-
FARE [5].

Security Socket Layer (SSL) uses a PRNG to generate
a random key. The key is used in a cryptographic algo-
rithm to encrypt information flowing between client and
server. Netscape utilized its own implementation of SSL
to protect transmission of sensitive data over its browser.
However, two computer science students were able to de-
cipher encrypted messages sent over Netscape Web by
exploiting the flaws in the PRNG used in the Netscape
SSL implementation. The flaw was due to poor seeding of
the generator. Even though unique, the seed values taken
from the running system (process ID, parent process ID
and time of day) were predictable. Hence, the key was
retrievable as well as the messages [6].

Shortly following a publication which analyzed the
security of popular SecureRandom constructs, a Bitcoin
incident occurred leaving its Android users vulnera-
ble to theft [7]. The two events are related in that
SecureRandom is a special PRNG for cryptographic
applications and Android uses it for cryptographic Bit-
coin procedures. However, the Android SecureRandom
implementation had a bug that caused the generator to
yield predictable sequences. The paper revealed how
the generator produced colliding values—making the
private key recoverable. The paper also discussed the
PRNG’s defects in entropy collection and the capability
to overwrite the seed value.

3 Lightweight Cryptography and
Trivium

Lightweight cryptography is a cryptographic protocol or
algorithm intended for usage within constrained device
networks. Constrained devices are objects that have lim-
ited processing power, memory storage capabilities, and
power resources. Typically, they do not possess the proper
resources needed to employ traditional cryptographic al-
gorithms. There are some cases where traditional algo-
rithms can be implemented but it is accompanied with
significant performance reduction. (Performance encom-
passes power and energy consumption as well as latency
and throughput.) Lightweight cryptography provides a
solution for the performance-security tradeoff problem
that exists for compact devices.

Trivium, designed by Christophe DeCanniere and Bart
Preneel, is a stream cipher intended to operate in con-
strained spaces. It was selected for the eSTREAM portfo-
lio of lightweight stream ciphers for hardware application.
Trivium is also efficient in software-based environments.
Additionally, it has been designated by International Or-
ganization for Standardization (ISO) as a keystream gen-
erator for lightweight stream ciphers [1]. Its keystream
may be used as a source for pseudorandom bits.
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3.1 Structure of Trivium

Trivium can be described as a bit-oriented stream cipher
conducting operations at the bit level. The internal state
of the cipher consists of three registers totaling to 288
bits. The first register holds 93 state bits, the second
holds 84 state bits and the last register holds 111 state
bits. The algorithmic component is broken down into two
phases, the setup phase and the generation phase (which
is also responsible for updating the internal state of the
cipher). Trivium takes in a key and IV of 80 bits each
and guarantees to generate up to 264 keystream bits [4].

When creating Trivium, the authors had two manda-
tory specifications the construction must contain. First,
the structure must generate seemingly uncorrelated
keystreams. Second, the construction must also be effi-
cient such that there is a high throughput of generated
keystream bits per cycle per logic gate. The authors
referenced the operations of block ciphers as a solution
to their specifications. In comparison to stream ciphers,
block ciphers are more developed. Many techniques have
been uncovered to bolster the efficiency of block ciphers
to operate speedily and with low space consumption.
Additionally, the security of a block cipher is well
researched and understood.

3.2 Trivium’s Algorithm

Trivium requires an 80-bit key and 80-bit initialization
vector for set up. Initialization begins with the key being
copied to the first register. After copying the key to the
first 80 slots, the remaining state bits (denoted as s) are
set to zero. The initialization vector is then written to
the second shift register. The rightmost four bits in this
register are set to zero. The last register has all its bits
set to zero except for the last three bits; They are set to
one. The internal state is refreshed 1152 times to ensure
that all bits are influenced by the key and the IV. The
pseudocode is given below in (Algorithm 1).

Algorithm 1 Initialization of Trivium

1: Begin
2: Initialize registers.
3: for i = 1 to 1152 do
4: t1 ← s66 + s91 · s92 + s93 + s171
5: t2 ← s162 + s175 · s176 + s177 + s264
6: t3 ← s243 + s286 · s287 + s288 + s69
7: [s1, s2, · · · , s93]← [t3, s1, · · · , s92]
8: [s94, s95, · · · , s177]← [t1, s94, · · · , s176]
9: [s178, s279, · · · , s288]← [t2, s178, · · · , s287]

10: end for

The Trivium generation process actually begins by per-
forming an exclusive or operation on two specific bits from
each register. The resulting three bits collectively undergo
another exclusive or operation. The result from this last
step is a single bit that is added to the keystream. The

Figure 2: Structure of Trivium

pseudocode is given below in (Algorithm 2).

Algorithm 2 Generation, Update & Output Algorithm
for Trivium
m = requested bits

1: for i = 1 to m do
2: t1 ← s66 + s92
3: t2 ← s162 + s177
4: t3 ← s243 + s288
5: zi ← t1 + t2 + t3

{Trivium Updates by doing the following:}
6: t1 ← t1 + s91 · s92 + s171
7: t2 ← t2 + s175 · s176 + s264
8: t3 ← t3 + s286 · s287 + s69
9: [s1, s2, · · · , s93]← [t3, s1, · · · , s92]

10: [s94, s95, · · · , s177]← [t1, s94, · · · , s176]
11: [s178, s279, · · · , s288]← [t2, s178, · · · , s287]
12: end for

Trivium produces only a single bit at a time. This
entire process is reiterated until the desired length is
reached. The pseudorandom output can be simplified to:

zi ← s66 + s93 + s162 + s177 + s243 + s288.

The unpredictability of the zi is dependent on the con-
stant rotation of the state bits and transformation of some
bits with each state update. An attacker must be aware
of the internal state to accurately predict the next bit.
This is quite difficult given that each Trivium state is
constructed to be linearly independent.

4 Quadrivium

Quadrivium is a pseudorandom number generator de-
signed with a software implementation in mind. The
structure is primarily modeled after Trivium but coalesce
findings in [11]; The definition of primitive polynomials;
And feedback functions found in linear feedback shift reg-
isters (LFSRs).

4.1 Design

Quadrivium is a 384 bit state PRNG. The generator is
partitioned into four registers of 98-bit, 97-bit, 95-bit and
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94-bit length. It requires a total of 160 random bits
for initialization. To understand the design principles of
Quadrivium, first, we will review some standard defini-
tions relating to polynomials.

A polynomial p(x) is a mathematical expression con-
sisting of a sum of terms where each term includes x raised
to a non-negative integer power and multiplied by a coef-
ficient. It can be written as:

p(x) :=

n∑
i=0

aix
i. (1)

The variable ai denotes the coefficient of xi and an is
different from zero. The value of n is the degree of p(x).
For this discussion, we restrict all p(x) to polynomials in
GF(2). Therefore, all coefficients are either zero or one.
A polynomial p(x) is said to be trivial if the degree of
p(x) is −∞, indicating a zero polynomial, or 0, a constant
polynomial; Otherwise, it is nontrivial. A polynomial p(x)
is an irreducible polynomial if it cannot be factored into
two or more non-trivial polynomials.

A primitive polynomial is an irreducible polynomial
with degree n > 0 and a polynomial order (or period)
of 2n − 1. A linear feedback shift register (LFSR) is an
object that employs the function f : 0, 1n → 0, 1 such
that the output bit x0 is:

x0 =

n∑
i=0

aix
i. (2)

The variable ai is a coefficient ε0, 1. The feedback func-
tion has a period of 2n − 1. It is a common practice to
employ primitive polynomials as a feedback function.
In [11], the authors noted the following as the active bits
in Trivium:

{s66, s69, s93} {s162, s171, s177} {s243, s264, s288}.

Recognizing that each index is a multiple of 3, these bits
can be generalized as

{sam1
, sam2

, san1
} {sam3

, sam4
, san2

} {sam5
, sam6

, san3
}.

For the next part of the discussion, we are only concerned
with the family of variables {m1,m2, n1}, {m3,m4, n2}
and {m5,m6, n3}. If we consider these variables as pow-
ers of x for non-zero terms in a polynomial, we get the
following:

xm1 + xm2 + xn1 + xm3 + xm4 + xn2 + xm5 + xm6 + xn3 .

Let kεN and q(x) is a primitive polynomial. A polynomial
p(x) is a k-order primitive polynomial if

p(x) = (x+ 1)kq(x). (3)

According to [11], Trivium is a 3-order primitive polyno-
mial with

q(x) = x22 + x23 + x31 + x54 + x57 + x59 + x81 + x88 + x96 (4)

We were motivated by this definition to extend Trivium
to a kth round and use primitive polynomials to select
the active state bits in Quadrivium. Our construction
differentiates from the one proposed in [11] in two major
respects. First, Quadrivium is driven by the principles
of PRNGs. This results in a pseudorandom sequence of
lesser correlated bits. Second, the active state bits were
redefined to be in agreement with the concept of PRNGs.
Since Quadrivium takes a PRNG approach, our concern
lies in the linearity of the pseudorandom output. We im-
posed several criteria to be in accordance with this ap-
proach. Recall in Trivium that the pseudorandom bit zi
is the sum of state bits 66, 92, 162, 177, 242 and 288.

In our construction, we redefine the active state bits
to those responsible for pseudorandom bit zi. Second,
the active state bits must be derived from a primitive
polynomial of degree 384. In Trivium, two state bits from
each register is used to generate a single bit output. This
should be the criterion to restrict the number of active
state bits. As a result, the active state bits are s49, s98,
s147, s195, s243, s290, s337 and s384.

4.2 Algorithm

The initialization procedure, like Trivium, uses an 80-bit
key and 80-bit IV. For the first and second registers,
the key and IV is copied to the registers, respectively.
The third register is filled with zeroes excluding the last
three state bits. Those are set to one. The last register
is initialized with one-bit bit values except for the last
four bits. They are zeroes. Once the registers are loaded,
the rotate procedure is executed. The rotate procedure
is reiterated for four full cycles (Algorithm 3).

Algorithm 3 Initialization of Quadrivium

1: Begin
2: Initialize registers.
3: for i = 1 to 1536 do
4: t1 ← s49 + s96 · s97 + s98 + s171
5: t2 ← s147 + s193 · s194 + s195 + s358
6: t3 ← s243 + s288 · s289 + s290 + s69
7: t4 ← s337 + s382 · s383 + s384 + s264
8: [s1, s2, · · · , s98]← [t2, s1, · · · , s97]
9: [s99, s100, · · · , s195]← [t4, s99, · · · , s194]

10: [s196, s197, · · · , s290]← [t1, s196, · · · , s289]
11: [s291, s292, · · · , s384]← [t3, s292, · · · , s383]
12: end for

The main procedure for Quadrivium is quite similar
to Trivium (Algorithm 4). Unlike Trivium, we did not
include the previous values of ti in the update function
to produce the current values of ti. The inclusion of the
values does not necessarily have a negative impact on
the generator. The decision to exclude these values was
to restrict their influence to only the output bit versus
both the output and the new state bits in Trivium. Both
Quadrivium and Trivium has a nonlinear internal state
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Algorithm 4 Generation, Update & Output Algorithm
for Trivium
m = requested bits

1: for i = 1 to m do
2: t1 ← s49 + s98
3: t2 ← s147 + s195
4: t3 ← s243 + s290
5: t4 ← s337 + s384
6: zi ← t1 + t2 + t3 + t4
7: t1 ← s96 · s97 + s171
8: t2 ← s193 · s194 + s358
9: t3 ← s288 · s289 + s69

10: t4 ← s382 · s383 + s264
11: [s1, s2, · · · , s98]← [t2, s1, · · · , s97]
12: [s99, s100, · · · , s195]← [t4, s99, · · · , s194]
13: [s196, s197, · · · , s290]← [t1, s196, · · · , s289]
14: [s291, s292, · · · , s384]← [t3, s292, · · · , s383]
15: end for

so it is difficult to determine their periodicity. In [4],
the authors noted that the period of Trivium is at least
296−3 − 1. This is under the assumption that the state
evolves linearly. For Quadrivium, the period is at least
2384−1, given the same assumption. This is based on the
fact that the output function is derived from a primitive
polynomial.

5 Statistical Testing

Statistical testing is one of the most common methods
used to determine the output quality of PRNGs. In this
section we provide brief descriptions of the three well-
known statistical testing suits; Namely NIST Statistical
Test Suite, Diehard Battery of Tests, and the Dieharder
Random Number Test Suite.

5.1 NIST Statistical Testing Suite

NIST Statistical Test Suite (STS) for cryptographically
secure RNGs and PRNGs is a standard for statistical test-
ing. The suite contains fifteen tests which analyze the
quality of a PRNG’s output; And determine whether the
outputs mimic the behaviors of truly random sequences.
Each test uses a test statistic to determine whether to
reject the null hypothesis or not. The null hypothesis
is the tested sequence is random; It lacks a pattern and
portrays irregularity. The alternative hypothesis is the
sequence is not random, a pattern was detected therefore
it is predictable [2].

The assessments focus on different behaviors which in-
dicate predictability in a sequence; They can be classi-
fied into four main types. The first type is frequency
tests. They are the Frequency test (Freq), Frequency
Test within a Block (Block), Runs Test (Runs), Test for
the Longest Run of Ones in a Block (Long). The follow-

ing two tests, Binary Matrix Rank Test (Rank) and Dis-
crete Fourier Transform Test (FFT), fall under the repet-
itive patterns type. Non-overlapping Template Matching
Test (NOTemp), Overlapping Template Matching Test
(OTemp), Maurer’s “Universal Statistical” Test (Univ),
Linear Complexity Test (LinCom), Serial Test (Serial)
and Approximate Entropy Test (AppEnt) are pattern
matching types. The fourth type is random walks and
consists of Cumulative Sums Test (CuSum), Random Ex-
cursions Test (RanEx) and Random Excursions Variant
Test (RanExV) [12].

Even though all tests focus on different aspects of an
ensemble, there are three assumptions that they all hold
about random outputs. These assumptions are taken in
consideration when determining the quality of a PRNG’s
outputs and if they are comparable to a set of truly ran-
dom sequences. The assumptions are uniformity, scal-
ability and consistency. Looking at a random sequence
of length n, uniformity means the occurrence of zeroes
should be one-half of the sequence, likewise the occur-
rence of ones. Scalability determines to what degree is
a sequence random. This property also expects that all
subsets of a random sequence must also be random. Con-
sistency expresses the behavior of a PRNG. According to
the literature, a consistent PRNG will always produce the
random sequences of equal quality. It is not necessary to
conduct all tests in the suite when analyzing a PRNG.
The analyst is responsible for selecting the appropriate
combination of assessments used to study a generator [2].

5.2 Diehard Battery of Test

Diehard is a statistical testing suite created by George
Marsaglia, who is also the creator of pseudorandom num-
ber generator Xorshift. Diehard includes sixteen tests—
fifteen personally authored by Marsaglia—that gauge the
randomness quality of a generator. The tests require a bi-
nary file of at least 80 million random bits as input. The
number of bits needed for to execute each test varies.

A majority of the assessments in the suite uses a p-
value to determine if a sequence is random. This is sim-
ilar to the NIST STS which also has a number of tests
that rely on p-values to draw a conclusion. In statistics,
p-values represent the probabilities that some arbitrary
event will occur; Their purpose is to accept or reject the
null hypothesis, which is the tested claim. In Diehard,
the null hypothesis is the analyzed sequence is random.
Tested sequences are acknowledged as random if p-values
are not close to zero or one. Contrarily, in NIST STS, the
further the p-value is to one, the further a sequence is to
being truly random.

Another difference between the two testing suites is the
analysis of the results. NIST STS specifies the p-value
needed to reject the null hypothesis. Diehard battery
of tests is ambiguous and only states that the p-values
should be uniform on the set [0, 1).
The names of the exams included in the Diehard bat-
tery of tests are Birthday Spacings Test; Overlapping 5-
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Permutation Test; Separate Binary Rank Tests for 31x31,
32x32 and 6x8 matrices; Bitstream Test; OPSO, OQSO
and DNA (Overlapping Pairs Sparse Occupancy, Over-
lapping Quadruples Sparse Occupancy and DNA Test, re-
spectively); Separate Count the 1s Test for byte-streams
and specific bytes; This is a Parking Lot Test; Minimum
Distance Test; 3DSpheres Test; Squeeze Test; Overlap-
ping Sums Test; Runs test—which is a standard test; And
Craps Test.

5.3 Dieharder: A Random Number Test
Suite

Dieharder is a test pack for random number generators.
The suite includes modified tests from Diehard battery of
tests, NIST Statistical Test Suite as well as some assess-
ments created by Robert G. Brown, the chief developer of
Dieharder. The test suite is an open source project whose
purpose is to become a one-stop source for quantifying
randomness. The project encourages inclusion of other
new testing schemes from other developers. Dieharder is
primarily concerned with analyzing the randomness qual-
ity and speed of truly random and pseudorandom number
generators.

In comparison to STS and Diehard, the suite prefers to
examine the actual generator, not a random output file
produced by the generator. The reasoning behind this
is “perfect randomness is the production of ‘unlikely’ se-
quences of random number at an average rate.” Looking
at the output alone is not sufficient to declare random-
ness; The likelihood of the sequence as a whole cannot
be determined. Even though Dieharder prefers the afore-
mentioned method of testing, it can still accommodate
file-based inputs.

In Dieharder, parameters from STS and Diehard are al-
tered so failures are concluded without ambiguity. More-
over, the Diehard tests are improved in three ways. One,
assessments that uses KSTEST, Kolmogorov-Smirnov
test, imposes a higher default quantity of one hundred p-
values. This coincides with Dieharder’s aim to determine
unambiguous failure. Two, analysts have more control
over tests that use samples. Sample sizes are treated as
a variable rather than a fixed constant. Three, assess-
ments that employs overlapping techniques on sequences
were adjusted to use non-overlapping techniques. Please
note that these improvements were made only if it was
possible.

There are ten additional tests in Dieharder .They were
created by Robert G. Brown and are called RGB. They
are the following: Bit Distribution Test, Generalized Min-
imum Distance Test, Permutations Test, Lagged Sums
Test, KSTest (Kolmogorov-Smirnov Test) Test, DAB
Byte Distribution Test, DCT (Frequency Analysis), DAB
Fill Tree Test, DAB Fill Tree 2 Test and DAB Monobit
Test.

6 Results

We employed NIST STS and Dieharder: A Random Num-
ber Test Suite to assess the performance of Trivium and
Quadrivium. We used Trivium as a benchmark for the
performance of the Quadrivium. For all analyses, three
different pseudorandom data files from each generator
were tested. Each file consisted of 122.88 million bytes.
This was determined by the Dieharder test suite which
requires about 31 million integers for proper analysis.

6.1 STS Results

All tests in the suite were conducted on each file. For test-
ing purposes the data file was segmented into 700 subse-
quences, each one million bits in length. The significance
level, α = 0.01, determined the number of subsequences
used. For this level, at least one hundred sequences must
be available for testing. The subsequence length was cho-
sen based on the Maurer’s “Universal Statistical” Test.
This assessment requires approximately 1.4 million bit-
long sequences to evaluate a generator correctly. This is
the largest quantity amongst all the tests in the suite.

For each STS run, the suite returns twelve values for
each test. One value is the proportion of subsequences
passing the respective test. Another value is a single p-
value of all the p-values determined. The remaining values
are the distribution of p-values over ten subintervals on
(0, 1]. The p-value is used to determine the degree of
uniformity amongst sequences. The closer a p-value is to
one; The closer it is to perfect uniformity. A p-value ≥
0.0001 and a proportions value of 0.978 are required to
pass a test.

In Tables 1 and 2, ‘P-val’ denotes the p-value and
‘Prop’ stands for proportion. The Cumulative Sums test
and the Serial Test assess in two directions, forward and
backward. In the aforementioned tables, ‘F’ and ‘B’ sig-
nifies the results for the forward and backward direction,
respectively. The Non-Overlapping Template, Random
Excursion and Random Excursion Variant Test provide
multiple sets of test results. The proportion values shown
reflect the average of these tests’ results.

Quadrivium outperformed Trivium on the Frequency
within a Block, Tests for the Longest Runs, Overlap-
ping Template Matching, Maurer’s “Universal Statistical”
Test and Linear Complexity Tests. Quadrivium had the
highest average proportions for the Frequency within a
Block, Tests for the Longest Runs, Overlapping Template
Matching, Maurer’s “Universal Statistical” Test and Lin-
ear Complexity Tests.

6.2 Dieharder Results

Diehard Battery of Tests and RGB tests were conducted
under the Dieharder test suite. Each dataset was parsed
into unsigned 32 bit integers totaling 30.72 million inte-
gers. The suite returned two results: a p-value and an
assessment of passed, weak or failed. A weak assessment
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signifies the p-value ≤ 0.005. A failed assessment signifies
the p-value ≤ 0.000001.

Tables 3 and 4 show the assessment counts for all col-
lected data. Even though Diehard and RGB are sets of
fifteen and ten tests, respectively, the total assessment
counts are greater. This is attributed to the fact that
some of the tests are conducted with multiple parameters.
One of the RGB tests, Lagged Sums Test, for example,
has 33 different variants.

Both generators had one data set that was considered
weak for the OPSO test, Trivium dataset 1 and Quadriv-
ium dataset 2. The Binary Matrix Rank Test 32x32 was
also a common problem for the generators. Trivium failed
this test with dataset 1 and was considered weak for
dataset 3 while Quadrivium received a weak assessment
for data sets 1 and 2. The other weak assessments are as
follows: Trivium dataset 1, Craps 2 test; Trivium dataset
3, Count the ones test for bytes; Quadrivium dataset 2,
Runs test; Quadrivium dataset 3, OQSO.

7 Conclusion

In this paper, we presented a revised model of Trivium
that focused on improving the selection of state bits. We
considered the entire state of Trivium to make improve-
ments versus its individual registers in previous works.
We were aware that the unpredictability of pseudoran-
dom sequences is directly correlated to the entire set of
state bits selected to yield stream bits and proposed a
solution in our model.

The analyses we presented indicates that Quadrivium
exhibits more characteristics of uniformity than Trivium.
From Tables 1 and 2, we see that Quadrivium has more p-
values closer to one than Trivium. Tables 3 and 4 shows us
that Quadrivium has a higher passing rate on the Diehard
and RGB tests. Given the data from all the tables, we can
conclude that Quadrivium consistently performs well on
tests that checks for linear complexity, pattern matching
and pseudorandomness on a sequence-level.
Future work can be to improve Quadrivium such that it is
seemingly random on a bit level. Potential research could
also be to determine the period and security of Quadriv-
ium.
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