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Abstract

Real Transmission Control Protocol synchronise (TCP
SYN) packet counts availability will be of great benefit
in anomaly detection. TCP SYN packet counts can be
used for training intrusion detection system to detect a
denial of service attack called TCP SYN flooding. How-
ever, there are privacy and legal issues that limit the di-
rect release of such data to the public. This work aims at
providing differentially private TCP SYN packet counts.
Utility evaluation indicates that the differentially private
counts can be used to make inferences at certain thresh-
olds of the anomaly based detection algorithm with min-
imum information loss while preserving privacy.

Keywords: Anomaly Detection Algorithms; Differential
Privacy; TCP SYN Packets

1 Introduction

Network research (including intrusion detection) depends
crucially on the availability of real world traffic traces
of network activities. Unfortunately, real world network
traces release is highly restricted by privacy and legal is-
sues. Organisations are not willing to share their traces
since raw network traces may consists of sensitive infor-
mation that should not be publicly shared, for example,
information that identifies individuals, patterns of the
traffic that can be analysed to determine strategies of or-
ganisations, hints to the weaknesses of a system, revealing
important resources like identifying the busiest machine
as a file server, etc. [15, 16]. On the other hand unavail-
ability of raw network traces to researchers poses a risk
of developing models that compromise accuracy.

To continue with their activities, researchers end up
simulating data or signing non-disclosure agreements and
these two ways of obtaining data may compromise ac-
curacy and repeatability of the research [16]. Simulated

data may not be a true representation of the real life net-
work traffic, hence, using such data in training models
may result in models that compromise accuracy. Signing
non-disclosure agreements compromise the repeatability
of the research since the non-disclosure agreement may
be a once off agreement of the use of the data between
the data owner and a particular researcher which means
other researchers will have no access to that data if they
want to repeat the study of that particular researcher.

Real network trace sharing is commonly done through
trace sanitisation which includes removal or anonymisa-
tion of privacy sensitive packet fields such as payloads
and IP addresses. Anonymisation is vulnerable to attacks
that infer sensitive information [3]. Mogul and Arlitt [15]
proposed an alternative approach to trace anonymisation
where data owners perform the analyses in the place of
the researchers to preserve privacy, privacy is preserved in
this approach based on human verification which is prone
to error. To remove human verification Mirkovic [14] pro-
posed rules that an analyst must adhere to in order to
preserve privacy. The privacy property provided by these
rules is not clear. The existing proposals like in [14, 15],
provide no guarantee in protecting sensitive information
and therefore a formal privacy guarantying approach, that
will make data owners comfortable to adopt before releas-
ing their data, is needed.

The privacy we consider in this work, for publishing
data that preserves privacy, is differential privacy. In dif-
ferential privacy the released aggregates are perturbed by
a randomized algorithm so that the outcome of the al-
gorithm remains approximately the same even if any sin-
gle record in the input data is arbitrarily modified. For
example, Laplace mechanism can be used to provide dif-
ferential privacy by simply adding Laplace perturbation
noise to each aggregate statistic. The drawback of releas-
ing a series of aggregates with differential privacy is high
perturbation error [10]. For instance, if private data val-
ues are aggregated over a long period of time, say T time
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stamps, a direct application of Laplace mechanism to the
aggregates at each time stamp can result in a high over-
all perturbation error causing the released aggregates to
be unusable especially when T is large [10]. To address
this drawback [9] have proposed a real-time system with
Filtering and Adaptive Sampling for differentially private
Time series monitoring (FAST): A novel solution to shar-
ing time series data with differential privacy. FAST has a
filter component that models the series using state space
model and estimates the original data from the noisy data
using Kalman filter where the resulting estimates are re-
leased in the place of the noisy perturbed data.

This research aims at the use of differential privacy as a
means of providing privacy to network trace. Specifically,
the number of Transmission Control Protocol Synchro-
nise packets associated with HTTP requests made to a
web server(s) by employees of an organisation on an eight
hour working day are released with differential privacy.
Differential privacy is used in this work to protect the
identity of web browsing employees from being inferred by
an adversary from the original number of TCP SYN pack-
ets using possible background knowledge about the em-
ployees’ web browsing patterns. The differential privacy
randomisation mechanism called Laplace mechanism is
utilised. Laplace mechanism adds noise to the aggregated
statistics of the data (the number of TCP SYN packets
or TCP SYN counts in this study). Releasing a series of
aggregates with differential privacy tends to lead to high
perturbation error more especially if the data values are
aggregated over a long period [10] and the released per-
turbed aggregates may end up having less research utility
or none. Therefore to improve the accuracy (the closeness
to the original aggregates) of the perturbed aggregates in
this study, the added noise is reduced (filtered) using the
filtering component of [9]. The noise filtered aggregates
become the released differentially private aggregates. The
research utility of the released aggregates is tested using
two utility metrics and by comparing the performance of
two anomaly based intrusion detection algorithms on the
original aggregates and the released aggregates. The util-
ity measures are used to establish if the inferences made
using the released aggregates are close to those reached
using the original aggregates.

The contribution of this work is that we are providing
privacy preserving network trace called TCP SYN packet
counts that are research useful as indicated by the re-
search utility tests conducted in the study.

2 Related Work

This section presents work done in releasing network trace
in a privacy preserving manner. Mogul and Arlitt [15]
proposed an alternative approach to trace anonymization
where the owners of the data perform the analyses in the
place of the researchers, i.e. researchers ship their code
to the owners of the data to preserve privacy. One of the
potential drawbacks of the proposed approach, as pointed

out by the authors, is that debugging the analysis software
will be difficult since the code would have been trained
on a different dataset. To remove human verification,
Mirkovic [14] proposed rules that an analyst must adhere
to in order to preserve privacy. The privacy property
provided by these rules is not clear.

Dijkhuizen and Ham [5] conducted a literature survey
over the period of 1998-2017 on network traffic anonymi-
sation techniques and their implementation. In the survey

� A brief description of currently available anonymisa-
tion techniques and a rough indication of their effec-
tiveness is provided,

� Fields containing privacy sensitive information in the
link, internet and transport layers are discussed,

� Existing anonymisation tools and frameworks are de-
scribed and compared against each other ,

� Future research directions to enable easier sharing of
network traffic are provided.

McSherry and Mahajan [12] investigated the potential
for network trace analysis while providing the guaran-
tees of differential privacy. Their results show that dif-
ferential privacy has the potential of being the basis for
analysing mediated network trace. Fan et al. [8] proposed
algorithms that use the rich correlation of the time se-
ries of aggregates and estimated the original aggregates
from the noisy aggregates (values that are perturbed by
a differential privacy mechanism) using the state space
approach. They have shown that differentially private
aggregates of web browsing activities can be released in
real time while preserving the utility of the released data.
Blocki et al. [1] presented a new mechanism for releasing
perturbed password frequency list and the released pass-
word list is close to the original list. Deng and Mirkovic [4]
proposed a mechanism that achieves commoner privacy-
interactive k-anonymity. Commoner privacy fuzzes, by
omitting or aggregating or adding noise, only those out-
put points where individuals contribution is an outlier.
They also discussed query composition and showed how
they can guarantee privacy via pre-sampling step or query
introspection. They implemented their privacy mecha-
nism and query introspection on network traces using a
system called Patrol. They compared the performance
of their privacy preserving mechanism against differential
privacy and crowd blending privacy. The results indi-
cate that their proposed mechanism release outputs that
have a higher research utility as compared to the two pri-
vacy preserving techniques. However, differential privacy
guarantees high privacy than the other two techniques [4]
and can protect against both all-but-one and interactive
adversaries. The other two techniques can protect an
individual from interactive adversary only. Several ap-
proaches to improve the utility of release aggregates using
differential privacy exists. Therefore, releasing aggregates
using differential privacy is still of benefit.
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The works presented by [1, 4, 8, 12] indicate that dif-
ferentially privacy can be adopted to preserve privacy in
publishing network traces. In this work we are attempt-
ing to use differential privacy to release TCP SYN packets
counts whereas [1, 8] released differentially private pass-
word list and number of sessions in the database browsing
page i at time k respectively. Deng and Mirkovic [4] re-
leased differentially private, commoner private and crowd
blending private packet counts sent per source port,
packet counts received per destination service port, con-
nection count in the trace and traffic volume in the trace.

3 Problem Statement

This section formally defines the problem of monitoring,
using differential privacy, the new connections to the web
server initiated by employees of an organisation that are
browsing the web in a given working day (eight hours).
Specifically, the number of TCP SYN packets sent to the
webserver(s) during each 10s interval of a given working
day resulting from the new connection request to the web
server(s) by employees of an organisation that are brows-
ing the web are released using differential privacy to pro-
tect the identity of web browsing employees from being
inferred by an adversary from the original number of TCP
SYN packets using possible background knowledge about
the employees’ web browsing patterns. That is, if the
adversary knows the surfing behaviours of employees in
an organisation releasing original HTTP associated TCP
SYN packet counts can result to an adversary identifying
the presence or absence of at least one employee in the
organisation's database of HTTP associated TCP SYN
packets. For an example, if the adversary knows that
employee A surfs the net noticeably more (more HTTP
associated TCP SYN packets generated for this employee)
than the other employees and this employees surfs the net
at a particular time interval during the day then the pres-
ence or the absence of that employee can be determined
by the adversary since if employee A is present in the
database the TCP SYN packet counts in that period will
be noticeably higher than the TCP SYN packet counts in
that period in a database that has the same records as
the first database except that employee A has been re-
moved. Therefore that noticeable difference in the TCP
SYN counts in that period between the two databases
has to be masked and differential privacy is capable of
doing so. Furthermore, according to Yurcik et al. [18]
TCP flags can be used to fingerprint different operating
systems. Therefore releasing raw TCP SYN packets can
expose the different operating systems of the machines
in use. In this work, the TCP SYN packets that initiate
new TCP connections between HTTP clients (web brows-
ing employees) and the webserver(s) are monitored with
differential privacy. Specifically, the number of TCP SYN
packets sent to the webserver(s) during each 10s interval
of a given working day resulting from the new connection
request to the web server(s) by employees of an organisa-

tion that are browsing the web are released using differ-
ential privacy. The availability of such aggregated TCP
SYN packet counts will assist the intrusion detection re-
searchers in training their intrusion detection system in
order to be able to detect attacks such as TCP SYN flood-
ing attack. The goal of this work is to provide the num-
ber of TCP SYN packets sent during each 10s interval of
a given working day without disclosing the presence or
absence of a particular web browsing employee. Formally
the problem statement is stated below as:

Private TCP SYN packet counts monitoring: Let xt
denote the number of TCP SYN packets sent to the web
server at time interval t, 1 ≤ t ≤ T where T is the length
of the monitoring period. For every time interval t, a
private count st is to be released such that the released
series st, t = 1, ..., T is ε-differential private.

Furthermore, similarly to [8], we decided to have a limit
on the number of webpage requests initiated by an indi-
vidual employee to the webserver in the 8 hours, hence
we set a limit on the number TCP SYN packets sent to
the webserver(s) by an individual employee on a given 8
hour working day, since

1) An employee should not be browsing the web the
whole 8 hours (except it is their job description, in
which this work excludes those types of employees or
organisations or cases),

2) Any web browser can only browse a limited number
of webpages in a given 8 hours,

3) From a privacy point of view, if an employee requests
an unlimited number of webpages in the 8 hours then
large amount of noise will be required in order to
account for such influence on the aggregate. The
limit to the TCP SYN packets sent by an individ-
ual employee to the web server(s) on a given eight
hour working day is denoted by Cmax and we assume
Cmax < T .

4 Differential Privacy

In this work we aim to provide differentially private TCP
SYN packet counts. A mechanism is said to be differen-
tially private if its output is not significantly affected by
the removal or addition of any record. Therefore at the
release of the outcome, an adversary learns almost the
same information about any individual record, regardless
of its presence or absence in the original database.

Definition 1. (ε-differential privacy [2]). A privacy
mechanism A satisfies ε-differential privacy if for any
dataset D1 and D2 differing on at most one record, and
for any possible anonymised dataset D ∈ Range(A),

Pr[A(D1) = D] ≤ eε Pr[A(D2) = D]. (1)

where the probability is taken over the randomness of A.
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The privacy parameter ε, also called the privacy bud-
get [13], specifies the degree of privacy offered. Intuitively,
a lower value of ε implies stronger privacy guarantee and
a larger perturbation noise, and a higher value of ε im-
plies a weaker guarantee while possibly achieving higher
accuracy. Two databases D1 and D2 that differ on at
most one record are called neighbouring databases. In
our problem definition, a database “record” represents a
new connection request to the webserver, i.e. the record
is associated with the sending of the TCP SYN packet to
the webserver by the client (web browsing employee) and
therefore our work is designed to protect the presence or
absence of every web browsing employee.

Laplace Mechanism. Dwork et al. [7] show that ε-
differential privacy can be achieved by adding inde-
pendent and identically distributed noise to query
result q(D):

q(D) = q(D) + (N1, ..., Nm),

Ni = Lap(0,
GS(q)

ε
) for i = 1, ...,m.

where m represents the dimension of q(D). The mag-
nitude of N conforms to a Laplace distribution with
0 mean and GS(q)/ε scale, where GS(q) represents
the global sensitivity [7] of the query q.

Global sensitivity. The global sensitivity [7] is the max-
imum L1 distance between the results of q from any
two neighbouring databases D1 and D2. Formally, it
is defined as follows:

GS(q) = max ||q(D1)− q(D2)||.

Composition. The composition properties of differential
privacy provide privacy guarantees for a sequence of
computations as outlined in theorem 1 below.

Theorem 1. Sequential composition [13]. Let each Ai

provide εi-differential privacy. A sequence of Ai(D) over
the dataset D provides

∑
i εi-differential privacy.

Given Theorem 1, the Laplace perturbation is applied
at every time series time stamp to guarantee (ε/T )-
differential privacy, where T is the series length.

5 Differentially Private TCP SYN

In this section the application of differential privacy to
the TCP SYN packet counts is outlined.

5.1 Privacy Mechanism

The Laplace Mechanism is suitable for numerical
queries [19] and is adopted in this work as the privacy
mechanism since we are monitoring a numerical aggre-
gate statistic.

5.2 Global Sensitivity

In this section the global sensitivity for monitoring the
TCP SYN packet counts per 10s interval in a given eight
hour working day is analysed. Let D be the database that
consists of employees HTTP requests to the web server
in a given 8 hour working day, q(D) = x1, ..., xT be the
sequence of outputs from the count queries , where xt de-
notes the number of TCP SYN packets sent during t-th
10s interval and T be the series length (number of 10s
intervals in an 8 hour working day). To determine the
global sensitivity GS(q), we studied the HTTP related
TCP SYN packets in the DARPA 1999 dataset and no-
ticed that an individual can request more than one web-
page in a given time interval t and can appear in more
than one time intervals. This means more than one TCP
SYN packets can originate from the same source in a given
time interval t. The effect of this is that the removal or
addition of an individual to database D would change the
output by at least 1. As we have observed also that the
individual can appear in more than one time interval, the
global sensitivity of the count query will be affected since
global sensitivity defines the maximum contribution of an
individual to the function output [10]. From the DARPA
1999 dataset we found Cmax = 712, where Cmax value
is the maximum HTTP related TCP SYN packets orig-
inating from the same source over the eight hours. We
therefore set GS(q) = 712 since this is the highest maxi-
mum contribution by an individual in D.

5.3 Filtering

As we have mentioned in the introduction that direct ap-
plication of Laplace mechanism to the original aggregates
may lead to high perturbation error and leaving the re-
leased aggregates to be of no useful value, we adopted the
filtering component of [9] in order to improve the accu-
racy (closeness to the original aggregates) of the released
aggregates. Their filtering component utilizes time series
modelling and estimation algorithm. In their context, fil-
tering, refers to the derivation of the posterior estimates of
the original time series from the noisy measurements with
the hope of removing background noise from the signal.
They estimated the original time series from the noisy
measurements using a Kalman filter [11] based estima-
tion algorithm and used a state space model to describe
the underlying dynamics of a time series as well as how
an observation is derived from a hidden state [9]. In this
work we modelled the time series and noisy measurements
and estimated the original series from the noisy estimates
to obtain the posterior estimates referred to as Kalman
count estimates as follows:

Time series modelling: For the TCP SYN packet count
series i.e. {xt, t = 1, ..., T}, we defined the following mod-
els; process model:

xt = xt−1 + ωt, where ωt ∼ N(0, Q),

where ωt denotes the process noise at time interval t,
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which is assumed to be a white Gaussian noise with vari-
ance Q.
Similarly, the measurement model for the noisy obser-
vations that are obtained from the Laplace perturbation
mechanism is:

zt = xt + νt, where νt ∼ Laplace(0, GS(q) /ε),

where νt is the measurement noise at time interval t. Fan
and Xiong [9] have established that the posterior distribu-
tion cannot be analytically determined if the distribution
of the measurement noise is not Gaussian and reported
that it is sufficient to approximate the distribution of the
measurement noise to a Gaussian distribution. Thus, the
following Gaussian distribution was proposed:

νt ∼ N(0, R), withR ∝ (GS(q))2/ε2. (2)

In this work, we adopted the same approximation in
Equation (2).

Estimation algorithm. We adopted the estimation al-
gorithm of [8] which is based on the Kalman filter and
approximated Laplace noise with Gaussian noise as sug-
gested by [9]. Kalman filter [11] is a recursive method
that provides an efficient means to estimate the state of a
linear Gaussian process, by minimizing the variance of the
posterior error. It consists of two steps, namely, predic-
tion and correction steps. In the prediction step the state
is predicted with the dynamic model. In the correction
step the state is corrected with the observation model such
that the error covariance of the estimator is minimised.
The prediction and correction algorithms adopted in this
work can be found in [8].

Privacy guarantee. The estimation algorithm pro-
vides ε-differential privacy since by definition of Laplace
mechanism and sensitivity analysis in section 4, the
Laplace perturbed values {zt, t = 1, ..., T} satisfy ε-
differential privacy and similarly to [8], neither the Predic-
tion nor Correction interacts with the raw data so there
is no extra privacy leakage incurred by those two proce-
dures.

6 Experimental Work

This section presents the dataset, parameter values and
utility evaluation methods used in this work. We also
describe how counts perturbation and filtering were done.

6.1 Data Set

DARPA 1999 dataset was used in this study. We used
attack free data taken on a Monday. TCP SYN packets
associated with HTTP requests to seven webservers were
collected between 08:00 to 16:00 i.e. TCP SYN packets
collected over 8 hours. Seven servers were used in order
to limit the number of times an individual (web browsing

employee) appears in the dataset so that the restrictions
set in Section 3 for individuals browsing the net in a given
eight hour working day are met. The number of TCP SYN
packets in 10 second intervals were determined.

6.2 Parameters

Parameter values are as follows: The experiments were
conducted at the interval privacy budget of, εt = 0.01, i.e.
for each 10s interval we used a Laplace mechanism that
provides εt-differential privacy, since it provides the low-
est overall privacy budget(that can be obtained by using
Theorem 1) of the recommended privacy budgets (0.01
and 0.1) [6]. For the utility evaluation using the aver-
age relative error and utility loss metrics, interval privacy
budgets, εt = 0.01, 0.1 and 1 were used for comparison
purposes. Process noise, Q = 10000 was empirically de-
termined as the value that yields better estimates of the
original TCP SYN packet counts given the interval pri-
vacy budget.

� Measurement noise, R = (GS(q))2/ε2t ;

� Global sensitivity, GS(q) = 712.

6.3 Laplace Perturbation and Filtering

The number of TCP SYN packets in 10 second intervals
were determined and the Laplace noise was added to each
count in each interval. The Kalman filter based estima-
tion algorithm was used to estimate the original counts
from the Gaussian perturbed counts (estimates of the
Laplace perturbed counts as suggested by [9]). The esti-
mates of the original counts are the ones that are released
instead of the noisy counts resulting from Laplace per-
turbation. Figures 1, 2 and 3 present the original counts,
noisy counts resulting from Laplace perturbation and esti-
mates of the original counts, referred to as Kalman count
estimates for the first 500 10s intervals respectively.

Figure 1: Original packet counts

6.4 Utility Evaluation

To measure the quality of released time series
st, t = 1, ..., T :
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Figure 2: Laplace perturbed packet counts

Figure 3: Original packet counts v.s. Kalman count esti-
mates

� Two utility metrics called average relative error (E)
and utility loss (U) were used,

� The performances of the Cumulative Sum (CUSUM)
and Adaptive Threshold algorithms on the original
aggregates were compared to the their performances
on the released aggregates.

6.4.1 Average Relative Error

Average relative error (E) is a widely used metric to eval-
uate the accuracy of the data. It measures how well the
released time series st, t = 1, ..., T follows the original se-
ries xt, t = 1, ..., T . It is defined as follows:

E =
1

T

T∑
t=1

|st − xt|
max{xt, δ}

where δ = 1 in order to handle cases where xt = 0.
Smaller values of E indicate high similarity between the
released and the original series. We computed E values
for the Laplace perturbed series and the Kalman count
estimates corresponding to the three interval privacy bud-
get values and are plotted in Figure 4. As indicated in
Figure 4, the average relative errors for the Laplace per-
turbed counts were 67701, 6770 and 677 for εt = 0.01, 0.1
and 1 respectively while the Kalman count estimates re-
sulted to average relative errors of 984, 433 and 135 for
εt = 0.01, 0.1 and 1 respectively. These results indicate
that the Kalman counts estimates which are the released
counts are closer to the original counts.

Figure 4: Average relative error comparison

6.4.2 Utility Loss

Utility loss is a relative cumulative difference between the
true data points xt, t = 1, ..., T and the fuzzed data points
st, t = 1, ..., T [4]. It is defined as follows:

U =

∑N
i=1 |si − xi|∑N

i=1 |xi|
(3)

Small values of this measure indicate higher research util-
ity [4]. We computed U values for the Laplace perturbed
series and the Kalman count estimates corresponding to
the three interval privacy budget values εt = 0.01, 0.1 and
1 and are plotted in Figure 5. As indicated in Figure 5,
the utility loss values for the Laplace perturbed counts
were 47262, 4725 and 472 for εt = 0.01, 0.1 and 1 respec-
tively. The Kalman count estimates resulted to utility
loss values of 679, 300 and 94 for εt = 0.01, 0.1 and 1 re-
spectively. These results indicate that the Kalman count
estimates have higher research utility than the Laplace
perturbed counts.

Figure 5: Utility loss comparison

6.4.3 CUSUM Algorithm

The CUSUM algorithm comes from the family of change
point detection algorithms that are based on hypothesis
testing and was developed for independent and identically
distributed random variables. The detailed description of
the CUSUM algorithm is not given in this work, it can
be found in [17]. The CUSUM algorithm is used in this
work to determine if inferences made using the released
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data are close to the ones made using the original data.
Specifically, in this work the false positive rates obtained
from CUSUM algorithm detection thresholds using the
released data are compared to those obtained using the
original data. Figure 6 presents these false positive rates.
If we look at the overall pattern of the curves in Figure 6,
the Kalman count estimates (which are the released dif-
ferentially private counts) curve for h ≤ 8 tend to follow
the pattern of the original counts curve for h ≤ 6 with a
lag effect, which means inferences made using the Kalman
count estimates for h ≤ 8 will not be too far from the in-
ferences made using the original counts for h ≤ 6.

Figure 6: CUSUM false positive rates for the original
counts vs Kalman estimates

6.4.4 Adaptive Threshold Algorithm

This algorithm tests whether the traffic measurement,
number of Transmission Control Protocol (TCP) Syn-
chronise (SYN) packets in a given time interval, exceeds
a certain threshold. To address seasonality (daily and
weekly variations) and trends, the threshold value is adap-
tively set from an estimate of the mean of the traffic mea-
surements. A full description of this algorithm can be
obtained in [17]. The Adaptive Threshold algorithm was
similarly used as the CUSUM algorithm, the false pos-
itive rates obtained from the Adaptive Threshold algo-
rithm detection thresholds using the released counts are
compared to those obtained from the original counts. Fig-
ure 7 depicts these false positive rates. From Figure 7, the
Kalman count estimates curve for 3 ≤ k ≤ 5 tends to fol-
low the pattern of the original counts curve for 3 ≤ k ≤ 4
with a lag effect, which means inferences made using the
Kalman count estimates for 3 ≤ k ≤ 5 will not be too dif-
ferent from the inferences made using the original counts
for 3 ≤ k ≤ 4.

7 Discussion

The utility measure, average relative error at εt = 0.01
, indicate that the Kalman count estimates are closer to
the original counts as compared to the Laplace perturbed
counts. The Utility loss measure at εt = 0.01 shows
that the released counts have higher research utility as
compared to the Laplace counts while preserving privacy.

Figure 7: Adaptive threshold algorithm false positive
rates for the original counts vs Kalman estimates.

Figures 6 and 7 also show that the false positive rates
obtained from the CUSUM algorithm detection thresh-
olds using the released counts are closer to the original
counts as compared to those obtained from the Adap-
tive Threshold algorithm. Furthermore almost all the
detection thresholds of the CUSUM algorithm (h ≤ 8)
lead to useful research inferences as compared to Adap-
tive Threshold algorithm thresholds with only 3 ≤ k ≤ 5
thresholds leading to useful research inferences. Where
useful research inferences means that inferences made us-
ing the released counts will be not that different from in-
ferences made using the original counts. This means the
released counts will work well for some algorithms and
not work so well for others.

8 Conclusion

We proposed the use of differential privacy as a means of
providing privacy to TCP SYN packets counts, adopted
the filtering component of [9] in order to improve the ac-
curacy of the released counts and test the utility of the
released data by using two utility metrics and comparing
the performance of two anomaly based intrusion detection
algorithm on the original counts and the released counts.
The results indicate that the inferences reached using the
released counts are not that different from those reached
using the original counts, with an added advantage of pri-
vacy.
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