
International Journal of Network Security, Vol.21, No.5, PP.872-880, Sept. 2019 (DOI: 10.6633/IJNS.201909 21(5).20) 872

Novel and Secure Outsourcing Algorithms for
Multiple Bilinear Pairings with Single Untrusted

Server

Jiaxiang Yang1, Yanping Li1, and Yanli Ren2

(Corresponding author: Yanping Li)

School of Mathematics and Information Science, Shaanxi Normal University, Xi’an 710119, China1

School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China2

(Email: lyp@snnu.edu.cn)

(Received Mar. 9, 2018; Revised and Accepted June 7, 2018; First Online Mar. 2, 2019)

Abstract

Bilinear pairing is one of the most widely-used and time-
consuming operations in public key cryptographic algo-
rithms and schemes. Generally, most of the schemes
need two or more pairing operations. However, almost
all the existing outsourcing algorithms for bilinear pair-
ings can only outsource one pairing operation at one time,
and multiple pairings need to be outsourced one by one
in a sequence, which may be more inefficient and time-
consuming. Currently, the most efficient outsourcing al-
gorithm for one bilinear pairing has a checkability about
2/5 under the one-untrusted-program (OUP). Two novel
outsourcing algorithms for multiple bilinear pairings un-
der the same security assumption are proposed in this
paper. One can outsource two asymmetric bilinear pair-
ings simultaneously with checkability about 1/4 and the
other can outsource two symmetric bilinear pairings si-
multaneously with checkability about 2/7, both of which
have higher checkability than the current most efficient
outsourcing algorithm on the condition it also outsource
two bilinear pairings. Finally, we proved the security of
the two algorithms and analyzed the efficiency by com-
paring them with prior works. The performance analysis
showed that our algorithms are more efficient and practi-
cal.

Keywords: Bilinear Pairing; Cloud Computing; Secure
Outsourcing; Single Untrusted Server

1 Introduction

With the development of cloud computing technology,
outsourcing computation has attracted extensive atten-
tion of academia and industry. More and more mobile
intelligent terminals, such as smart-phone, tablets and
iPad, become the integral part of our life [22, 23, 27, 30].
These resource-constrained devices will face the shortcom-
ing of limited computation when they come across com-

plex computational problems. Outsourcing computation
is an important way to solve this type of problem [12,17].
Therefore, more and more mobile smart devices become
a strong demand and driving force for outsourcing com-
putation. Cloud outsourcing computation enables the
cloud service providers to provide unlimited computing
resources to users, which not only save the users’ com-
putational cost, but also improve the users’ computation
efficiency. Hence, outsourcing computation became a new
and popular computing paradigm [2,3, 11,16,20].

Generally, outsourcing tasks are some computations
with higher complexity. Especially, as the computing
parameters become larger, the computation gets more
time-consuming and computationally expensive [10, 18],
such as bilinear pairings which are considered the most
common and expensive operations in cryptographic algo-
rithms and schemes. Since bilinear pairings play a very
important and significant role [9,19,21,31], a large quan-
tity of pairing-based algorithms and protocols are pro-
poseed. Due to its widespread application and higher
complexity, outsourcing computation of bilinear pairing
is a realistic problem in practice.

A growing number of concrete outsourcing schemes for
bilinear pairing have been put forward [6, 13, 25, 26, 29]
in the last few years. These algorithms allow that
computation-limited users delegate the computing tasks
to the cloud, successfully outsourcing computation of bi-
linear pairing. However, it also inevitably faces some new
challenges, which can be summed up as the following three
aspects.

Assumption: The number and trustability of cloud
servers are the crucial factors influencing the prac-
ticality of the scheme. At present, outsourcing al-
gorithms are based on three assumptions. The one-
untrusted program (OUP) supposes that one server
implements an algorithm and the server could be ma-
licious. The one-malicious version of two-untrusted
program (OMTUP) that assumes two servers per-



International Journal of Network Security, Vol.21, No.5, PP.872-880, Sept. 2019 (DOI: 10.6633/IJNS.201909 21(5).20) 873

form an algorithm and only one of them is mali-
cious. The two-untrusted program (TUP) demands
that two servers carry out an algorithm and they
could be malicious. Since it is difficult to find fully
trusted server and two servers require more hardware
resources. Obviously OUP assumption is the most
practical.

Secrecy: The cloud server of outsourcing computation
may be untrusted, and outsourcing data often con-
tains users’ sensitive information that cannot be
leaked to the cloud server. That is, the cloud server
cannot get the contents of the outsourcing data.
Hence, it is required that the cloud server should
learn nothing useful about what it is actually com-
puting after outsourcing computation.

Checkability: Driven by the cloud server’s own eco-
nomic interests, or because of the failure of software
and hardware, the cloud server may return some in-
correct or incomplete results to the user. Therefore,
the outsourcers should have the ability to check the
correctness of the results with some certain checka-
bility, that is to say, the construction not only needs
to have higher efficiency, but also higher checkability.

In order to protect data privacy and solve checkability
problems, Gennaro et al. [8] proposed a checkable out-
sourcing computation algorithm, in which the inputs and
the outputs are confidential to the server, i.e., the server
cannot obtain the exact value of the outsourced compu-
tation task. Additionally, the user is able to check the
correctness of the server’s return value. Since then, al-
most all of outsourcing algorithms and schemes focus on
protecting the privacy of outsourced data and pursuing
higher checkability of the return value.

1.1 Previous Work

In 2010, Chevallier-Mames et al. first proposed the out-
sourcing algorithm for secure delegation of elliptic-curve
bilinear pairing based on an untrusted server, which sug-
gests that a computation-limited terminal outsources the
computation of bilinear pairing to a more resourceful
server [5]. If the server returns a random value instead of
the true computational result (i.e., the server does not do
the computation), the outsourcer can check the correct-
ness of the return value with a probability about 1. based
on Chevallier-Mames et al.’s algorithm, Chen et al. make
an improvement to reduce the user’s point multiplication
and exponentiation by pre-computation [19]. Unfortu-
nately, the checkability of server’s outputs has dropped
from 1 to 1/2. Later, Tian et al. proposed two outsourc-
ing algorithms A and B for bilinear pairings [20], which
reduce the user’s computation amount by changing the
complexity of the pre-computation, that is, improve the
outsourcing efficiency. However, its assumption, finding
two servers, of which at least one server is honest, is very
hard to realize in the real cloud computing environment.

Therefore, more practical outsourcing computing should
be based on a single server without the honest assump-
tion of servers [32]. Then Jiang and Ren proposed an
algorithm under the OUP model [15], but the checkabil-
ity is only 2/5.

Generally, many signature schemes and cryptographic
protocols require two or more bilinear pairings [1,7,14,24].
However, almost all the existing outsourcing algorithms
for bilinear pairings can only outsource a single bilinear
pairing at one time. And if there are multiple bilinear
pairings to outsource, it has to outsource one by one in
a certain order, which is very time-consuming and ineffi-
cient, and maybe results in lower checkability. If we could
outsource multiple pairings of computation at one time,
and the resourceful server could do the computation task
in parallel and return the results quickly, the time cost
could be saved greatly. Based on such simple idea, we try
to design two algorithms in this paper, which outsource
two bilinear pairings at one time to improve the outsourc-
ing efficiency under OUP model with the improved check-
ability.

1.2 Our Contributions

Based on Jiang and Ren algorithm [15], this paper pro-
poses two novel outsourcing algorithms (Pai and SPai).
Unlike most of existing algorithms, the algorithm Pai
can outsource two asymmetric bilinear pairings to an un-
trusted server at the same time with checkability about
1/4. While the algorithm SPai can more efficiently out-
source two symmetric bilinear pairings simultaneously,
which not only decreases the users’ computation overhead
and protects the users’ data privacy, but also improves the
checkability. Compared to the existing related algorithms,
Pai and SPai have the following advantages.

First, since the OMTUP model with only one server
being malicious is too strong and the TUP model with
two untrusted servers is impractical, the OUP model with
a single untrusted server is more reasonable and more
practical. Both algorithms Pai and SPai in this paper
are designed under the OUP model and can be provably
secure.

Second, Pai and SPai can provide the privacy protec-
tion of user data by obfuscating inputs. What’s more im-
portant, Pai and SPai can outsource two bilinear pairings
at the same time, which reduces the users’ computation
overhead and saves the outsourcing time-cost greatly.

Third, currently, the most efficient outsourcing algo-
rithm of bilinear pairings under the OUP model has a
checkability about 2/5 [15]. If two bilinear pairings are
outsourced one by one, the checkability is reduced to 4/25.
While our algorithm Pai outsources two asymmetric bi-
linear pairings to an untrusted server at the same time
with checkability about 1/4. And the algorithm SPai can
outsource two symmetric bilinear pairings simultaneously
with checkability about 2/7.

In conclusion, algorithms Pai and SPai can outsource
two bilinear pairings simultaneously with improved check-



International Journal of Network Security, Vol.21, No.5, PP.872-880, Sept. 2019 (DOI: 10.6633/IJNS.201909 21(5).20) 874

ability under the most practical OUP model, so our pro-
posed algorithms are more efficient and practical.

1.3 Structure of the Paper

The rest of the paper is structured as follows. In Section
2, some basic knowledge for bilinear pairing are reviewed,
and formal security definitions and the system model are
given. Novel outsourcing algorithms of Pai and SPai
are presented in Section 3 and their security analyses
are demonstrated in Section 4. Performance comparisons
with other related algorithms are analyzed in Section 5,
and the Section 6 concludes our work.

2 Preliminaries

2.1 Bilinear Pairing

Let G1 and G2 be two cyclic additive groups with a large
prime order q, and G1 =< P1 >,G2 =< P2 > . Let GT

be a cyclic multiplicative group with the same order q. A
bilinear pairing is a map e(·, ·) : G1 ×G2 → GT with the
following properties:

1) Bilinear: e(aR, bQ) = e(R,Q)ab for all R ∈ G1, Q ∈
G2,
a, b ∈ Z∗q .

2) Non-degenerate: There exist R ∈ G1 and Q ∈ G2

such that e(R,Q) 6= 1GT
.

3) Computable: There is an efficient algorithm to com-
pute e(R,Q) for all R ∈ G1, Q ∈ G2.

2.2 Formal Security Definitions

Now we review the formal security definitions of outsourc-
ing algorithm introduced by Hohenberger and Lysyan-
skaya [10]. Following these definitions, Chen et al. and
Tian et al. proposed their algorithms, respectively. Our
algorithms are also based on these security definitions.
The detailed definitions of outsourcing computation are
introduced below.

The algorithm Alg includes a trusted party T and an
untrusted program U . E represents an untrusted envi-
ronment. T is a limited computation party who tries to
outsource its computation task to the party U . TUdenotes
T carries out the computation by invoking U . An adver-
sary A is simulated by a pair of algorithms (E,U ′), where
E denotes the adversarial environment that submits mai-
licious inputs to Alg and represents malicious software
written by E. As described in [10], we assume that the
two adversaries (E,U ′) can make direct communication
only before the execution of TU , and in other cases, they
can only communicate with each other by passing mes-
sages through the outsourcer T .
The formal definitions of outsource-inputs/outputs are
given as follows:

Definition 1. (Algorithm with outsource-I/O) The algo-
rithm Alg includes five inputs and three outputs. The
first three inputs are generated by the trusted of T , and
are classified as according to how much information the
adversary A = (E,U ′) learns about them, they secret, pro-
tected and unprotected. The first input is honest, secret,
which is unknown to E and U ′. The second input is hon-
est and protected, which is public for E, but is kept secret
from U ′. The third input is honest and unprotected, which
is known by both E and U ′. The last two inputs are chosen
by the malicious environment E. One is the adversarial
protected input that E know it and is secret for U ′. The
other is the adversarial unprotected input that are open to
both E and U ′.

Definition 2. (Outsource-security) Let Alg be an algo-
rithm with outsource-I/O. The implementation of Alg is
secure if:

1) Correctness: TU ′ is a correct implementation of
Alg.

2) Security: For all probabilistic polynomial time (PPT)
adversaries A = (E,U ′), there exist expected proba-
bilistic polynomial time simulations (S1, S2) such that
the following pairs of random variables are computa-
tionally indistinguishable.

Pair one: EV IEWreal ∼ EV IEWideal:

The adversarial environment E can obtain nothing
about inputs or outputs during the execution of TU .
The real process and ideal process proceed in turn.

EV IEW i
real =

{(istatei, xihs, xihp, xihu)← I(1k, istatei−1);

(estatei, ji, xiap, x
i
au, stop

i)

← E(1k, EV IEW i−1
real, x

i
hp, x

i
hu);

(tstatei, ustatei, yis, y
i
p, y

i
u)

← TU ′(ustatei−1)(tstatei−1, xj
i

hs, x
ji

hp,

xj
i

hu, x
ji

ap, x
ji

au) : (estatei, yip, y
i
u)}

EV IEWreal = EV IEW i
real if stopi = TRUE.

An honest process I inputs a security parameter k
and its i − 1 round internal state istatei−1 to pro-
duce its i round honest state and honest inputs
xihs, x

i
hp, x

i
hu for TU ′ . In the same way, the ad-

versarial environment E takes its i − 1 round view
EV IEW i−1

real, k and xihp, x
i
hu as inputs to produce its

i round internal state estatei, the order of honest in-
puts ji, the i round malicious inputs xiap, x

i
au, and

a signal sign stopi. The adversary U takes its i − 1
round internal state ustatei−1 to react with T in the
ith round. The implementation of TU takes five in-
puts and the i − 1 round internal state tstatei−1 to
produce i round internal states of T and U , and the i



International Journal of Network Security, Vol.21, No.5, PP.872-880, Sept. 2019 (DOI: 10.6633/IJNS.201909 21(5).20) 875

round outputs yis, y
i
p, y

i
u. The view of the real process

in round i consists of estatei and the values of yip, y
i
u.

EV IEW i
ideal =

{(istatei, xihs, xihp, xihu)← I(1k, istatei−1);

(estatei, ji, xiap, x
i
au, stop

i)

← E(1k, EV IEW i−1
ideal, x

i
hp, x

i
hu);

(astatei, yis, y
i
p, y

i
u)

← Alg(astatei−1, xj
i

hs, x
i
hp, x

i
hu);

(sstatei, ustatei)

← S
U ′(ustatei−1)
1 (sstatei−1, xj

i

hp, x
ji

hu, x
ji

ap,

xj
i

au, y
i
p, y

i
u);

(zip, z
i
u) = replacei(Y i

p , Y
i
u)

+(1− replacei)(yip, yiu) : (estatei, zip, z
i
u)}

EV IEWideal = EV IEW i
ideal if stopi = TRUE.

In the ideal process, we have a stateful simulator
S1 to participate the algorithm. The algorithm Alg
takes its i− 1 round internal state astatei−1 and five
inputs to get i round internal state astatei and three
outputs. The simulated implementation SU ′

1 inputs
its i − 1 round internal state sstatei−1, all the pro-
tected and unprotected inputs and outputs to pro-
duce the i round internal state of S1 and U ′, the
simulated protected and unprotected, and a signal
replacei ∈ {0, 1}. The response signal is used to de-
termine i round (zip, z

i
u) for EV IEW i

ideal.

Pair two: UV IEWreal ∼ UV IEWideal: The view that
the untrusted software obtains by participating in the
process is described in Pair One. So UV IEWreal =
ustatei if stopi = TRUE. The ideal process is as
follows:

UV IEW i
real =

{(istatei, xihs, xihp, xihu)← I(1k, istatei−1);

(estatei, ji, xiap, x
i
au, stop

i)

← E(1k, estatei−1, xihp, x
i
hu, y

i−1
p , yi−1u );

(astatei, yis, y
i
p, y

i
u)

← Alg(astatei−1, xj
i

hs, x
i
hp, x

i
hu, x

i
ap, x

i
au);

(sstatei, ustatei)

← S
U ′(ustatei−1)
2 (sstatei, xj

i

hu, x
i
au)}

UV IEWideal = UV IEW i
ideal if stopi = TRUE.

The algorithms I, E are the same as those in the
EV IEW i

real of the above Pair One definition. While the
algorithm Alg is also defined in the same way as that
in the EV IEW i

ideal of Pair One definition. The sim-

ulated implementation SU ′

2 takes the ith round internal
state sstatei−1 and two unprotected inputs to produce
the state of sstatei, ustatei.

Assume that TU is a correct execution of Alg, some
definitions could be reached in the following.

Definition 3. (α-efficient, secure outsourcing): If for
any input x, the running time of T is no more than an
α-multiplicative factor of the running time of Alg, then
the algorithm (T,U) is α-efficient secure outsourcing.

Definition 4. (β-checkable, secure outsourcing): If for
any input x, T could detect any error with a probability
no less than β if the U ′ works maliciously during the ex-
ecution of TU ′ , then the algorithm (T,U) is β-checkable
secure outsourcing.

Definition 5. ((α, β)-outsource-security): If an algo-
rithm (T,U) is α-efficient and β-checkable, then it will
be said to be an (α, β)-outsource-secure implementation
of Alg.

2.3 System Model

There are two parties involved in our schemes, that is, the
user T and the cloud server U who may be malicious, as
shown in Figure 1. Our model can be described in the
following.

1) Given two bilinear pairings which will be computed,
the user T invokes Rand.

2) Rand returns a random five-tuple to the user T .

3) T blinds the inputs with the random five-tuple and
sends the blind values to cloud sever U .

4) On receiving the obfuscated values, U computes and
returns the results to T .

5) After receiving the results from U , T verifies the cor-
rectness of the results. If the results are not correct,
T will output ”error”. Otherwise, T will compute
the values of the given two bilinear pairings by using
the returned results from U .

Figure 1: The system architecture of our algorithms

In [10], a subroutine Rand, which can generate a ran-
dom five-tuple, is used to speed up the computations. The
user T invokes this subroutine many times to get a table
of random five-tuple. T retrieves some new pairs in the
table when needed. We call this table-lookup method.
Similarly, we also adopt such a subroutine, whose specific
workflow is given as follows:



International Journal of Network Security, Vol.21, No.5, PP.872-880, Sept. 2019 (DOI: 10.6633/IJNS.201909 21(5).20) 876

Input: A large prime q, two cyclic additive groups G1

and G2 with order q and a bilinear pairing e.

Output: (V1, V2, v1V1, v2V2, e(v1V1, v2V2)), where v1, v2
∈R Z∗p , V1 ∈ G1 and V2 ∈ G2.

3 Novel Outsourcing Algorithms
for Multiple Bilinear Pairings

In this section, two novels outsourcing algorithms of bi-
linear pairings Pai and SPai are proposed. Both Pai and
SPai outsource two bilinear pairings simultaneously to a
single untrusted server. Furthermore, the algorithms we
proposed also keep the privacy of outsourcing data with-
out reducing checkability.

3.1 Pai: Outsourcing e(A,B), e(C,D) Si-
multaneously

Pai algorithm can simultaneously outsource e(A,B) and
e(C,D), where A,C ∈ G1 and B,D ∈ G2, e(·, ·) : G1 ×
G2 → GT is an asymmetric bilinear pairing. To ensure
the privacy of the outsourcing data, A,B,C,D should be
kept secret from the server U . The concrete steps are
described as follows:

1) T runs Rand three times to obtain three ran-
dom five-tuple: (V1, V2, v1V1, v2V2, e(v1V1, v2V2)),
(X1, X2, x1X1, x2X2, e(x1X1, x2X2)), and (Y1, Y2,
y1Y1, y2Y2, e(y1Y1, y2Y2)).

Let µ = e(v1V1, v2V2), µ1 = e(x1X1, x2X2), and
µ2 = e(y1Y1, y2Y2).

2) T randomly selects t, t ∈ {1, 2, · · · , s},where s ∈R
Z∗p . Considering the efficiency and security, s should
be a smaller number. T queries U in random order as
follows. U returned the αi, θj , 1 6 i 6 6, 1 6 j 6 2.

U(A+ tv1V1, B + tv2V2)

→ α1 = e(A+ tv1V1, B + tv2V2),

U(−tA− v1V1, v2V2)

→ α2 = e(−tA− v1V1, v2V2),

U(−v1V1, tB + t2v2V2)

→ α3 = e(−v1V1, tB + t2v2V2),

U(C + tv1V1, D + tv2V2)

→ α4 = e(C + tv1V1, D + tv2V2),

U(−tC − v1V1, v2V2)

→ α5 = e(−tC − v1V1, v2V2),

U(−v1V1, tD + t2v2V2)

→ α6 = e(−v1V1, tD + t2v2V2),

U(x1X1, x2X2)→ θ1 = e(x1X1, x2X2),

U(y1Y1, y2Y2)→ θ2 = e(y1Y1, y2Y2).

3) T checks the outputs from U , if θ1 = µ1 and θ2 = µ2,
it shows that the of U outputs are correct, otherwise
the outputs of U are wrong.

4) T calculates the final results e(A,B) = α1α2α3µ and
e(C,D) = α4α5α6µ.

3.2 SPai: Outsourcing e(A, B), e(A, C)
Simultaneously

A large quantity of cryptographic schemes employ sym-
metric bilinear pairings, namely, G1 = G2 =< P >. And
they often require to calculate e(A,B) and e(A,C). Un-
der such situation, a special outsourcing algorithm SPai
with much higher efficiency and checkability is put for-
ward in this subsection. The concrete steps are given as
follows:

1) T runs Rand three times to get three random
five-tuple: (V1, V2, v1V1, v2V2, e(v1V1, v2V2)),
(X1, X2, x1X1, x2X2, e(x1X1, x2X2)), and
(Y1, Y2, y1Y1, y2Y2, e(y1Y1, y2Y2)).

Let µ = e(v1V1, v2V2), µ1 = e(x1X1, x2X2), and
µ2 = e(y1Y1, y2Y2).

2) T randomly selects t as same as Pai algorithm. T
queries U in random order as follows. U returned
the βi, χj , 1 6 i 6 5, 1 6 j 6 2.

U(A+ tv1V1, B + tv2V2)

→ β1 = e(A+ tv1V1, B + tv2V2),

U(−tA− v1V1, v2V2)

→ β2 = e(−tA− v1V1, v2V2),

U(−v1V1, tB + t2v2V2)

→ β3 = e(−v1V1, tB + t2v2V2),

U(A+ tv1V1, C + tv2V2)

→ β4 = e(A+ tv1V1, C + tv2V2),

U(−v1V1, tC + t2v2V2)

→ β5 = e(−v1V1, tC + t2v2V2),

U(x1X1, x2X2)→ χ1 = e(x1X1, x2X2),

U(y1Y1, y2Y2)→ χ2 = e(y1Y1, y2Y2).

3) T checks the outputs from U , if χ1 = µ1 and χ2 = µ2,
it shows that the outputs of U are correct, otherwise
the outputs of U are wrong.

4) T calculates the final results e(A,B) = β1β2β3µ and
e(A,C) = β2β4β5µ.

4 Security Analysis

4.1 Correctness

If the server honestly performs the algorithm Pai, the
user T should be able to compute the correct value of the
given bilinear pairings e(A,B) and e(C,D) successfully.



International Journal of Network Security, Vol.21, No.5, PP.872-880, Sept. 2019 (DOI: 10.6633/IJNS.201909 21(5).20) 877

Proof.

α1 = e(A+ tv1V1, B + tv2V2)

= e(A,B)e(A, tv2V2)e(tv1V1, B)e(tv1V1, tv2V2)

α2 = e(−tA− v1V1, v2V2)

= e(−tA, v2V2)e(−v1V1, v2V2)

α3 = e(−v1V1, tB + t2v2V2)

= e(−v1V1, tB)e(−v1V1, t2v2V2)

α4 = e(C + tv1V1, D + tv2V2)

= e(C,D)e(C, tv2V2)e(tv1V1, D)e(tv1V1, tv2V2)

α5 = e(−tC − v1V1, v2V2)

= e(−tC, v2V2)e(−v1V1, v2V2)

α6 = e(−v1V1, tD + t2v2V2)

= e(−v1V1, tD)e(−v1V1, t2v2V2).

Because e(aR, bQ) = e(R,Q)ab for all R ∈ G1, Q ∈ G2,
a, b ∈ Z∗q . So

α1α2α3µ

= e(A,B)e(A, tv2V2)e(tv1V1, B)

·e(tv1V1, tv2V2)e(−tA, v2V2)e(−v1V1, v2V2)

·e(−v1V1, tB)e(−v1V1, t2v2V2)e(v1V1, v2V2)

= e(A,B)e(A, v2V2)te(v1V1, B)te(v1V1, v2V2)t
2

·e(A, v2V2)−te(v1V1, v2V2)−1e(v1V1, B)−t

·e(v1V1, v2V2)−t
2

e(v1V1, v2V2)

= e(A,B).

α4α5α6µ

= e(C,D)e(C, tv2V2)e(tv1V1, D)

·e(tv1V1, tv2V2)e(−tC, v2V2)e(−v1V1, v2V2)

·e(−v1V1, tD)e(−v1V1, t2v2V2)e(v1V1, v2V2)

= e(C,D)e(C, v2V2)te(v1V1, D)te(v1V1, v2V2)t
2

·e(C, v2V2)−te(v1V1, v2V2)−1e(v1V1, D)−t

·e(v1V1, v2V2)−t
2

e(v1V1, v2V2)

= e(C,D).

The above equations indicate that the algorithm Pai
is correct.

Since algorithm SPai is a special case of algorithm Pai,
the correctness proof of algorithm Pai is enough to illus-
trate the correctness of algorithm SPai. Therefore, the
correctness of SPai will not be discussed again because
of the limited space.

4.2 Security Proof

Here we will take algorithm Pai as example to demon-
strate the security of algorithms Pai and SPai.

Theorem 1. In the OUP model, the algorithm is an
outsource-secure implementation of algorithm Pai, where

the inputs A,B,C,D may be honest, secret; or honest,
protected; or adversarial, protected.

Proof. Firstly, we prove that Pair one EV IEWreal ∼
EV IEWideal.

Note that we only consider three types of input
(A,B)(as well as (C,D)): honest, secret; honest, pro-
tected; or adversarial, protected. If the input (A,B) is
anything or other than honest, secret (this means that the
input (A,B) is honest, protected or malicious, protected.
Obviously, neither types of input (A,B) is secret), then
the simulation S1 is trivial. That is, the simulator S1 be-
haves in the same way as in the real execution. Trivially,
S1 never requires to access the secret input (A,B) since
neither types of input is secret.

If (A,B) is an honest and secret input, then the sim-
ulator S1 behaves as follows: upon receiving the input
on round i, S1 ignores it, randomly chooses a random
five-tuple numbers and submits it to the untrusted server
U ′. When U ′ returns the results, S1 randomly verifies two
outputs from U ′. If an error is detected, S1 saves all states
and outputs Y i

p = ”error”, Y i
p = ϕ, repi = 1. If no error

is detected, S1 checks the remaining three outputs. If all
checks go through, S1 outputs Y i

p = ϕ, Y i
p = ϕ, repi = 0;

otherwise, S1 selects a random element r and outputs
Y i
p = r, Y i

p = ϕ, repi = 0. In either case, S1 saves the
appropriate states.

The inputs distributed to U ′ in the real and ideal ex-
periments are computationally indistinguishable. In the
ideal experiment, the inputs are uniformly chosen at ran-
dom. In the real experiment, each part of all queries that
T makes is independently re-randomized, where the re-
randomization factors are also randomly generated with
the naive table-lookup method.

If U ′ behaves honestly in the ith round, then
EV IEW i

real ∼ EV IEW i
ideal because TU perfectly exe-

cutes Pai in the real experiment and S1 simulates with
the same outputs in the ideal experiment.

If U ′ is dishonest in the ith round, and it has been
detected by both T and S1 (with probability 1/4), then it
will produce an error output. In the real experiment, the
output of Pai looks random to the environment E. In the
ideal experiment, S1 also simulates with a random value
r ∈ GT as the output. Thus EV IEW i

real ∼ EV IEW i
ideal

, even when U ′ is dishonest. By the hybrid argument, we
conclude that EV IEWreal ∼ EV IEWideal.

Secondly, we prove Pair two UV IEWreal ∼
UV IEWideal.

The simulator S2 always behaves as follows: upon re-
ceiving the input on the ith round, S2 ignores it and ran-
domly selects a random five-tuple submits it to the un-
trusted server U ′. Then S2 saves its states and the states
of U ′. The environment E can easily distinguish between
these real and ideal experiments (note that the output
in the ideal experiment is never corrupted). However, E
cannot communicate this information with U ′. This is
because T always re-randomize its inputs to U ′ in the



International Journal of Network Security, Vol.21, No.5, PP.872-880, Sept. 2019 (DOI: 10.6633/IJNS.201909 21(5).20) 878

ith round of the real experiment. In the ideal experi-
ment, S2 always generates random, independent queries
for U ′. Thus, for each ith round, we have UV IEW i

real ∼
UV IEW i

ideal. By the hybrid argument, we conclude that
UV IEWreal ∼ UV IEWideal.

Theorem 2. In the one-untrusted program (OUP) model,
the algorithm (T,U) is an (O(1/n), 1/4) outsource-secure
implementation of Pai, where n is the bit length of the
order q of bilinear groups.

Proof. The proposed algorithm Pai makes three calls to
Rand plus t2 + t + 8 point addition in G1 or G2, and
6 multiplication in GT in order to compute e(A,B) and
e(C,D). On one hand , the computation for Rand is neg-
ligible when using the table-lookup method, and a smaller
t value can be seen as a point addition. On the other
hand, it takes roughly O(n) multiplications finite filed
to compute the bilinear pairings. Thus, the algorithms
(T,U) are an O(1/n)-efficient implementation of Pai. If
U ′ fails during any execution of Pai, it will be detected
with probability 1/4 .

Theorem 3. In the one-untrusted program (OUP) model,
the algorithm (T,U) is an (O(1/n), 2/7) outsource-secure
implementation of SPai, where n is same as above.

Similarly, the security proof of algorithm SPai is same
as the above proof in essence. Due to the limited space,
the proof is omitted here. It is worth mentioning that the
high checkability of algorithm SPai is attributed to the
particularity of the outsourced values.

5 Performance Comparisons

In this section, we compare our algorithms Pai and SPai
with the algorithms in [4,15,28]. As shown in Table 1, let
ME denote a modular exponentiation in G1 or G2, MI be
a modular inverse in G1 or G2, MM be a modular multi-
plication in GT , PM be a point multiplication in G1 or G2

and PA be a point addition in G1 or G2. SQT indicates
the number of servers and users’ query times. We
omit other operations such as modular additions in Z∗q
which are more lightweight. Note that our algorithms
outsource two bilinear pairings at one time, while other
algorithms only outsource a bilinear pairing. Therefore,
we should comprehensively take into account the above
situation and guarantee the fairness of the comparison.

Table 1: Notations

ME Modular exponentiation
MI Modular inverse
MM Modular multiplication
PM Point multiplication
PA Point addition

SQT The number of server and query times

Table 2, Table 3 display the comparison of the ef-
ficiency and security properties between our algorithms
and the algorithms in [4, 15, 28],respectively. All the al-
gorithms invoke the Rand subroutine to accelerate the
computations, so Rand can be ignored during the com-
parison process. For the efficiency comparison, we need to
take into account that two bilinear pairings are outsourced
by using our algorithms Pai and SPai and algorithms
in [4, 15, 28], respectively. Our algorithms Pai and SPai
are simultaneously outsourcing two bilinear pairings, the
algorithms in [4,15,28] can outsource one bilinear pairing
at one time. When they outsource two bilinear pairings,
they need to be outsourced one by one, that is, their com-
putational overhead need to be multiplied by two. It is
obvious that our algorithms have better efficiency than
algorithms in [4, 28], and the same efficiency as the algo-
rithm in [15].

From Table 3, we can see the comprehensively perfor-
mance of our algorithms is better than the other algo-
rithms. Firstly, the efficiency of our algorithms is rela-
tively high since our algorithm requires less computation
cost under different security models. Secondly, our algo-
rithms require the minimum query times of user which
also can save computational resources. Thirdly, our OUP
model hypothesis is the most closest to reality and prac-
tical applications. Finally, our algorithms can outsource
multiple bilinear pairings simultaneously, and solve the
privacy problem with higher checkability in the OUP
model. At the same time, Pai and SPai also reduce the
computation and communication cost of users and cloud
servers to a certain extent.

6 Conclusions

In this paper, two novel and efficient outsourcing algo-
rithms for multiple bilinear pairings under the OUP se-
curity model are put forward. Currently, almost all of
the existing outsourcing algorithms for bilinear pairings
are based on two servers which occupy large computa-
tion resources. Besides, existing outsourcing algorithms
can only outsource a bilinear pairing once. When there
are multiple bilinear pairings to be outsourced, it has
to outsource one by one that is easy to result in ineffi-
ciency. To avoid this, we use an untrusted server that is
a more practical assumption. To improve the outsourc-
ing efficiency, our scheme allows two bilinear pairings to
be outsourced simultaneously with improved checkability
and data privacy-preserving. Performance analyses shows
that the algorithms Pai and SPai use fewer resources and
query times (economic costs) without decreasing checka-
bility. Hence, our algorithms are comprehensively excel-
lent. The ongoing works focus on how to improve the
checkability and realize full verification.



International Journal of Network Security, Vol.21, No.5, PP.872-880, Sept. 2019 (DOI: 10.6633/IJNS.201909 21(5).20) 879

Table 2: Efficiency comparison of the related algorithms

ME MI MM PM PA
Algorithm [4] ×2 20 4 12 12 8
Algorithm [28] A× 2 0 0 6 0 8
Algorithm [28] B× 2 0 0 O(logs) 0 O(logs)
Algorithm [15] ×2 0 0 4 0 O(logs)
Algorithm Pai 0 0 4 0 O(logs)
Algorithm SPai 0 0 4 0 O(logs)

Table 3: Properties comparison of the related algorithms

SQT Security model Checkability
Algorithm [4] ×2 8U OMTUP (Algorithm [4])2 1
Algorithm [28] A× 2 4U1+8U2 TUP (Algorithm [28]A)2 1/4
Algorithm [28] B× 2 6U1+6U2 TUP (Algorithm [28]B)2 (1− 1

3s )4

Algorithm [15] ×2 10U OUP (Algorithm [15])2 4/25
Algorithm Pai 8U OUP Algorithm Pai 1/4
Algorithm SPai 7U OUP Algorithm SPai 2/7

Acknowledgments

This work are partly supported by the National Natu-
ral Science Foundation of China under grant 61802243,
61602232, 61572246, the Key R&D Program in industry
field of Shaanxi Province under grant 2019GY-013, the
Fundamental Research Funds for the Central Universities
(GK201803005, GK201903011).

References

[1] A. Ara, M. Al-Rodhaan, T. Yuan, and A. Al-
Dhelaan, “A secure privacy-preserving data aggrega-
tion scheme based on bilinear elgamal cryptosystem
for remote health monitoring systems,” IEEE Access,
no. 99, pp. 1–1, 2017.

[2] X. F. Chen, J. Li, J. F. Ma, Q. Tang, and W. J.
Lou, “New algorithms for secure outsourcing of mod-
ular exponentiations,” IEEE Transactions on Paral-
lel and Distributed Systems, vol. 25, no. 9, pp. 2386–
2396, 2014.

[3] X. F. Chen, J. Li, J. F. Ma, Q. Tang, and W. J.
Lou, “New algorithms for secure outsourcing of mod-
ular exponentiations,” in European Symposium on
Research in Computer Security, pp. 541–556, Sep.
2012.

[4] X. F. Chen, W. Susilo, J. Li, D. S. Wong, J. F. Ma,
S. H. Tang, and Q. Tang, “Efficient algorithms for
secure outsourcing of bilinear pairings,” Theoretical
Computer Science, vol. 562, no. C, pp. 112–121, 2015.

[5] B. Chevalliermames, J. S. Coron, N. Mccullagh,
D. Naccache, and M. Scott, “Secure delegation of
elliptic-curve pairing,” in Ifip Wg 8.8/11.2 Interna-

tional Conference on Smart Card Research and Ad-
vanced Application, pp. 24–35, Apr. 2010.

[6] B. Dan, L. Ben, and S. Hovav, “Short signatures
from the weil pairing,” Journal of Cryptology, vol. 17,
no. 4, pp. 297–319, 2004.

[7] M. Dong, Y. L. Ren, and X. P. Zhang, “Fully ver-
ifiable algorithm for secure outsourcing of bilinear
pairing in cloud computing,” KSII Transactions on
Internet and Information Systems, vol. 11, no. 7,
pp. 3648–3663, 2017.

[8] R. Gennaro, C. Gentry, and B. Parno, “Non-
interactive Verifiable Computing: Outsourcing Com-
putation to Untrusted Workers,” Annual Cryptology
Conference, pp. 465-482, 2010.

[9] S. Guo and H. X. Xu, “A secure delegation scheme of
large polynomial computation in multi-party cloud,”
International Journal of Grid and Utility Computing,
vol. 6, no. 1, pp. 1–7, 2015.

[10] S. Hohenberger and A. Lysyanskaya, “How to se-
curely outsource cryptographic computations,” in In-
ternational Conference on Theory of Cryptography,
pp. 264–282, June 2005.

[11] W. Hsien, C. Yang and M. S. Hwang, “A survey of
public auditing for secure data storage in cloud com-
puting,” International Journal of Network Security,
vol. 18, no. 1, pp. 133-142, 2016.

[12] M. S. Hwang, C. C. Lee, T. H. Sun, “Data error
locations reported by public auditing in cloud storage
service,” Automated Software Engineering, vol. 21,
no. 3, pp. 373–390, Sep. 2014.

[13] M. S. Hwang, S. F. Tzeng, C. S. Tsai, “General-
ization of proxy signature based on elliptic curves”,
Computer Standards & Interfaces, vol. 26, no. 2, pp.
73–84, 2004.



International Journal of Network Security, Vol.21, No.5, PP.872-880, Sept. 2019 (DOI: 10.6633/IJNS.201909 21(5).20) 880

[14] S. H. Islam and G. P. Biswas, A provably secure
identity-based strong designated verifier proxy signa-
ture scheme from bilinear pairings. Amsterdam: El-
sevier Science Inc., vol. 26, no. 1, pp. 55-67, 2014.

[15] T. J. Jiang and Y. L. Ren, “Secure outsourcing algo-
rithm of bilinear pairings with single server (in chi-
nese),” Journal of Computer Applications, vol. 36,
no. 07, pp. 1866–1869, 2016.

[16] X. Lin, H. Qu, and X. Zhang, “New efficient and
flexible algorithms for secure outsourcing of bilinear
pairings,” International Association for Cryptologic
Research, vol. 76, pp. 1–16, 2016.

[17] C. W. Liu, W. F. Hsien, C. C. Yang, and M. S.
Hwang, “A survey of public auditing for shared data
storage with user revocation in cloud computing”,
International Journal of Network Security, vol. 18,
no. 4, pp. 650–666, 2016.

[18] L. H. Liu and Z. J. Cao, “A note on efficient al-
gorithms for secure outsourcing of bilinear pairings,”
International Journal of Electronics and Information
Engineering, vol. 6, no. 1, pp. 30–36, 2016.

[19] L. H. Liu, Z. J. Cao, C. Mao, and J. B. Wang, “Com-
putational error analysis of two schemes for outsourc-
ing matrix computations,” International Journal of
Electronics and Information Engineering, vol. 7,
no. 1, pp. 23–31, 2017.

[20] L. Liu, Z. Cao, C. Mao, “A note on one outsourc-
ing scheme for big data access control in cloud,” In-
ternational Journal of Electronics and Information
Engineering, vol. 9, no. 1, pp. 29–35, 2018.

[21] M. Manoharan and S. Selvarajan, “An efficient
methodology to improve service negotiation in cloud
environment,” International Journal of Grid and
Utility Computing, vol. 6, no. 3, pp. 150–158, 2015.

[22] P. Morreale, A. Goncalves, and C.Silva, “Mobile ad
hoc network communication for disaster recovery,”
International Journal of Space-Based and Situated
Computing, vol. 5, no. 3, pp. 178–186, 2015.

[23] A. Mosa, H. M. El-Bakry, S. M. Abd El-Razek, S. Q.
Hasan, “A proposed E-government framework based
on cloud service architecture,” International Journal
of Electronics and Information Engineering, vol. 5,
no. 2, pp. 93–104, 2016.

[24] L. Oliveira, V. Sucasas, G. Mantas, and J. Ro-
driguez, “Implementation of a pseudonym-based sig-
nature scheme with bilinear pairings on android,”
in International Conference on Cognitive Radio Ori-
ented Wireless Networks, pp. 75–87, Sep. 2017.

[25] B. Parno, M. Raykova, and V. Vaikuntanathan,
“How to delegate and verify in public: Verifiable
computation from attribute-based encryption,” in
International Conference on Theory of Cryptography,
pp. 422-439, 2012.

[26] K. Ren, C. Wang, and Q. Wang, “Security challenges
for the public cloud,” IEEE Internet Computing, vol.
16, no. 1, pp. 69-73, 2012.

[27] S. Rezaei, M. Ali Doostari, and M. Bayat, “A
lightweight and efficient data sharing scheme for
cloud computing,” International Journal of Electron-
ics and Information Engineering, vol. 9, no. 2, pp.
115–131, 2018.

[28] H. B. Tian, F. G. Zhang, and K. Ren, “Secure bilin-
ear pairing outsourcing made more efficient and flexi-
ble,” in ACM Symposium on Information, Computer
and Communications Security, pp. 417-426, 2015.
ISBN: 978-1-4503-3245-3

[29] S. F. Tzeng, M. S. Hwang, “Digital signature with
message recovery and its variants based on elliptic
curve discrete logarithm problem”, Computer Stan-
dards & Interfaces, vol. 26, no. 2, pp. 61–71, Mar.
2004.

[30] G. Varaprasad, S. Murthy, J. Jose, R. J. D’Souza,
“Design and development of efficient algorithm for
mobile ad hoc networks using cache,” International
Journal of Space-Based and Situated Computing,
vol. 1, no. 2/3, pp. 183–188, 2011.

[31] C. Wang, K. Ren, and J. Wang, “Secure and prac-
tical outsourcing of linear programming in cloud
computing,” in Proceedings of IEEE, 2011. (https:
//ieeexplore.ieee.org/document/5935305)

[32] Y. J. Wang, Q. H. Wu, D. S.Wong, B. Qin, S. S.
M.Chow, Z. Liu, and X. Tan, “Securely outsourcing
exponentiations with single untrusted program for
cloud storage,” in European Symposium on Research
in Computer Security, pp. 326–343, Sep. 2014.

Biography

Jiaxiang Yang received her B.S. degree from Zhengzhou
University, Zhengzhou, China, in 2016. She now is a M.S.
degree candidate in Applied Mathematics with the School
of Mathematics and Information Science, Shaanxi Normal
University, Xi’an, China. Her research interests include
secure outsourcing computating protocols and its analy-
sis.

Yanping Li received her M. S. degree from Shaanxi Nor-
mal University in 2004 and Ph. D degree from Xidian
University in 2009, Xi’an, China. She now is an associate
professor with the School of Mathematics and Information
Science, Shaanxi Normal University. Her research inter-
ests include applied cryptography and its applications.

Yanli Ren is a professor in School of Communication and
Information Engineering at Shanghai University, China.
She was awarded a M.S. degree in applied mathematics in
2005 from Shaanxi Normal University, China, and a PhD
degree in computer science and technology in 2009 from
Shanghai Jiaotong University, China. Her research inter-
ests include secure outsourcing computing and network
security.


