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Abstract

Near-duplicate document detection is a problem of pur-
suing data pairs whose similarities are higher than the
specific threshold (e.g., 0.7) from the large database.
Recently,Consistent Weighted Sampling algorithm (or
weighted min-wise hash) and its related hashing al-
gorithms have achieved great performances in near-
duplicate detection. However, there are a large number
of comparisons for data pairs, which may spend a lot of
computation time and affect the performance. This pa-
per proposes a fast consistent weighted sampling filtering
algorithm to greatly reduce the calculation time by termi-
nating the unnecessary comparisons in advance. We have
proved that the filter is correct and effective through the
experiment on the two synthetic data-set (UNIFORM,
GAUSSIAN) and a real data (FUNDS).
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1 Introduction

Explosive information growth of Web leads to a huge
amount of similar information on the Web. Research
shows that 80% -90% of the data is redundant in backup
and archival storage systems, and this rate is still increas-
ing, which is a big waste [24]. These similar documents
consumed a lot of storage and computation resources and
reduce the efficiency of web search engines [27]. Some du-
plications come from plagiarism and illegal proliferation.
Near-duplicate document detection [16,22] in intellectual
property protection and information retrieval has impor-
tant applications. The main problem of near-duplicate
detection is to find data pairs with similarity greater than
the threshold from the large database.In the case that the
database is very large or that the similarity computations
between the pairs are very costly.

Traditionally, when comparing the similarities of two
texts, most of them measure the similarity of texts into

the distances from which textual feature vectors are calcu-
lated. Common text similarity measurement algorithms
have cosine similarity [3], Euclidean distance [13], edit
distance [18] and Jaccard coefficient [28], etc. These al-
gorithms are only suitable for short texts or when the
amount of data is relatively small, and cannot handle long
texts and massive text data. In the face of the similar-
ity measure of massive text data, most scholars generate
K hash codes or fingerprints from K independent sample
outputs, and then estimate the similarity between texts
by counting the number of fingerprints equal. Such algo-
rithms are collectively referred to as hash similarity met-
rics. The most representative is Minwise Hash.

Minwise Hashing [3] (or Minhash) is a Locality Sensi-
tive Hashing, and is considered to be the most popular
similarity estimation methods. Many LSH schemes have
been proposed, divided between metric-driven [1, 5, 6, 14]
with the goal of approximating a given distance met-
ric, and data-driven [19,25] where the hash functions are
learned to optimize performance on a task such as classi-
fication.

Minhash keeps a sketch of the data and provides an
unbiased estimate of pairwise Jaccard similarity. The al-
gorithm is widely used for near-duplicate web page de-
tection and clustering [9, 12] set similarity measures [2]
nearest neighbor search [7] large-scale learning [11] etc.
Minwise Hash can quickly and efficiently estimate the
similarity of two collections. Minwise Hash requires K
(commonly, K=1000) independent random permutations
to deal with the datasets [26] It denotes π as a random
permutation function: π: Ω→Ω. The similarity between
two non-empty sets S1 and S2 is defined as:

Pr(min(Π(S1)) = min(Π(S2)) =
|S1 ∩ S2|
|S1 ∪ S2|

= J(S1, S2).

It can effectively solve the problem of the time and
space complexity of solving the similarity of massive
data,and the generated feature fingerprints can be used
for the next comparison and is widely used However, the
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Minwise Hash algorithm does not consider the weight of
elements in the set. When a deeper understanding of the
words in the text is required, the words should be given
corresponding weights. Matching of page titles should be
considered more important than matching of other ele-
ments in search engines. Besides, the titles, keywords, and
abstracts of a document are more important than others.
In a sampling algorithm, words or phrases are selected
with a low frequency of occurrence in the corpus, because
common terms or phrases may represent idiomatic or spu-
rious repetitions.

Manasse [8] introduced the concept of consistent
weighted sampling (CWS), which focuses on sampling
directly from some well-tailored distribution to avoid
any replication. This method, unlike previous ones,
could handle real weights exactly. Going a step further,
Ioffe [10] proposed weight minhash scheme (WMH) which
was able to compute the exact distribution of min-wise
sampling leading to a scheme with worst case O(d), where
d is the number of non-zeros. Later, Shrivastava [20]
provided an exact weighted min-wise hashing with same
property as WMH but significantly faster than WMH.

Recent advances based on the idea of densification
(Shrivastava & Li, 2014a; c) have shown that it is pos-
sible to compute k min-wise hashes, of a vector with d
nonzeros, in mere (d; k) computations, a significant im-
provement over the classical O(dk). These advances have
led to an algorithmic improvement in the query complex-
ity of traditional indexing algorithms based on min-wise
hashing [21].

To find data pairs with similarities higher than the
threshold in the big data set, the usual method of neardu-
plicate detection go through the following steps:

1) Feature extraction of data in the dataset;

2) Clustering based on characteristics of the data to
form data pairs worth measuring similarity;

3) Computing the similarity value of pairs using the sim-
ilarity measure function (e.g. Minwise hash or CWS).

In this paper, our main contributions include: We de-
sign a threshold filter base on CWS and propose a faster
weighted hash similarity measurement algorithm, in or-
der to quickly and accurately calculate the similarity in
large-scale datasets.

The rest of the paper is organized as follows: Sec-
tion 2 discusses the related works. Section 3 describes
the weighted sampling algorithm in detail. Section 4 in-
troduces a faster similarity measurement over threshold.
Experimental evaluations are presented in Section 5. Fi-
nally, Section 6 gives conclusions.

2 Feature Representation

TF-IDF is a commonly used text weighting technique for
information retrieval and data mining. TF indicates the
frequency with which feature item appears in document.

IDF [15] represents the quantification of the distribution
of feature items in the document set. TF is term fre-
quency and IDF is inverse document frequency.

TF-IDF is a statistical method for assessing the im-
portance of a word for a document set or one of the
documents in a corpus [17]. The importance of a word
increases proportionally with the number of times it ap-
pears in the file, but at the same time it decreases in-
versely with the frequency with which it appears in the
corpus. The main idea is that if a word or phrase has a
high frequency of TF in an article and rarely appears in
other articles, the less the document contains the feature
item and the larger the IDF, the word or phrase has a
good classification ability.

For the term ti appearing in the document dj , its word
frequency TF can be expressed as:

TFi,j =
ni,j∑
k nk,j

,

where ni,j is the number of occurrences of the word in the
file, and the denominator is the sum of the occurrences
of all the words in the document. The reverse document
frequency IDF [23] can be expressed as:

IDFi = log
|D|

|j : i ∈ dj |+ 1
.

Where |D| represents the DBLP: conf/bigdataconf/

LuoNH13 total number of files in the corpus. |j : i ∈
dj | indicates the number of documents containing the
word ti. So the TF-IDF of term ti can be expressed as:
TF-IDF=TF×IDF, Therefore, a document can be repre-
sented by the weighted set S={TF-IDF1, TFIDF2, · · · ,
TF-IDFn} after the above processing.

3 Document Clustering

The main role of document clustering is to form pairs
of documents that should be matched in document set.
Then, the similarity estimation is performed on the
formed document pairs. The process consists of three
steps [4] as shown in Figure 1.

Step 1. Calculating a sketch for every document. Gen-
erate a list of all the shingles and the documents they
appear in, sorted by shingles value.The sketch is ex-
panded into a list of 〈shingles value, document ID〉
pairs. The list is then sorted using the split, sort,
and merge method.

Step 2. Generating a list of all the pairs of documents
that share any shingles, along with the number of
shingles they have in common. To do this, taking the
file of sorted 〈shingle, ID〉 pairs and expand it into
a list of 〈ID, ID, count of common shingles〉 triplets
by taking each shingle that appears in multiple doc-
uments and generating the complete set of 〈ID, ID,
1〉 triplets for that shingle. Then, applying the di-
vide, sort, merge procedure (adding the counts for
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matching ID - ID pairs) to produce a single file of all
triplets sorted by the first document ID.

Step3. Examining each 〈ID, ID, count〉 triplet and de-
cide if the document pair exceeds our threshold for
resemblance. If it does, making clusters of the docu-
ment pair.

Figure 1: The cluster process

4 Weighted Sampling Algorithm

The consistent weighted sampling (CWS) [8] is a sam-
pling scheme, sampling representatives from a weighted
set such that for any non-empty weighted sets S 1 and S 2,
the probability that the two choose the same sample is
equal to the Jaccard similarity:

R = Pr[sample(S) = sample(T)]

=

∑
xmin(S(x),T(x))∑
xmax(S(x),T(x))

(1)

Where sample(S ) is a representative sample value of pair
(x, y) with y satisfies 0<y6S (x ), where S (x ) is the weight
of any element x.

When x is selected to the sample output pair, the prob-
ability of x selection is proportional to S (x ). and y is new
generated value of sample(), is uniformly distributed be-
tween 0 and S (x ), and finally only the value of y plays a
decisive similarity role, as the sample of the weightings S.
As shown in Algorithm 1 is the sampling algorithm steps.

As shown in Figure 2, by sampling K from the set S,
we can get Sample(S ) = {p1, p2, · · · , pk}, where pi is
i -th sampled value of set S by Sequence i.

Given two weighted sets S 1 and S 2, perform K
times independent samplings to generate values: Sam-
ple(S 1)=p1,1, {p1,2, · · · , p1,k} and Sample(S 2)={p2,1,

Algorithm 1 Sampling algorithm

1: Input: Given a non-empty weighted set S, S(x) is the
weight of any element x

2: Output: pair(x, y)
3: Step1: GenerateSampleSequences(x, k, salt)
4: (1) Generate a number of points on the interval(0,
∞), each point is 2k, k ∈ (0,∞);

5: (2) Take a k such that x ∈ (2k−1, 2k];
6: (3) Generate a random number random within the

range of [0, 1] and calculate sample = 2k > random;
7: while sample > 2k−1: do
8: save sample;
9: sample = sample> random;

10: end while
11: Step2: Active indices: (y, z) = ActiveIndices

(x, S(x), salt)
12: According to the sequences obtained in Step 1, deter-

mine the greatest value y ≤ S(x) and the least value
z > S(x) in expected constant time. That is, z=the
first right value of the sequence greater than S(x);
y=the first left value of the sequence less than S(x).

13: Step3: Uniform sampling
14: (1) Define hmax = 0, xmax = null, ymax = 0;
15: (2) for each x in S(x):
16: a. Random variable β is within the range of [0, 1];
17: b. cdfz(a) = az + azz ln(1/a) = β;
18: c. h = cdf−1(β).
19: (3) Take the value x and y with the maximum hmax

of all h, and return (xmaxymax).
20: After the above three steps, the final pair value of

(xmax, ymax) is the first sampled value of set S by
Sequence1.

21: End

p2,2, · · · , p2,k}. the CWS similarity estimator:

R =
1

K

K∑
i

1{p1,i == p2,j}. (2)

5 Faster Similarity Measurement
Over Threshold

Most practical applications scenes such as near-duplicate
detection, clustering, and nearest neighbor search, only
care about the similarity is greater than a certain high
threshold [30] T0 (e.g. T0=0.8) between pairwise data,
as shown in Figure 3. In this application scenario, in order
to quickly and accurately obtain the similar data over the
specific threshold, we design a filter of CWS to terminate
the unnecessary matching process in advance.

5.1 Observation Threshold

At first, the filter divides the entire comparison process
of for each p1,i = p2,i in Equation (2) into several subpro-
cesses with observation points {k1, k2, · · · , kj , · · · , kn},
(0 < ki 6 K, 0 < i 6 n). The similarity of Equation (2)
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Figure 2: The sampling process

Figure 3: A filter with similarity R ≥ T

Figure 4: Schematic diagram of filtering process

at the j -th observation point is different from the similar-
ity with argument K, because the more sampling times,
the accuracy of similarity is higher. Therefore, in the case
of a small k j , the similarity of the calculations is mean-
ingless. However, We can set the threshold to be higher
than the threshold T when the number of samples is K,
and set another threshold to filter out the data pairs that
do not need to be compared in advance.

As shown in Figure 4, the filter defines the lower bound
threshold TL(k) and the upper bound threshold TU (k) for
any k observation, then the filter can output the pairwise
data that exceeds the real similarity over T, when the
point of observation at k is higher than TU (k). And in
advance filtering the pairwise data, when the point of ob-
servation at k is less than TL(k), thereby speeding up the
comparison process. The TU (k) and TL(k) can be found
by hypothesis testing and small probability events.

5.2 How to Setting Threshold At K Ob-
servation

The total number of comparisons K is reduced to k, and
the random variable X at the observation point k is equal
to the number of equal terms of Sample(S 1)={p1,1, p1,2,
· · · , p1,k} and Sample(S 2)={p2,1, p2,2, · · · , p2,k}. The
definition of X is shown in Equation (3).

X =

k∑
i

1{p1,i = p2,j} (3)

Obviously, X obeys the binomial distribution X∼B(n,
R); the probability function Pr(X=m) of random variable
X is:

Pr(X = m) =

(
k

i

)
Rm(1− R)K−m (4)

The probability Pr(X6m) is: Pr(X ≤ m) =

(
k

1

)
R1(1−

R)k−1 +

(
k

2

)
R2(1 − R)k−2 + · · · +

(
k

i

)
Ri(1 − R)k−i +

· · ·+
(
k

m

)
Rm(1−R)k−m.

Then Pr(X6m) and Pr(X>m) is:

Pr(X 6 m) =

m∑
i=0

(
k

i

)
Ri(1− R)k−i

Pr(X > m) =

k∑
i=m+1

(
k

i

)
Ri(1− R)k−i

First make assumptions and use appropriate statistical
methods to determine the probability of hypothesis. If the
probability is high, although the assumption is not nec-
essarily correct, if the possibility is small, the assumption
is absolutely wrong.

The threshold is expressed as T and small probability
is expressed as e. The method of test is as following:
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1) Hypothesis.

Hypothesis H1: The similarity R is greater than
threshold T.

Hypothesis H2: The similarity R is equal or less
than threshold T.

The obvious is the H1 = ¬H2, and ¬H1 = H2.

2) Test hypothesis H1: Test if the probability
Pr(X6m) of variable X is small enough to be called
a small probability event e? If

m∑
i=0

(
k

i

)
Ti(1− T)k−i = e

Then the hypothesis H1 is wrong, that is ¬H1 is
correct, and H2 is correct.

The same reason can be tested hypothesis H2. If

k∑
i=m+1

(
k

i

)
Ti(1− T)k−i = e

Then the hypothesis H2 is wrong, that is ¬H2 is cor-
rect,and H1 is correct.

But how to setting threshold at k observation?
Let the total comparison number K=1000 (unrelated

parameter), the observation comparison number k=100,
the small probability e=1E-5, the threshold T=0.8. there
are Pr(X6m) and Pr(X>m) as shown in Table 1 and
Figure 5.

Table 1: Probability distribution of {X ≤ m} and {X >
m}when T = 0.8, k = 100

m Pr{X6m} Pr{X>m} m Pr{X6m} Pr{X>m}
5 1.29E − 61 1 55 4.22E − 09 1
10 6.48E − 53 1 60 1.29E − 06 0.999999
15 1.57E − 45 1 65 0.000147 0.999853
20 4.89E − 39 1 70 0.006059 0.993941
25 3.09E − 33 1 75 0.087475 0.912525
30 5.04E − 28 1 80 0.440538 0.559462
35 2.49E − 23 1 85 0.871494 0.128506
40 4.09E − 19 1 90 0.994304 0.005696
45 2.4E − 15 1 95 0.999981 1.87E − 05
50 5.18E − 12 1 100 1 2.04E − 10

As shown in Table 1, we can observe that m=60 and
m=95 are located between a small probability and not
a small probability, so we can define m=95 as muper

and m=60 as m lower. According to the small probability
e=1E-5, if there is R>95% at the observation point of
k=100, then we can completely determine R>80%. The
same reason, if there is R<60% at the observation point k,
then we can completely determine R<80%, so so we can
filter out the unnecessary comparison process in advance.

TU (k) = muper/k

TL(k) = mlower/k

We try to give a formal description from the perspective
of conditional probability. Let event A = {RK > T}, B =
{Rk > TU (k)} = {X > muper}, our goal is Pr(A|B) =
Pr(A|B)
Pr(B)=1 . If Pr(B)→0 ⇒Pr(A|B)=1. The same reason,

let event C={RK<T}, D={Rk<TL(k)}={X<m lower}.
If Pr(D)→0 ⇒ Pr(C |D)=1.

With threshold T and observation points{k1, k2, · · · ,
kj , · · · ,kn−1, kn}, (0 < ki 6 K, 0 < i 6 n), there is lots
of TU (k) and TL(k) to be settled into the filter, as shown
as Figure 6.

The calculation process of the consistent weighted sam-
pling filtering algorithm proposed in the paper is shown
in Algorithm 2.

Algorithm 2 The calculation process of the weighted
sampling filtering algorithm

1: Input: Weighted set {(S1, S2), (S3, S4), · · · , (S2n−1,
S2n)}

2: Output: The similarity R of the set pairs is
greater than the threshold T {(S2i−1, S2i), (S2i−1, S2i)
|R(S2i−1, S2i), (1 6 i 6 n)}

3: (1) Setting parameters Similarity threshold T, obser-
vation point {k1, k2, · · · , ki, · · · , kn−1, kn}, Number of
samples K, Small probability e;

4: (2) Using the CWS algorithm to generate correspond-
ing fingerprints, for example Sample(S1) = {p1,1, p1,2,
· · · , p1,K} and Sample(S2) = {p2,1, p2,2, · · · , p2,K};

5: (3) At the observation point k = ki, Calculate the up-
per and lower thresholds TU (k) = muper/k, TL(k) =
mlower/k;

6: (4) For each fingerprint pair, compare the first k fin-
gerprints, calculate the similarity R(k) at the obser-
vation point;

7: if R(k) 6 TL(k) then
8: The fingerprint pair is excluded in advance, and the

corresponding weighted set pair;
9: else if R(k) > TU (k) then

10: Output fingerprint pairs in advance, and corre-
sponding weighted set pairs;

11: else
12: i+ +; k = ki; Go to (3) until ki = K
13: end if

6 Experimental Evaluation

6.1 Experimental Dataset

We select the data pair set from the FUNDS set as the
source data set. FUNDS: Text application for the Nat-
ural Science Foundation project, approximately 100,000
documents. Considering that real-world data sets are usu-
ally distributed between Gaussian and uniform distribu-
tion, in order to make the experimental results more re-
liable, we synthesize datasets of uniform distribution and
Gaussian distribution from the FUNDS dataset. Finally
we synthesize Gaussian, uniform and FUNDS datasets,
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(a) (b)

Figure 5: (a) Pr(X>m) and (b) Pr(X6m) varies on m

Figure 6: The fast weighted hash similarity measure filter

each with 1000 data pairs. Finally we synthesize three
data sets, each with 1000 data pairs, respectively:

1) UNIFORM distribution dataset;

2) GAUSSIAN distribution dataset;

3) FUNDS dataset. The similarity distribution of the
data set is shown in Figure 7.

6.2 Precision and Recall of Filter

According to the small probability theory, the filter does
not change the estimation accuracy of the CWS algo-
rithm. By Looking at the possibility of testing correctly
filtering through actual data, the accuracy and recall of
TU (k) filter is:

Accuracy(TU (k)) =
|Rk > TU (k)|

⋂
|Rk > T|

|Rk > TU (k)|

Recall(TU (k)) =
|Rk > TU (k)|

⋂
|Rk > T|

|Rk > T|

Where T is the similarity threshold, K is the number of
samples, Rk is the similarity at the observation point k
(e.g. k=100), RK is the similarity estimate of CWS (e.g.
K=1000). And the TL(k) filtering accuracy and recall
rate:

Accuracy(TL(k)) =
|Rk < TL(k)|

⋂
|Rk < T|

|Rk < TL(k)|

Recall(TL(k)) =
|Rk < TL(k)|

⋂
|Rk < T|

|Rk < T|

As shown in the Figure 8, let the observation point k=100,
the threshold T=0.8, 0.5, and 0.3, and we have following
discussion.

1) Both TU (k) and TL(k) have a dividing point of accu-
racy, for example, when T=0.8 the accuracy of TU (k)
is low in the interval [0,90], in [90,100] will certainly
filter success, accuracy is 100%. The dividing point is
also the dividing point between non-small probability
and small probability.

2) For UNIFORM and GAUSSIAN dataset, when the
accuracy is 100%, the recall is not high. It means
that filtering accuracy is high, but there are still
omissions, so we need to continue setting thresholds
at subsequent observation points (e.g. k=200, 300
and so on). However, it is easy to observe that cer-
tain TL(k) values in the actual data set (FUNDS)
can achieve high accuracy and recall rates because
there are a large number of low similarity data in the
FUNDS.In this way, a large number of data can be
filtered out at the first threshold, thus reducing the
time of comparison.

3) So how do we set the threshold at the observation
point? As shown in the Figure 8, the setting of the
observation point threshold is not related to the dis-
tribution of the data set, and determined by the prin-
ciple of small probability. It can be clearly seen from
any picture that the thresholds are the same. The di-
viding point is the best position to set the threshold.
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-0.2cm

Figure 7: The similarity distribution of datasets

On the one hand, it guarantees 100% accuracy and
on the other hand increases the recall rate as much
as possible.

6.3 Filter Rate

As show in Figure 9, for different data distributions, there
is no threshold to ensure 100% accuracy and recall rate,
however, the remaining data can be filtered at subsequent
observation points (for example, k = 200, 400, 600, etc.),
and the overall recall rate will be 100%. let’s look at the
amount of filtering, described in terms of the proportion
of the filtered data to the total data. And the filter rates
of TU (k) and TL(k) are:

FilteringRate(TU (k)) =
|Rk > TU (k)|

N

FilteringRate(TL(k)) =
|Rk < TL(k)|

N

Where N is the total number of pairs.

Let the observation point k=100,200,400,600,800, the
threshold T=0.8, 0.5, and 0.3. As shown in the Figure
9, Different data sets have different amounts of filtering
under the influence of TU (k) or TL(k). For uniform and
Gaussian data sets, TL(k) plays a major role in filtering
when the threshold is high (T = 0.8). When the threshold
is low (T=0.3), TU (k) plays a major filtering role. But for
datasets (such as FUNDS) that are mostly low similarity
data, when the threshold is T = 0.8, TL(k) can filter out
more than 90% of the data at the observation point k =
100. Even at the threshold of T = 0.3, it can filter out
about 50% of the data.

In most practical applications, only high similar data
is concerned, that is, a large threshold is set, but there is
a large amount of low similarity data in the data set, so
that the filter can play a greater role.

6.4 Time Cost

Based on the above analysis of the filtration rate, we can
expect that the calculation time will be greatly reduced.
CWS has to complete the comparison of 100 million data
pairs (each CWS sampling K=1000), so it consumes al-
most the 1011 (100×106×K ) comparisons in total.

As shown in the Figure 10, abscissa describes different
distributed data sets, and the ordinate is CPU time. We
still choose three typical thresholds of T=0.8, 0.5, and 0.3
to measure time. The time consumed by different thresh-
olds for the same data set is different, depending on the
filtering rate. At the same time, different dataset distri-
butions will produce different filtering rates, for example,
it can be clearly observed that the FUNDS data set has
a high filtering rate, so its calculation consumes the least
amount of time. Figure 10: CPU time cost of three
distribution dataset

Experiments show that the algorithm can guarantee
100% accuracy and increase the recall rate as much as
possible. The remaining filtered data can be used at sub-
sequent observation points (for example, k = 200, 400,
600, etc.), and the overall recall rate is 100%. For a large
number of low similarity real data, accompanied by high
threshold queries, the filter reduces the 85% of compari-
son, compared with the original CWS algorithm.

6.5 Application

Known from the beginning of January 2018, the docu-
ment’s number of the National Natural Resources Fund
of China is about 1.2 million. The pairs number of cluster-
ing was about 100 billion to check the similarity. Accord-
ing to the consistent weight sampling algorithm (do not
use the optimization algorithm proposed in this paper),
it takes about 5000s to complete the near-duplication de-
tection of 100 billion pairs. However, the time taken by
the CWS Filter algorithm proposed in this paper is re-
duced to about 280s. This will greatly reduce the time



International Journal of Network Security, Vol.21, No.6, PP.947-956, Nov. 2019 (DOI: 10.6633/IJNS.201911 21(6).08) 954

Figure 8: Accuracy and recall of three distribution dataset

Figure 9: Filtering rate of three distribution dataset
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Figure 10: CPU time cost of three distribution dataset

consumption compared to the previous calculations.

7 Conclusions

In this paper, we combine binomial distribution with
small probability event and propose a fast consistent
weighted hash similarity measurement over threshold. It
greatly reduces the calculation time by terminating the
unnecessary comparison in advance. Our experimental re-
sults are based on the two synthetic dataset (UNIFORM,
GAUSSIAN) and a real data(FUNDS), which proves that
the filter is effective and correct.
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