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Abstract

Predicate encryption scheme is a paradigm which pro-
vides fine-grained access control and has attractive ap-
plications. In 2017, Brakerski, Tsabary, Vaikuntanathan,
and Wee (TCC 2017) proposed a new LWE based pred-
icate encryption scheme in order to overcome drawbacks
in the scheme proposed by Gorbunov, Vaikuntanathan
and Wee (CRYPTO 2015). In this paper, We analyze
this scheme and provide two practical attacks to show
that the scheme (TCC 2017) is insecure under the full at-
tribute hiding security model. These two attacks mainly
exploit several homomorphic and linear properties in the
construction. This illustrates that in order to construct
full attribute hiding secure predicate encryption scheme
these weak properties must be bypassed.

Keywords: Functional Encryption; Lattice with Error
(LWE); Predicate Encryption

1 Introduction

With the emergence and development of cloud comput-
ing and other complex networks, considerable progress
has been witnessed recently in the field of computing on
encrypted data. A number of concepts and constructions
of cryptographic primitives have turned out, such as At-
tribute Based Encryption [3,7,8,13,15,19,21,24,25], Fully
Homomorphic Encryption [12, 14, 17, 18], Functional En-
cryption [1, 2, 4, 9, 16,23].

Among them, the notion of fully homomorphic encryp-
tion permits arbitrary computation on encrypted data,
but still restricts decryption to be all or nothing as tradi-
tional notions of public key encryption. However, Func-
tional encryption [9], attribute based encryption [8, 19],
provides a satisfying solutions to this problem in theory.
Two features provided by functional encryption are fine-
grained access and computing on encrypted data. The
fine-grained access part is formalized as a cryptographic
notion, named predicate encryption [10, 11, 20, 22]. In
predicate encryption system, ciphertext ct is associated
with descriptive attribute values a in addition to plain-

texts µ while secret key skf is associated with a predicate
f . A user holding the key skf can decrypt ciphertext ct
if and only if f(a) = 0.

In the literature, The security requirement for predi-
cate encryption scheme can be formalized in two ways.
The basic one is the definition of weak attribute-hiding,
which enforces privacy of a and the plaintext amidst mul-
tiple unauthorized secret key queries: an adversary hold-
ing secret keys for different query predicates learns noth-
ing about the attribute x and the plaintext if none of
them is individually authorized to decrypt the ciphertext.
The second, called full attribute-hiding, requires that a re-
mains hidden given an unbounded number of keys, which
may comprise of both authorized and unauthorized keys.

Recently, Gorbunov, Vaikuntanathan and Wee [20]
constructed a predicate encryption scheme for all circuits
(of an a-priori bounded polynomial depth) from the LWE
assumption. But the construction only achieved the weak
attribute-hiding security. Two sources of leakage in the
scheme prevent its construction from achieving the full
attribute-hiding property. Later, Agrawal [2] indeed ex-
ploited the two sources of leakage to recover the attribute
a under full attribute-hiding attacks. Based on these,
Brakerski etc. [11] proposed an improved predicate en-
cryption scheme by feat of the new ”Dual Use” technique,
that is, using the same LWE secret for the FHE [20] and
the ABE [8]. In this paper, we cryptanalyze this im-
proved scheme and show that it still does not achieve the
full attribute-hiding security.

Our Contributions: We provide two polynomial time at-
tacks to show that the Brakerski etc.’s predicate en-
cryption scheme [11] is still not secure under the full
attribute-hiding attacks.

1) Our first attack is inspired by the attack method
in [2] which is designed to attack the inner prod-
uct predicate encryption scheme [4] mainly using the
inherent property of linearity in the inner product
operation. However, the Brakerski etc.’s predicate
encryption scheme we considered here, is designed for
general predicates described by polynomial-size cir-
cuits, instead of only inner product predicate. Conse-
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quently, two barriers prevent applying the attack into
Brakerski etc.’s scheme directly. Fortunately, we find
and prove two homomorphic properties which con-
quer above two barriers and make the attack practi-
cal.

2) Our second attack is based on the following three
observations: The first one is that when running the
ciphertexts homomorphic evolution algorithm in [8],
the error growth is linear in the corresponding orig-
inal errors. The second is that when running the
GSW homomorphic evaluation algorithm, the error
growth is also linear in the corresponding original er-
rors. More importantly, the coefficients in these two
linear combination are both public in view of the ad-
versary. The last observation is that by construction
of the scheme in [11], the adversary is able to obtain
a set of linear equations over all the original errors
given a 1-key. Thus, by requesting sufficient 1-keys,
the attacker will solve this linear system to recover
the errors used in encryption, which lead to recovery
of the predicate a.

2 Preliminaries

Notation. Let λ be the security parameter, and let ppt
denote probabilistic polynomial time. We use bold
uppercase letters to denote matrices M, and bold
lowercase letters to denote vectors v. We write [n] to
denote the set {1, ..., n}, and |t| to denote the num-
ber of bits in the string t. We denote the i-th bit
s by s[i]. We say a function negl(·) : N → (0, 1) is
negligible, if for every constant c ∈ N , negl(n) < n−c

for sufficiently large n.

2.1 Predicate Encryption

We recall the syntax and security definition of predicate
encryption (PE) [4,22]. PE can be regarded as a general-
ization of attribute based encryption. A PE scheme PE
with respect to an attribute universe A, predicate universe
C and a message universe M consists of four algorithms
Π = (Setup,Keygen,Enc,Dec):

Setup(1λ, A,C,M): On input the security parameter λ,
the setup algorithm outputs public parameters mpk
and master secret key msk.

keygen(msk,C): On input the master secret key msk
and a predicate C ∈ C, the key generation algorithm
outputs a secret key skC .

Enc(mpk, a, µ): On input the public parameter mpk and
an attribute/message pair (a, µ), it outputs a cipher-
text ct.

Dec((skC , C), ct): On input the secret key skC and a
ciphertext ct, it outputs the corresponding plaintext
µ if C(a) = 1; otherwise, it outputs ⊥.

Definition 1 (Correctness). We say the PE scheme
described above is correct, if for any (msk,mpk) ←
Setup(1λ), any message µ, any predicate C ∈ C,
and attribute a ∈ A such that C(a) = 0, we have
Dec(skC , ct) = µ, where skC ← Keygen(msk,C) and
ct← Enc(mpk, a, µ).

Security. The model ExptPEA (1λ) for defining the fully
attribute-hiding security of PE against adversary A
(under chosen plaintext attacks) is given as follows:

1) Setup is run to generate keys mpk and msk, and
mpk is given to A.

2) A may adaptively make a polynomial number of
key queries for predicate functions, f . In re-

sponse, A is given the corresponding key skf
R←−−

Keygen(msk, f).

3) A outputs challenge attribute vector (a(0), a(1))
and challenge plaintexts (µ(0), µ(1)), subject to
the following restrictions:

• f(a(0)) 6= 0 and f(a(1)) 6= 0 for all the key
queried predicate, f .

• Two challenge plaintexts are equal, i.e.,
µ(0) = µ(1), and any key query f satisfies
f(a(0)) = f(a(1)), i.e., one of the following
conditions.

? f(a(0)) = 0 and f(a(1)) = 0;

? f(a(0)) 6= 0 and f(a(1)) 6= 0,

4) A random bit b is chosen. A is given cta(b)
R←−−

Enc(mpk, µ(b), a(b)).

5) The adversary may continue to issue a polyno-
mial number of key queries for additional pred-
icate, f , subject to the restriction given in

Step 3. A is given the corresponding key skf
R←−−

Keygen(mpk,msk, f).

6) A outputs a bit b′, and wins if b′ = b.

The advantage of adversary A in attacking a PE
scheme PE is defined as:

AdvantageA(1λ) =

∣∣∣∣Pr[b∗ = b′]− 1

2

∣∣∣∣ ,
where the probability is over the randomness of the
challenger and adversary.

Definition 2 (Fully attribute-hiding). We say an PE
scheme PE is fully attribute-hiding against chosen-
plaintext attacks in adaptive attribute setting, if for all
PPT adversaries A engaging in experiment ExptPEA (1λ),
we have

AdvantageA(1λ) ≤ negl(λ).

2.2 Gadget Matrix

We now recall the gadget matrix [5,23], and the extended
gadget matrix technique appeared in [6], that are impor-
tant to our construction.
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Definition 3. Let m = n · dlog qe, and define the gadget
matrix

Gn,2,m = g ⊗ In ∈ Zn×mq

where vector g = (1, 2, 4, ..., 2blog qc) ∈ Zdlog qe
q , and ⊗ de-

notes tenser product. We will also refer to this gadget
matrix as “powers-of-two” matrix. We define the inverse
function G−1

n,2,m : Zn×mq → {0, 1}m×m which expands each
entry a ∈ Zq of the input matrix into a column of size
dlog qe consisting of the bits of binary representations. We
have the property that for any matrix A ∈ Zn×mq , it holds

that Gn,2,m ·G−1
n,2,m(A) = A.

2.3 GSW Homomorphic Encryption
Scheme

The GSW scheme [5,18] is parameterized by a dimension
n, a modulus q with l = dlog2 qe, and some error dis-
tribution χ over Z which we assume to be subGaussian.
Formally, we describe the scheme as follows:

• GSW.Gen (choose s ← χn−1 and output secret key
s = (s, 1) ∈ Zn).

• GSW.Enc (s, µ ∈ Z): choose C ← Z
(n−1)×nl
q and

e ← χm, let bT = et − sTC(modq), and output the
cphertext

C =

[
C
bT

]
+ µG

where G is the gadget matrix. Notice that sTC =
eT + µ · sTG(modq).

• GSW.Dec(s, C): Let c be the penultimate column of
C, and output µ = b〈s, c〉e2.

• GSW.Eval(C1, C2):

- Homomorphic addition: C1 � C2 = C1 + C2.

- Homomorphic multiplication: C1 � C2 ← C1 ·
G−1(C2), and is right associative.

2.4 Lattice Evolution

The following lemma is an abstraction of the evaluation
procedure that developed in a long sequence of works [3,
5, 8, 11,18,20]. Here we use the formalism as in [11].

Lemma 1. There exist efficient deterministic algorithms
EvalF and EvalFX such that for all n, q, l ∈ N , and for

any sequence of matrices (B1, · · · , Bl) ∈ (Z
n×ndlog qe
q )l,

for any depth-d Boolean circuit f : {0, 1}l → {0, 1} and
for every x = (x1, · · · , xl) ∈ {0, 1}l, the following proper-
ties hold.

• The outputs Hf = EvalF (f,B1, · · · , Bl) and Hf,x

= EvalFX(f, x,B1, · · · , Bl) are both matrices in
Z(lndlog qe) × ndlog qe;

• It holds that ‖Hf‖∞, ‖Hf,x‖∞ 6 (n log q)O(d);

• It holds that [B1 − x1G‖ · · · ‖Bl − xlG] · Hf,x =
[B1‖ · · · ‖Bl] ·Hf − f(x)G(modq).

Construction of algorithms EvalF and EvalFX:

� For an addition gatef(x1, · · · , xk) = x1 + · · ·+ xk,

EvalF (f,B1, · · · , Bk) =
[
E · · · E

]T
EvalFX(f, x,B1, · · · , Bk) =

[
E · · · E

]T
where E is the identity matrix.

� For a multiplication gatef(x1, · · · , xk) = x1x2 · · ·xk,

EvalF (f,B1, · · · , Bk)

=


O
...
O

G−1(−Bk−1G
−1(· · ·G−1(−B2G

−1(−B1))))


EvalFX(f, x,B1, · · · , Bk)

=


x2x3 · · ·xkE

x3x4 · · ·xkG−1(−B1)
...

G−1(−Bk−1G
−1(· · ·G−1(−B2G

−1(−B1))))


where E is the identity matrix.

� For a general circuit f which has l input wires, we
construct the required matrices inductively input to
output gate-by-gate.

3 Review of the BTVW Predicate
Encryption Scheme Using Dual-
Use Technique

In this section, we provide a brief overview of the
BTVW predicate encryption scheme using Dual-Use tech-
nique [11].

We write G ∈ Z
n×(n+1) log q
q to denote all but the

last row of G which is the gadget matrices in

Z
(n+1)×(n+1) log q
q . Given a circuit computing a func-

tion f : {0, 1}l → {0, 1}, and GSW FHE encryptions
Ψ := (Ψ1, · · · ,Ψl) of x1, · · · , xl,we write Ψf to de-
note fhe.eval(f,Ψ). Recalling syntax of GSW, Ψf is
a matrix, and we denote the last row of Ψf as Ψf , all

but the last row of Ψf as Ψf . In addition, we denote

the circuit that computes Ψ 7→ Ψf as f̂ , namely it
takes as input the bits of Ψ and outputs the matrix
Ψf .

We let e
σ←−− Zm denote the process of sampling a vector e

where each of its entries is drawn independently from the
discrete Gaussian with mean 0 and standard deviation σ
over Z.
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• Setup(1λ, 1l, 1d): sample (B, TB) where B ∈
Z
n×(n+1) log q
q and TB denotes the trapdoor for B. Pick

Bj
$←− Zn×(n+1) log q

q and p
$←− Znq . Output

mpk := (B, {Bj}j∈[L], p), msk := (TB)

where L = l(n+ 1)2 log2 q.

• Enc(mpk, x,M ∈ {0, 1}): pick s
$←− Znq , e, e0, ej

σ←−
Zm, e′

$←− Z,Ri ∈ {0, 1}(n+1) log q×(n+1) log q and com-
pute

Ψi :=

(
B

sTB + eT

)
Ri + xiG.

Parse Ψ := [Ψ1| · · · |Ψl] as its binary representation
ψ1, · · · , ψL. Compute

cTin := sTB + eT0 , cTj := sT [Bj − ψjG] + eTj

and cout := sT p+ e′ +M · bq/2c( mod q). Set the PE
ciphertext as follows:

ct := (Ψ, c0, {cj}j∈[L], cout).

• KeyGen(msk, f): Let f̂ denote the circuit computing
Ψ 7→ Ψf and

Hf̂ := EvalF (f̂ , {Bj}j∈[L]), Bf̂ := [B1| · · · |BL] · · ·Hf̂

Sample a short skf using TB such that

[B|Bf̂ ] · skf = p.

Output skf .

• Dec((skf , f), ct): Let f̂ denote the circuit computing
Ψ 7→ Ψf and compute:

Ψf := f̂(Ψ),

Hf̂ ,Ψ := EvalFX(f̂ ,Ψ, {Bj}j∈[L]),

cT
f̂

:= [cT1 | · · · |cTL] ·Hf̂ ,Ψ + Ψf .

Output the MSB of cout − [cTin|cTf̂ ] · skf .

4 Attack #I

In this section,we provide an attack to demonstrate that
the predicate encryption scheme reviewed above is inse-
cure against an adversary that requests 1-keys.

Case 1. Say the attacker requests keys for functions f1

and f2 such that for the challenge x it holds that:

f1(x) = 0, f2(x) = 0.

Then, by functionality, the attacker must learn two
linear equations in the challenge x but must not learn
anything more. Now, by the construction in [11], we

can compute matrices Bf1 and Bf2 from the master
public parameter mpk as follows:

Bf1 = EvalF (B1, · · · , BL, f̂1),

Bf2 = EvalF (B1, · · · , BL, f̂2),

where f̂1 and f̂2 denote circuits that compute Ψ 7→
Ψf1 and Ψ 7→ Ψf2 repectively. Then, we have the
following equations:

[
B|Bf1

] [r1

r2

]
= p(modq),

[
B|Bf2

] [u1

u2

]
= p(modq).

Hence,

[
B|Bf1 |Bf2

] r1 − u1

r2

−u2

 = 0(modq).

Thus we find a short vector in the lattice[
B|Bf1 |Bf2

]
.

Case 2. To obtain more short vectors in the lattice[
B|Bf1 |Bf2

]
, the attacker requests a key for small

elements k1f1 and k2f2 for some k1, k2 ∈ Zp. By the
construction of GSW [5] and ABE [8], we have the
following equations which we will prove a little bit
later.

Lemma 2. Bk1f1 = k1Bf1 , Bk2f2 = k2Bf2 .

With this lemma, the attacker can get:

[
B|Bk1f1

] [r′1
r′2

]
= p(modq)

[
B|Bk2f2

] [u′1
u′2

]
= p(modq)

[
B|Bf1

] [ r′1
k1r
′
2

]
= p(modq)

[
B|Bf2

] [ u′1
k2u
′
2

]
= p(modq).

Hence,

[
B|Bf1 |Bf2

] r′1 − u′1k1r
′
2

−k2u
′
2

 = 0(modq).

It is easily to see that this results in a new short vec-
tor in the same lattice that is independent of result
in the first case.

Case 3. More generally, by querying multiple functions
gi = aif1 +bif2 for i ∈ [Q] where ai, bi ∈ Zp are small
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and Q is some polynomial, the attack obtains 1-keys
[v1i, v2i] which gives the following equation:[

B|Bgi
] [v1i

v2i

]
= p(modq).

By the construction of GSW [5] and ABE [8], we have
the following equations which we will prove a little
bit later.

Lemma 3. Bgi = aiBf1 + biBf2 for all i ∈ [Q]

With this lemma, we have:[
B|Bgi

] [v1i

v2i

]
= Bv1i +Bgiv2i

= Bv1i + (aiBf1 + biBf2)v2i

= Bv1i +Bf1(aiv2i) +Bf2(biv2i)

=
[
B|Bf1 |Bf2

]  v1i

aiv2i

biv2i


= p(modq).

Therefore, for some i, j ∈ [Q] we have

[
B|Bf1 |Bf2

]  v1i

aiv2i

biv2i

 = p(modq)

[
B|Bf1 |Bf2

]  v1j

ajv2j

bjv2j

 = p(modq).

Hence,

[
B|Bf1 |Bf2

]  v1i − v1j

aiv2i − ajv2j

biv2i − bjv2j

 = 0(modq).

Thus, an attacker may get a short basis for the lattice[
B|Bf1 |Bf2

]
. Since f1(x) = 0, f2(x) = 0, by comput-

ing the legitimate decryption equations he/she ob-
tains:

[BT s+ η|BTf1s+ ηf1 |BTf2s+ ηf2 ]

= [B|Bf1 |Bf2 ]T + noise.

Now, the attacker may use the basis to recover the
secret vector s, and hence break the security of the
LWE samples that encode the attributes x.

Proof of Lemma 2: By the construction in [11], the
computing process of Bf is located in the phase
of KeyGen. Given a circuit computing a function
f : {0, 1}l → {0, 1}, we need to conduct the follow-
ing two steps in order to get Bf :

• Run the GSW Evaluation algorithm
GSW.Eval(f, ·) and then make a little change in
the output phase to get the circuit corresponding
to function f̂ : Ψ→ Ψf .

• With the public parameters B1, · · · , BL, run the
matrices evolution algorithm EvalF to compute
Bf = EvalF (B1, · · · , BL, f̂).

Therefore, in order to prove the homomorphic rela-
tionship in Lemma 4.1, we only need to prove the
following two homomorphic properties:

Claim 4.1. ˆ(kf) = k(f̂)

Claim 4.2. Bkf = kBf

Proof of Claim 4.1: Note that function f̂ is computed
from f through running the GSW evaluation algo-
rithm GSW.Eval(f, ·). Hence, to prove the relation-
ship in Claim 4.1 means to prove that the GSW eval-
uation algorithm GSW.Eval(f, ·) has the following
homomorphic property:

GSW.Eval((kf), ·) = k ×GSW.Eval(f, ·).

Case 1. when the circuit computing f is only an addition
gate, i.e. f = x1 + x2, for any GSW ciphertexts

C1 =

[
B1

sTB1 + eT1

]
+µ1G,C2 =

[
B2

sTB2 + eT2

]
+µ2G,

we have

GSW.Eval(kf, C1, C2)

= kC1 + kC2

=

[
kB1 + kB2

(ksTB1 + ksTB2) + (keT1 + keT2 )

]
+ (kµ1G+ kµ2G)

= k(

[
B1 +B2

(sTB1 + sTB2) + (eT1 + eT2 )

]
) + k(µ1G+ µ2G)

= k ·GSW.Eval(f, C1, C2).

Case 2. when the circuit computing f is only a multipli-
cation gate, i.e. f = x1 ·x2, for any GSW ciphertexts

C1 =

[
B1

sTB1 + eT1

]
+µ1G,C2 =

[
B2

sTB2 + eT2

]
+µ2G,

we have

GSW.Eval(kf, C1, C2)

= (kC1) ·G−1(C2)

= (

[
kB1

ksTB1 + keT1

]
+ kµ1G) ·G−1(C2)

=

[
kB1G

−1(C2)
ksTB1G

−1(C2) + keT1 G
−1(C2)

]
+ kµ1C2

=

[
kB1G

−1(C2) + kµ1B2

sT (kB1G
−1(C2) + kµ1B2) + keT1 G

−1(C2) + kµ1e
T
2

]
+ kµ1µ2G

= k ·GSW.Eval(f, C1, C2).

In general, any depth d circuit can be implemented
by some addition and multiplication gates, hence this
homomorphic property is naturally conserved in the
case of general circuits.
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Proof of Claim 4.2: Note that matrix Bf is computed

from f̂ through running the matrices evolution al-
gorithm EvalF (B1, · · · , BL, f̂). Hence, to prove the
relationship in Claim 4.2 means to prove that the ma-
trices evolution algorithm EvalF () has the following
homomorphic property:

EvalF (B1, · · · , BL, k·f̂) = k·EvalF (B1, · · · , BL, f̂).

Case 1. when the circuit computing f̂ is only an addition
gate, i.e. f = x1 + · · ·+xL, for any GSW ciphertexts
B1, · · · , BL, we have

EvalF (B1, · · · , BL, k · f̂)

= [kE, · · · , kE]T

= k[E, · · · , E]T

= k · EvalF (B1, · · · , BL, f̂).

Case 2. when the circuit computing f̂ is only an multi-
plication gate, i.e. f = x1 × · · · × xL, for any GSW
ciphertexts B1, · · · , BL, we have

EvalF (B1, · · · , BL, k · f̂)

= [O, · · · , O, kG−1(· · ·G−1(−B2G
−1(−B1)))]T

= k · [O, · · · , O,G−1(· · ·G−1(−B2G
−1(−B1)))]T

= k · EvalF (B1, · · · , BL, f̂).

In general, any depth d circuit can be implemented
by some addition and multiplication gates, hence this
homomorphic property is naturally conserved in the
case of general circuits.

Proof of Lemma 3: Similar to the proof of Lemma 2,
here we omit it.

5 Attack #II

In this section,we provide another attack to demonstrate
that the predicate encryption scheme reviewed in section
3 is insecure against an adversary that requests 1-keys.
This attack exploits two types of linear error growth in
the construction of the scheme in [11]. One type of this
error growth is from the ciphertexts homomorphic evolu-
tion algorithm in [8]; the other one results from the GSW
evaluation algorithm in [5]. Concretely, we first recall the
correctness of the scheme in [11] as follows:

cout −
[
cTin|cTf̂

]
· skf

= cout −
[
cTin|

[
cT1 | · · · |cTL

]
·Hf̂ ,Ψ + Ψf

]
· skf

= cout −
[
cTin|[sT [B1 − ψ1G] + eT1 | · · · |sT [BL − ψlG]

+ eTL] ·Hf̂ ,Ψ + Ψf

]
· skf

= cout −
[
cTin|sT [B1 − ψ1G| · · · |BL − ψlG] ·Hf̂ ,Ψ︸ ︷︷ ︸

Bf−Ψf

+ [eT1 | · · · |eTL] ·Hf̂ ,Ψ︸ ︷︷ ︸
eABE

+Ψf

]
· skf

= cout −
[
sTB + e0|sT [Bf −Ψf ] + Ψf + eABE

]
· skf

= cout − sT [B|Bf ] · skf − [O|(−sT , 1)Ψf ] · skf
− [e0|eABE ] · skf

= sT
[
p− [B|Bf ] · skf

]
− [O|(−sT , 1)Ψf ] · skf + e′

− [e0|eABE ] · skf + bq
2
c · µ

= sT
[
p− [B|Bf ] · skf

]
− [O|f(x) · (−sT , 1)G] · skf + e′

− [e0|eGSW + eABE ] · skf + bq
2
c · µ

= e′ − [e0|eGSW + eABE ] · skf + bq
2
c · µ,

where the fourth equality is because of the key relation,
and the final equality is because the queries requsted by
adversary is 1-keys.

Note that the key skf is known by adversary, and by
the cipthertext evolution algorithm EvalFX, we have

eABE = [eT1 | · · · |eTL] ·Hf̂ ,Ψ

where Hf̂ ,Ψ can also be computed by adversary from
f and Ψ through the cipthertext evolution algorithm
EvalFX. Thus, the term eABE is linear in these orig-
inal errors eT1 , · · · , eTL with public coefficients.

On the other hand, by the construction of the GSW
homomorphic evaluation algorithm, the term eGSW is also
publicly linear in the errors eTR1, · · · , eTRl which are
used in the construction of the GSW fresh cipthertext Ψ.

According to the analysis above, it is not difficult to
see that a single 1-key (even if it corresponds to a non-
linear function) yields a system of m linear equations in
the (l+L+2)m variables e′, e0, e1, · · · , eL, ê1, · · · , êl where
ê1, · · · , êl denots RT1 e, · · · , RTl e respectively. By request-
ing l + L + 2 keys totally, the adversary can completely
recover the above error terms, which in turn lead to re-
covery of the main secret s, which then permit to recover
all the private attributes completely.

6 Conclusion and Open Problems

In this paper, we propose two practical attacks that
demonstrate the predicate encryption scheme proposed
by Brakerski etc. is insecure under the full attribute-
hiding secrity model. The first type of attack mainly ex-
ploits two homomorphic properties in construction of the
scheme; the other one, however, takes advantage of two
types of linear properties in the process of error growth
in the construction. This leaves open two possibilities:

1) Optimize the construction of the scheme to resist
these two types of attack;
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2) Look for new construction of the predicate scheme
from lattice based assumptions to bypass those weak
properties.
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