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Abstract

This paper presents two approaches in which static fea-
tures are combined with dynamic features and used to
identify unknown Android malware after proper training
by Weka, a well-known machine learning tool. Static fea-
tures are derived by parsing the test APK after decompi-
lation; they include permissions, sensitive function calls,
native-permissions, and priority APK settings. Dynamic
features are obtained by parsing an emulator log file af-
ter running the test app in the emulator, identifying im-
portant activities such as sending short messages (SM)
without a user’s consent, modifying system files, reading
personal contact information, etc. Since the static fea-
tures can be obtained quickly by parsing the decompiled
APK, but dynamic features cannot be obtained in real-
time, this study proposes two approaches, ModeA and
ModeB, which make efficient use of both types of fea-
tures. ModeA is a two-tier framework which uses static
features for the first tier, and dynamic features for the
second tier. Thus, the first tier can be run on a mobile
device in real-time, and if the tested app is suspicious
then the system can move to the second tier for dynamic
feature analysis. ModeB is an off-line system in which
static features are merged with dynamic features to mea-
sure a test app. ModeB can achieve an overall accuracy
of 97.4% for the best case, with ten-fold cross validation
in the experiments. The technique of n-fold cross valida-
tion, such as n = 2 or 10, is applied to demonstrate the
performance of a system for detecting unknown malware.

Keywords: Android Emulator; Android Phones; Dynamic
Features; Static Features; Ten-Fold Cross Validation;
Weka

1 Introduction

According to the Symantec’s annual security report pub-
lished in March 2018 [25], there were 27K new variants of
mobile malware detected in 2017, which was an increase

of 54 percent from 17K in 2016. Similarly, a report on
malicious mobile software evolution released by Kasper-
sky in February 2017 [27] showed that about 8.5 million
malicious apps were found in 2016, which was 3 times as
many as that in 2015. Android smartphones occupy the
majority of the market, and are more prone to attacks
due to their open source nature. This paper therefore
focuses on Android platforms. Android app developers
can use either Java, or C/C++ via Android NDK [4] to
develop their applications. This convenience has unfor-
tunately resulted in a rapid increase in malware. App
developers upload their apps to the official Google Play
store, or some unofficial markets, such as Apkpure [5].
Neither, however, has established an effective method of
preventing the spread of malware. In addition, numerous
free apps contain embedded ad modules for advertising,
which makes smartphone security issues even worse. By
April 2017, the global accumulative number of Android
malware programs reached 19.5 million according to the
AV-TEST security report [8]. However, antivirus software
normally uses their virus definitions for matching, so when
a new malware occurs, the antivirus software may fail to
detect it in time. According to the research conducted
by Apvrille and Strazzere [7], it takes, on average, three
months to spot a new malware in the wild.

Antivirus company Trend Micro selected known mali-
cious apps, classified them, and found that most of them
fell into the malware families [26]. This study also showed
that the most common behavior of malware is the SM-
SREG family; all malicious apps belonging to this type
carry out malicious activities via Short Message Service
(SMS). They steal a user’s personal data and send it to
a server via short messages, or deliver malware down-
load links via SMS. The second most common malware
type was found to be the FAKEINST family, which sends
unauthorized short messages to a specific number to regis-
ter unsolicited, unwanted expensive services for the user,
without their consent. Therefore, sending short messages
by an app automatically could be regarded as a possible
contribution to being classified as malware. In this study,
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sending short messages is considered a dynamic feature
when analyzing the emulator logs. This study combines
static and dynamic app features, and uses Weka to de-
sign two malware detection approaches, called ModeA
and ModeB, respectively.

Static features are extracted from the app, which are
permissions, native-permissions, sensitive function calls
and priority-setting values. Dynamic features are ob-
tained by executing the app in a sandbox emulator, and
then extracting the activities from the log file of the emu-
lator, such as sending short messages. For ModeA, a two-
tier mechanism is proposed in which the first tier employs
static features, and the second tier employs dynamic fea-
tures. For ModeB, all static and dynamic features are
merged together to provide a design with higher detec-
tion accuracy. Furthermore, a feature weighting strategy
is also applied to improve the overall accuracy of ModeB.

The remainder of this paper is arranged as follows. Sec-
tion 2 offers a literature review, Section 3 describes the
framework of ModeA and its related experiment results,
Section 4 describes ModeB and its related experiment re-
sults, and Section 5 offers some conclusions.

2 Related Researches

Some studies of static, dynamic, or hybrid detections of
Android malware are reviewed in this Section. Normally,
static analysis relies on features extracted from the app
without executing code, while dynamic analysis extracts
features based on execution on an emulator.

2.1 Static Detection

Static analysis is a traditional malware detection method
for computers, mostly applicable to smart phones. Samra
et al. [21] used clustering with information retrieval (IR)
to identify Android malware. The authors extracted the
features of the apps from their XML-files, which declare
permissions requested by apps, and then used the Weka
K-Mean algorithm for classification. In the paper, the
dataset of 18,174 Android apps consisted of 4,612 in-
stances of business and 13,535 instances of tools; the
experimental results show that the recall and precision
were both 0.71. Liu et al. [15] proposed a two-layered
permission-based detection scheme for detecting mali-
cious Android apps. The authors considered apps request-
ing permission pairs as an additional condition, and also
considered used permissions to improve detection accu-
racy.

Zhao and Qian [29] suggested that most malware vari-
ants were created by automatic tools, and thus there
are special fingerprint features for each malware family.
The authors decompiled the Android APK, and mapped
the three different kinds of features, Opcodes, API pack-
ages and high level risky API functions, to three inte-
grated channels of an RGB image, respectively. They then
adopted neural networks to identify each family’s fea-

tures. The experimental results showed that the proposed
method successfully identified all 14 malware datasets
with an accuracy of 90.67% on average. Fereidooni et
al. [11] proposed a system called ANASTASIA, which de-
tected a malicious Android app by statically analyzing
its behaviors. The authors utilized a large number of
statically extracted features from various security behav-
ioral characteristics of an app. A detection framework was
built based on machine learning with a high performance
detection rate and an acceptable false positive rate. The
authors then evaluated the performance on a large-scale
malware data-set, including 18,677 malware and 11,187
benign apps, and the results showed a true positive rate
of 97.3%, and a false negative rate of 2.7%.

Maier et al. [17] also described using obfuscation tech-
niques to bypass static analysis via modifying partial pro-
gram codes to avoid being similar to known malware sam-
ples. They tested and evaluated several antivirus utilities
which were able to efficiently identify known malware,
but had little success detecting malware after obfuscation.
This means that malware detection cannot only rely on
static analysis. Some researchers have therefore begun to
develop dynamic detection techniques, or combinations of
dynamic and static detection techniques.

2.2 Dynamic Detection

Dynamic analysis is based on the behaviors of an applica-
tion, i.e., the application must be installed and executed
in an emulator, and then the log file is analyzed to de-
termine if the application is suspicious. Sun et al. [24]
indicated that sandbox environments play an important
role in the field of information security. A sandbox can ex-
ecute malware in an isolated environment, minimizing its
destructive power, and can test the malware for different
ways to find its main intentions. Bhatia and Kaushal [9]
presented an approach to perform dynamic analysis of An-
droid apps to classify them as malicious or non-malicious.
The authors developed a system which collects and ex-
tracts the system call traces of all apps during their run-
time interactions with the phone platform. Subsequently
all the collected system call data is aggregated and ana-
lyzed to detect and classify the behavior of Android ap-
plications.

Singh and Hofmann [22] extracted the system call be-
havior of 216 malicious apps and 278 normal apps to
construct a feature vector for training a classifier. The
authors applied several classification algorithms to the
dataset, including decision tree, random forest, gradient
boosting trees, k-NN, Artificial Neural Network, Support
Vector Machine and deep learning. Furthermore, three
feature ranking techniques, i.e., information gain, Chi-
square statistic, and correlation analysis, were used to
select appropriate features from the set of 337 system
calls. Experiments showed that Support Vector Machines
(SVM), after selecting features through correlation analy-
sis, outperformed other techniques, where an accuracy of
97.16% was achieved. Maier et al. [18] demonstrate that
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Android malware can bypass current automated analysis
systems, including AV solutions, mobile sandboxes, and
the Google Bouncer. The authors found that malware
can either behave benignly or load malicious code dynam-
ically at runtime. They also investigated the frequency of
dynamic code loading among benign and malicious apps,
and found that malicious apps make use of this technique
more often. About one third of 14,885 malware samples
were found to dynamically load and execute code, which
means traditional antivirus tools can’t detect these kinds
of malware.

2.3 Hybrid Detection and Other Meth-
ods

Qian et al. [19] proposed an approach with two steps us-
ing static and dynamic analysis separately in each step.
The first step used static analysis, and a permission com-
bination matrix was used to determine the risk of the
app. For suspicious apps, based on reverse engineering,
the authors planted Smali code to monitor sensitive APIs
such as sending SMS, accessing user location, device ID,
phone number, etc. Their experiment results showed that
almost 26% of apps in the Android market have privacy
leakage risks. Kapratwar et al. [14] suggested that static
analysis is more efficient, while dynamic analysis can be
more informative, particularly in cases where the code is
obfuscated. In this research, the authors applied machine
learning techniques to analyze the relative effectiveness of
particular static and dynamic features for detecting An-
droid malware.

They also carefully analyzed the robustness of the scor-
ing techniques under consideration. Liu et al. [16] decom-
piled an app to obtain static features by searching the
permissions used by the app from the AndroidManifest
file, and the APIs from the Smali file. The app was also
installed in an emulator to obtain dynamic features from
its behaviors. Finally, the static and dynamic vectors were
merged into a machine learning system for classification.

Kang et al. [13] proposed a method to improve the
performance of Android malware detection by incorporat-
ing the creator’s information as a feature, and classifying
malicious applications into similar groups. The proposed
system enables fast detection of malware by using creator
information such as certificate serial numbers. Addition-
ally, it analyzes malicious behaviors and permissions to
increase detection accuracy. The system can also classify
malware based on similarity scoring. Its detection rate
and accuracy are 98% and 90%, respectively. The Mobile-
Sandbox system proposed by Spreitzenbarth et al. [23]
combines static and dynamic analysis, i.e., the results of
static analysis are used to guide dynamic analysis and ex-
tend the coverage of executed code. It also uses specific
techniques to log calls to native (i.e., “non-Java”) APIs,
and finally combines these results with machine-learning
techniques to classify the analyzed samples as either be-
nign or malicious. Rodriguez-Mota et al. [20] proposed
a hybrid test framework in which dynamic analysis was

implemented after the static analysis of an app. They
also analyzed Trojans, and found common features for in-
stances. These features can be used for static analysis to
increase classification accuracy.

This study proposes two approaches using static and
dynamic features to identify malware on Android plat-
forms. The first, called ModeA, is a two-tier system.
ModeA uses static features for the first tier, which can
be run in real-time, and uses dynamic features for the
second tier. ModeB, is an offline system in which static
features are merged with dynamic features to measure a
test app. ModeB was able to achieve an overall accu-
racy of 97.4% for unknown malware in the experiments.
The two approaches are introduced in Sections 3 and 4,
respectively.

3 System Approach: Mode A - A
Two-tier Design

This approach is a two-tier framework, with static and
dynamic analysis, operated with an on-line analysis tool,
VirusTotal [28], as assistance. The whole structure of
this approach is illustrated in Figure 1. It first imple-
ments a static analysis in the user’s phone, and if the
test application is identified as a suspicious app, it is up-
loaded to the sandbox server for further dynamic analysis.
In terms of static analysis, the proposed system extracts
the permissions, native-permissions, intent-priority set-
ting, and function calls from the test app. After the app
(APK format) is decompiled by Apktool [6], two impor-
tant files, AndroidManifest.xml and classes.dex, can be
obtained. The AndroidManifest.xml contains three kinds
of features: permissions, native-permissions and priority
settings; the classes.dex contains function calls. Dynamic
analysis requires a sandbox server, so that the test app
can be uploaded to the server for further analysis. The
dynamic analysis uses an Android emulator to run the
suspicious app, and the behavior pattern is then extracted
to check whether the application contains malicious activ-
ities.

Figure 1: System structure of Mode A: A two-tier design
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3.1 Static Analysis

First, the test app is decompiled to obtain static features,
which include permissions, native-permissions, intent-
priority and sensitive functions. The permission [1] is a
security design on Android platforms. If an app wants
to execute some specific functions, corresponding permis-
sions must be declared in the AndroidManifest.xml file,
and shown to the user before installation so that users
are aware of the activities of an app by permission dec-
laration. In this study, the 135 permissions provided by
Android 5.0 were considered.

Native-permission is provided by Google to enhance
Android programming by supporting other languages, like
C/C++, other than JAVA to develop applications. While
this flexibility extends Android’s supportability, malware
developers use this facility to insert malicious codes into
applications, or to disguise malicious programs as normal
applications, hiding their intentions from the user.

Intent-priority is also declared in Android Mani-
fest.xml, representing the intent-priority of program ac-
tivity. For example, if the intent-priority value of Ap-
plication A is larger than that of Application B, related
messages are sent to A before they are sent to B. The
intent-priority value is preset as 0, and its numerical range
is -1000 to 1000. This study found that malware normally
sets its intent-priority value higher than normal programs
on purpose, so as to make sure the malware receives infor-
mation first. The value of normal programs usually does
not exceed 100.

The final feature of static analysis is sensitive function
calls. This study analyzes how many times an application
uses sensitive functions as a feature of static analysis. Fig-
ure 2 shows partial program codes after a malicious app
is decompiled. The malware uses the sendTextMessage(
) function, and sends short messages to a specific number
when it is started, and uses the setComponent( ) function
to start up another malware. Table 1 lists some of the 59
sensitive functions concerned in this study.

3.2 Dynamic Analysis

In order to carry out dynamic analysis, a sandbox server
is built, so that a user can upload an app via mobile phone
interface to this server for runtime testing, and then the
log file of the emulator can be analyzed to check whether
malicious activities are present. This system also uploads
the test application to VirusTotal [28] for testing. Virus-
Total is a free on-line scanning website. Finally, the sys-
tem returns the dynamic analysis result and VirusTotal
on-line test result to the user. The sandbox environment
in this study is an Android virtual machine (Android em-
ulator) [2] provided by Google, which analyzes the ac-
tivity log in the active stage of applications to identify
suspicious activities. MonkeyRunner [3] is an automated
testing tool provided by Google, developed based on the
Python language. MonkeyRunner is provided via API for
developers to write script, after which it sends commands

to the Android device to ”simulate trigger events”. This
study prerecords several scripts to simulate user behavior
patterns, and MonkeyRunner starts the scripts when an
application is running in the Android emulator.

The information exported from an Android system to
the log file of the emulator in the preset environment is not
specific enough, however. For example, in sending a short
message, only the activation of the function is recorded,
but the receiving number and the message content are
not. In order to detail the information exported to the log
file, the emulator’s files needed to be modified first in this
study. The files comprising the emulator are extracted
from the image file “system.img”. All functional files are
in the .jar format. After decompression, a jar file can
generate a classes.dex file, which contains some functional
files of the emulator. Then, the de-compilation tool Dex
Manager [12] is required, which decompiles a classes.dex
file to a smali program code file. After modification,
the modified program code (in smali) can then be pack-
aged into classes.dex. Finally, the modified classes.dex
is repackaged by compression/decompression tool to the
.jar format in order to run the emulator. Take sending
a short message (SM) as an example. The function for
sending an SM is stored in the SmsManager of telephony-
common.jar. The default Android emulator only records
the event that the function has been activated, but the
content of the message and the recipient of the message
are omitted. Modification (see the red frame in the upper
part of Figure 3) enables the emulator to record the receiv-
ing number and message content in the SendTextMessage
file. The yellow frame in the middle of Figure 3 shows that
in the log the receiving number and short message con-
tent are actually recorded when the SendTextMessage is
started. Similarly, Figure 4(a) shows that the short mes-
sage sending function has been activated, the recipient
phone number is 81168, and the content of the message
is “SP99”. Another example in the log is given in Figure
4(b), where a rename function has been executed, with
the names before and after the change. In this study,
twelve functions given in Table 2 in the default Android
emulator were modified first in order to record more infor-
mation when they were activated, as if more information
about the activities is recorded, then more sophisticated
determinations can be performed.

3.3 Dataset and Experimental Results

In this study, normal apps were downloaded, for the most
part, from Google Play, and checked by anti-virus soft-
ware, while malicious apps were mostly obtained from
the Contagio Malware [10] website, which periodically up-
dates and shares malware. In total, 900 normal programs
and 300 malware programs were applied in the experi-
ments. Thus 1,200 feature vectors representing 1200 apps
were obtained and fed into Weka, a machine learning tool,
for classification. An instance of one static feature vector
is shown in Figure 5. The permissions (black), function
calls (brown), and native-permissions (purple) and are set
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Figure 2: Illustrations of sensitive functions in applications

Table 1: Some of the 59 Sensitive functions

Figure 3: System function modifications

Table 2: Modified functions in the Android emulator

1. Turn off background apps 2. Send short messages
3. Execute commands 4. Get GPS data
5. Get device ID 6. Get phone number
7. Turn on camera 8. Delete files
9. Rename files 10. Open files
11. Copy files 12. Retrieve app

information

(a) Content and recipient of a short message

(b) The names of a file before and after rename

Figure 4: More information contained in the log of the
emulator

as 1 if they are used, and set as 0 if they are not used.
In terms of priority (green), a priority greater than 0 and
smaller than 1000 (relatively normal) is set as 0, and one
that is less than 0 or greater than 1000 (relatively abnor-
mal) is set as 1. The final feature tells Weka whether the
app is malware; “yes” is normal and “no” is malicious.

Table 3 shows the experiment results by Weka. ”Non-
split” means that all apps are used for training, and tested
as well. The n-fold cross-validation (n = 2 or 10) means
that all data are divided into n equal parts; n - 1 parts are
used for training, and the remainder are used for testing,
repeated n times with a different part used each time. Fi-
nally, the average value is shown. In terms of accuracy,
the best data obtained by non-split, two-fold and ten-fold
all occur when the SVM algorithm is used; the values
are 93.4%, 89.8% and 91.1%, respectively. Non-split has
the maximum value, because the training and test are
the same (complete) dataset. The ten-fold experiment
yields better data than the two-fold experiment for larger
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Figure 5: Example of one static feature vector

Figure 6: System structure of Mode B: A mixed features design

Table 3: Experimental results obtained using static fea-
tures only

training sets. Normally, non-split is used to measure the
known-attack detection performance of a defense mecha-
nism, and n-fold is used to evaluate its unknown attack
detection performance. Like most cases in the fields, both
n=2 and n=10 are considered in this paper.

In terms of dynamic analysis, 30 normal programs and
70 malware programs were selected randomly to form the
test set. These programs were installed in the emulator
in turn and executed, and MonkeyRunner was started to
simulate user behavior. The log was imported into the
analysis tool developed in this study, so as to identify
suspicious activities. As mentioned in Section 1, sending
short messages (SM) without user’s awareness is an im-
portant feature regarded as malware. In the experiments,
the test app was installed in the modified emulator with-
out executing MonkeyRunner [3], i.e., if any SM is sent
out, it must be sent by the app without user consent, be-
cause no-one is operating the app. Thus far, this the only
the criterion for ModeA that has been considered, i.e., if
an app sends an SM without user consent, it is regarded
as malware. Of the 70 malware programs, 41 applica-
tions included such malicious actions. Unreported mal-
ware did not trigger the short message sending function,
and the 30 normal programs were all identified as having
normal behavior. According to the analysis result, as long
as an application has an automatic short message send-
ing function, it will be successfully detected in this way.
However, malware which executes other attack behaviors
(aside from SM sending attacks) cannot be detected. In
the following section, approach ModeB merges all static
and dynamic features to provide a more precise malware
detection design.
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4 System Approach: Mode B - All
Features Combined, and Fea-
ture Weighting

ModeB merges static and dynamic app features, and ad-
justs their weights appropriately. Similarly, the static fea-
tures include permissions, native-permissions, functions
and priority settings in the application; the dynamic fea-
tures are obtained by executing the app in the emulator,
and then extracting important activities from logs. The
overall structure of ModeB is shown in Figure 6. The
static features are obtained as in ModeA. Figure 7 shows
the tool designed in this study for extracting dynamic
features from the log.

After merging the 12 dynamic features with the static
features, a feature vector of the app is shown in Figure
8(a), in which the red part, also underlined, represents
dynamic features. Table 4 shows the experiment results
obtained using Weka. In terms of accuracy, the best ex-
perimental results for non-split, two-fold, and ten-fold oc-
curred when the SVM algorithm was used; their values
are 95.3%, 92.3% and 93.9%, respectively. Again, non-
split obtains the maximum value due to having the same
(complete) dataset for training and testing. The ten-fold
experiment has better results than the two-fold experi-
ment because of its larger training sets.

Table 4: Experimental results of merging static and dy-
namic features

Since there is a large gap between the numbers of static
and dynamic features, this study used a weighting method
to mitigate the effect resulting from that disparity. The
most frequently used feature was given the highest weight,
while the other features were compared with the highest
feature, and given their corresponding weights. For ex-
ample, if Feature A has the highest frequency of use, its

value is 1000, and the maximum weight is 20 in this pa-
per, so the frequency of use of A is divided by 50 to ob-
tain the weight 20. The other features can be deduced by
analogy, divided by 50, and rounded off to obtain their
respective weights. The number of dynamic features is
quite small in relation to that of the static features, so
the maximum weight, i.e. 20, is given to any feature once
it occurs. Figure 8(b) shows a feature vector of the app
after weight adjustment. The experiment results from
Weka are shown in Table 5. The SVM algorithm results
in the best accuracy in the three experiments (non-split,
two-fold and ten-fold), and their values are 99.5%, 96.3%
and 97.4%, respectively. It is clear that the results are im-
proved by adjusting the feature weights. Figure 9 shows
the best outcome of the ten-fold experiments using SVM
in Weka. The other outcomes of the ten-fold experiments
using Bayes Net, Näıve Bayes, K-NN, and J-48 in Weka
are given in Figures 10(a), 10(b), 10(c) and 10(d), respec-
tively.

Table 5: Experimental results for weighted features

Finally, a comparison between the proposed approach
and other researches is given below. First, it must be
noted that different researches used different methods
of showing their performances, with different datasets.
There is thus no unanimously fair way to compare them
from a specific aspect. The performances of the afore-
mentioned researches in Section 2.3 are summarized be-
cause they also used a hybrid approach. The work of [19]
was to monitor the information leakage of apps, and the
main result is that by experiments, almost 26% appli-
cations in the Android market have privacy leakage risks.
In [14], the authors used a small dataset with 103 malware
and 97 benign apps. They evaluated the performances of
static analysis and dynamic analysis separately, instead
of merging both types of features together. The authors
adopted the term ROC curve, not accuracy, to show the
performances of static analysis and dynamic analysis, and
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Figure 7: Parsing tool designed to extract dynamic features from the log

(a) An example feature vector

(b) An example feature vector after adjustment

Figure 8: Feature vector for one app after merging static and dynamic features

Figure 9: The best outcome of the ten-fold experiments using SVM in Weka
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(a) Bayes Net

(b) Näıve Bayes

(c) K-NN (d) J-48

Figure 10: Outcomes of the ten-fold experiments using different algorithms in Weka

their best results obtained by 10-fold cross-validation were
0.966 and 0.884, respectively, both using the RF100 algo-
rithm. [16] is a short, 2 page paper, in which the authors
took 3,414 static features from permissions and API fea-
tures, and 345 dynamic features from emulator log files.
Using a dataset containing 500 malicious apps and 500 be-
nign apps, the authors achieved the best results, in terms
of accuracy, for static detection and dynamic detection
using SVM (99.28%) and Näıve Bayes (90.00%), respec-
tively. However, the authors did not mention what kind
of experimental techniques were adopted, like non-split,
2-fold, 10-fold, etc. In addition, they did not merge static
and dynamic features together and resolved to do this in
future work.

In [13], the authors proposed an Android malware de-
tection and classification system based on static analysis
using serial number information from the certificate as
a feature. As a result, the detection system can achieve
98% accuracy, and the classifier module can classify the 20
kinds of malware families with 90% accuracy. The work
of [23] did not focus on the classification of malicious and
benign apps. Instead, the authors focused on the calls
to native (i.e., “non-Java”) APIs in apps, because of the
potential risks of such calls. They evaluated the system
on more than 69,000 apps from Asian third-party mobile
markets, and found that about 21% of them actually use
native calls in their code. In [20], the authors took 39
trojan Android malware as samples to illustrate the ef-
fectiveness of the proposed method. No result regarding
classification of a dataset was given.

5 Conclusion

Security mechanisms for Android platforms are fast be-
coming an important and urgent issue. Current malware
technology changes quickly, and malware using obfusca-
tion cannot be identified using only static analysis. There-
fore, the malware detection approaches proposed in this
paper combine static and dynamic features. Since static
features can be obtained by parsing the decompiled test
SDK, while dynamic features need to be done with an em-
ulator, two approaches, ModeA and ModeB, are proposed
to apply the use of static and dynamic features. ModeA
is a two-tier framework in which the first tier can be run
on a mobile device to obtain the static features of a test
SDK and make a decision in real-time; if necessary, the
tested SDK can be uploaded to a server for the second
tier check by dynamic features. In ModeB, static features
and dynamic features were merged, and since the static
features far outnumbered the dynamic features, weights
of features were also adjusted to address the disparity.
According to the Weka experiments, the overall accuracy
values achieved by ModeB for detecting known (non-split)
and unknown (ten-fold) malware were 0.995 and 0.974,
respectively, both obtained by SVM algorithm.
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