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Abstract

Securing data over an open network is one of the most
critical problems in network security. To secure data,
an encryption algorithm should be used. Hill cipher is
one of most famous encryption algorithms. Although the
Hill cipher is not strong enough and vulnerable to many
types of attacks, it is still playing a significant role in
educational systems; The original Hill cipher is vulnera-
ble to known plaintext attack. In the last decade, Hill
cipher got much attention. Researchers proposed many
enhances to the Hill cipher; New modifications of the Hill
cipher are proposed to enhance the security of Hill cipher.
In this paper we shall show that “A Modified Hill Cipher
Based on Circulant Matrices” is vulnerable to both known
plaintext attack and chosen plaintext attack. Moreover,
we will introduce a new mode of operation which can be
used with any block cipher. Then we will propose a new
enhanced encryption algorithm. After that, we shall pro-
vide a security analysis and efficiency evaluation for our
new encryption algorithm.

Keywords: Cryptanalysis; Data Encryption; Hill Cipher;
Mode of Operations; Semi Cipher Block Chaining

1 Introduction

Hill cipher was developed by Lester Hill in 1929 [8].
It is a polyalphabetic substitution cipher based on lin-
ear algebra. Unfortunately, Hill cipher is vulnerable
to known plaintext attack. In time, many versions of
Hill cipher are proposed to overcome its security flaws.
The idea of Hill cipher is to take m successive plain-
text letters and substitutes for them m ciphertext let-
ters [24]. The substitution is determined by m linear
equations in which each character is assigned a numerical
value (a = 0, b = 1, . . . , z = 25). For m = 3, the system
can be described as C=PK mod 26, where C and P are
3 × 3 matrices representing the ciphertext and plaintext
respectively, and K is an invertible 3×3 matrix represent-
ing the encryption key. Operations are performed in mod
26. The biggest strength of Hill cipher is that it com-
pletely hides the (m − 1) letters frequency information.
But unfortunately, it is vulnerable to known plaintext at-

tack. Nevertheless, Hill cipher serves a significant educa-
tional role in teaching cryptographic principles, due to its
simplicity [17]. Moreover, Hill cipher is used to enhance
the security in many systems [4, 9, 19,23].

The rest of this paper is organized as follows. Section 2
presents the related works. Section 3 illustrates the crypt-
analysis of Reddy et al. cryptosystem. Section 4 proposes
a new mode of operations in bock cipher, namely, Semi-
Cipher Block Chaining; Semi-CBC, in short, which in-
spires the shape of our new cipher. Section 5 proposes
our new enhanced Hill Cipher; namely, Augmented Hill
Cipher (AHC). Section 6 shows the security analysis of
AHC. Section 7 investigates the performance evaluation
of AHC. Finally, Section 8 presents the conclusion.

2 Related Work

Hill cipher has been getting much attention since last
decade. There are many research papers which proposed
an enhanced Hill Cipher [1, 2, 10–13,16,22].

Affine-Hill Cipher is a variant of Hill Cipher, which
adds a nonlinear affine transformation to Hill Cipher [25];
C= (PK+V) mod n, where V is m × m constant ma-
trix. If m = 8 and n = 216, then the key space of
Affine-Hill cipher is corresponding to 2046-bit key. This
can be proven as follows: If n = pk where p is a
prime, then the number of invertible m × m matrices
over Zn is p(k−1)m2 ∏m−1

i=0

(
pm − pi

)
[18]. In the case of

m = 8 and n = 216, the number of invertible matrices
(which can be used as a secret key, K) over n = 216

is 2(16−1)82
∏7

i=0

(
28 − 2i

)
= 5.21186 × 10307. Since

log2

(
5.21186× 10307

)
= 1022.21, (which corresponds to

a 1022-bit key). Also, the number of matrices which can
be used as a secret key V is m2× log2n = 64×16 = 1024
bit. Consequently, the key space of Affine-Hill Cipher is
corresponds to 1022+1024 = 2046-bit key.

According to [15], A symmetric cryptosystem provides
k-bit security if the brute force attack takes on average
2k−1 operations to break this cryptosystem. So, Affine-
Hill cipher provides 2046-bit security.

As a side note, Affine-Hill cipher is vulnerable to chosen
plaintext attack; if P1=0, then C1=V. And, if P2=I,
then C2= (K+C1) mod n; i.e. K= (C2−C1) mod n.
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Moreover, once V is known, then we return to original
Hill cipher, which is vulnerable to known plaintext at-
tack, which means that Affine-Hill cipher is vulnerable to
known plaintext attack; the known plaintext attack on
Affine-Hill cipher can be demonstrated as follows: If the

adversary knows the two ciphertexts C, C
′
and the two

corresponding plaintexts P, P
′
such that (P − P′) mod

n is invertible matrix, then (C − C′) = (P − P′)K mod
n; i.e.K = (P − P′)−1(C − C′) mod n. Now V can be
computed such that V= (C−PK) mod n.

In 2012, Reddy et al. [20] presented a variant of Hill
Cipher; this cipher is based on circulant matrices. A cir-
culant matrix is a special kind of matrices in which every
row of the matrix is a right cyclic shift of the row above
it [7]. Moreover, a prime circulant matrix is m ×m cir-
culant matrix in which any two elements in the same row
are coprimes.

If G is a non-singular 2× 2 matrix such that

G =

[
a11 a12
a21 a22

]
then Gc is 4× 4 matrix Gc, where

Gc=


a11 a12 a21 a22
a22 a11 a12 a21
a21 a22 a11 a12
a12 a21 a22 a11


At the beginning, parties agree upon a non-singular

matrix A over GF (p) as a secret key where p is a prime,
and a non-singular m×m matrix G over GF (p) as a public
key, such that the determinant of the coefficient matrix
Gc is zero; i.e.|Gc| = 0. Then parties could compute the
secret key K = AGA−1 mod p. Then the encryption and
decryption processes can be described as follows:

Encryption process: C = KP+AT mod p, where C is
m×m ciphertext matrix, P is m×m plaintext and
AT is the transpose of the secret matrix A.

Decryption process: P =K−1
(
C−AT

)
mod p, where

K−1 = AG−1A−1 mod p.

To find the key space of Reddy et al. schema, we
should find the number of invertible matrices which
can be used as a secret key A. This because the key
space depends only on the invertible secret matrix A.
The number of m × m invertible matrices over GF (p)is∏m−1

i=0

(
pm − pi

)
[18]. If m = 8 and dlog2p e = 16 (where

de is ceiling operation, ceiling(x) = dxe is the least integer
greater than or equal to x), then the key space of Reddy et

al. is
∏7

i=0

(
p8 − pi

) ∼= ∏7
i=0

((
216
)8 − (216)i) =

1.79767 × 10308 which is approximately correspond-
ing to 1024-bit key, since log2

(
1.79767× 10308

)
=

1023.99998, i.e.Reddy et al. cryptosystem approximately
provides 1024-bit security.

3 Cryptanalysis of “A Modified
Hill Cipher Based on Circulant
Matrices”

In this section we will show that Reddy et al. cryptosys-
tem “A Modified Hill Cipher Based on Circulant Matri-
ces” is vulnerable to both known plaintext and chosen
plaintext attacks.

3.1 Known Plaintext Attack

Let C1and C2 are two m × m known ciphertext
matrices of the two m × m plaintext matrices P1

and P2 respectively. Then C1=
(
KP1+AT

)
mod p

and C2=
(
KP2+AT

)
mod p thus (C1−C2) mod p

=
(
KP1+AT −KP2−AT

)
mod p= (K (P1−P2)) mod p.

Suppose (C1−C2) mod p=C
′

and (P1−P2)mod p=P
′

thus C
′
= KP

′
mod p; i.e.K =C

′
P
′−1 mod p. Thus,

the secret key K is now known. Furthermore, since
C1=

(
KP1+AT

)
mod p, i.e.AT= (C1−KP1) mod p.

Consequently, we can get AT and A. #

3.2 Chosen Plaintext Attack

Reddy et al. cryptosystem is also vulnerable to chosen
plaintext attack. If the adversary can chose the plaintext
matrix P as the m ×m zero matrix;P =0 ; i.e.every ele-
ment in P is zero. Thus C =

(
KP+AT

)
mod p=

(
K0+AT

)
mod p=ATmod p=AT. Thus, now AT is known, as
well A. Furthermore, since G is public, the secret key
K =

(
AGA−1

)
mod p can be computed#.

4 Semi Cipher Block Chaining
(Semi-CBC) Mode

In this section we will introduce a new mode of operation
which inspires the structure of our new cryptosystem. A
mode of operation is a technique that used to magnify
the impact of a block cipher. This technique determines
if a block ciphertext could (could not) be effected by the
previous plaintext(s).

Our new chaining mode (Semi Cipher Block Chaining
Mode; Semi-CBC mode, in short) can be used with any
block cipher. In encryption process of Semi-CBC mode,
the output of encryption algorithm is XORed with a pre-
vious half-encrypted block to produce the ciphertext ex-
cept the first block which is XORed with Initialization
Key (IK), as illustrated in Figure 1.

While, in the decryption process of Semi-CBC mode,
the output of decryption algorithm is XORed with a pre-
vious half-decrypted block to produce the plaintext, ex-
cluding the first block which is XORed with Initialization
Key (IK), as illustrated in Figure 2.

The Initialization Key (IK) is a secret key. At com-
munication’s beginning, parties should agree upon an IK
which could be the session key or an arbitrary secret key.
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Figure 1: Semi-CBC encryption

Figure 2: Semi-CBC decryption

Similar approaches are Electronic Code Book (ECB)
Mode, Cipher Block Chaining (CBC) Mode, Cipher Feed-
back (CFB) Mode, Output Feedback(OFB) Mode, and
Counter (CTR) Mode [24]. In this section we introduced
a new mode of operation (Simi-CBC). Inspired by Simi-
CBC we will propose the following cryptosystem, namely,
Augmented Hill Cipher (AHC).

5 Augmented Hill Cipher

In this section, we shall present a new enhanced modified
Hill Cipher. At the beginning of each session, parities
agree upon three different random secret keys K0, K1 and
K2. Each one of the secret keys K0,K1, and K2 is an
invertible m × m matrix over Zn where n is an integer.
The integers m and n are security parameters.

5.1 Encryption Process

At the beginning, the plaintext should be divided into
P0,P1, P2,P3, . . . .,PN, where Pi is m × m matrix over
an integer n and i = 0, 1, 2, 3, . . . , N. Each one of Pi is
considered as a block of plaintext with length L, where
L =m2 × dlog2n e bits. If the length of plaintext is not
multiple of L, consequently extra random bits (padding)
should be added at the end of the plaintext; i.e.pad the
last block (plaintext matrix) if necessary. This padding
is the number of added bits written between two special
delimiters, followed by these random bits. The plaintext
matrices are initially filled column by column with the
plaintext; i.e.the first dlog2ne bits are filled into the cell
at column1-raw1, the second dlog2ne bits are filled into
the cell at column1-raw2, and so forth. Afterwards, the
m×m matrices of ciphertext C0,C1, C2,C3, . . . , CN can

be computed as follows:

C
′

i=
(
Ki mod 3Pi+K(i+1) mod 3

)
mod n,

i = 0, 1, 2, · · · ,N

Ci=

{
C
′

i⊕K2 if i = 0

C
′

i⊕C
′

i−1 if i = 1, 2, . . . ,N

Figure 3 illustrates the encryption process of Augmented
Hill Cipher.

The encryption algorithm of Augmented Hill Cipher
can be described as follows:

Algorithm 1 AHC Encryption Algorithm

1: Input: K0,K1, K2, P0, P1, P2, P3, . . . ., PN

2: Output: C0, C1, C2, C3, . . . ., CN

3: Begin
4: C

′

0= (K0P0+K1) mod n
5: C0=C

′

0⊕K2

6: i = 0
7: while i <= N do
8: C

′

i=
(
Ki mod 3Pi+K(i+1) mod 3

)
mod n

9: Ci=C
′

i⊕C
′

i−1

10: i = i + 1
11: end while
12: End

5.2 Decryption Process

The corresponding plaintext Pi of the ciphertext Ci

(where i = 0, 1, 2, ...,N) can be computed as follows:

C
′

i=

{
Ci⊕K2 if i = 0

Ci⊕C
′

i−1 if i = 1, 2, . . . ,N

Pi=
[
K−1

i mod 3∗
(

C
′

i−K(i+1) mod 3

)]
mod n,

i = 0, 1, 2, ... N

Figure 4 illustrates the decryption process in Aug-
mented Hill Cipher

Therefore, the decryption algorithm of Augmented Hill
Cipher can be described as follows.

Algorithm 2 AHC Decryption Algorithm

1: Input: K0,K1, K2, C1, C2, C3, . . . ., CN

2: Output: P0,P1, P2, P3, . . . ., PN

3: Begin
4: C

′

0=C0⊕K2

5: P0= [K−1
0 ∗ (C

′

0−K1)] mod n
6: i = 0
7: while i <= N do
8: C

′

i=Ci⊕C
′

i−1

9: Pi= [K−1
i mod 3∗ (C

′

i−K(i+1) mod 3)] mod n
10: i = i + 1
11: end while
12: End
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Figure 3: The encryption process of augmented hill cipher

Figure 4: The decryption process of augmented hill cipher

5.3 Security Parameters and Keyspace

As mentioned before in this section, m and n are security
parameters, which mean the security of AHC depends
on the values of m and n. The values of m and n are
chosen according to the desired security for the system.
This means, if we choose m and n with large values, then
the system not only gain strength (i.e. be more secure
system), but also loses its efficiency (i.e. inefficient en-
cryption and decryption processes). In other words, the
larger values we chose for m and n, the more secure and
slow system we get. To obtain secure and efficient sys-
tem, we should compromise in order to choose the opti-
mal values of m and n (i.e. the values of m and n de-
pend upon efficiency–security tradeoff). A smart agent
(an optimizer) can be used to automatically choose the
optimal values of m and n according to the level of se-
curity needed as well as the available device resources.
ACH intended to be used in mobile phones and other
small devices with limited resources such as wearable
technology, e.g. Wireless Body Area Network (WBAN)
devices [5,14,21]. So, as instance of AHC, we can choose
m = 8 and n = 216. In this case, each plaintext (or
ciphertext) contains 82 ×

⌈
log2216

⌉
= 64 × 16 = 1024

bits, where de is ceiling operation, ceiling(x) = dxe is the
least integer greater than or equal to x. So, there are
21024 = 1.79769 × 10308 different plaintext/ciphertext
pairs. So, in this case, AHC provides 3066-bit security.

As mentioned in Section 2, the number of
invertible m × m matrices over n = pk is
p(k−1)m2 ∏m−1

i=0

(
pm − pi

)
[18]. In the case of

m = 8 and n = 216, the number of invertible matrices
over n = 216 is 2(16−1)82

∏7
i=0

(
28 − 2i

)
= 5.21186×10307,

which corresponds to a 1022-bit key. Then in this case,
keyspace of each matrix key (K0,K1,K2) is equivalent
to the keyspace of a system use key of length 1022 bits.
Since ACH uses three different keys, then the keyspace

of AHC is equivalent to the keyspace of a system use key
of length 3 ∗ 1022 = 3066 bits, i.e.the keyspace of this
version of AHC is 23066 = 9.0775× 10922 key.

6 Security Analysis

AHC guarantees the most desirable attributes of symmet-
ric ciphers; namely, Avalanche Effect (any small changes
in plaintext cause a great change in ciphertext) and Com-
pleteness (each bit of the ciphertext depends on many bits
of the plaintext). These two attributes make AHC very
strong cipher; resists all types of attacks. Additionally,
AHC has built-in flexibility of key length (depending on
the values given to m and n). So, there is a degree of
‘future proofing’ against progressing of computer ability
to perform exhaustive key searches. Moreover, the ad-
vantage of using both + and ⊕ operations together in
AHC is that they do not commute [24], which hardness
the cryptanalysis of AHC.

There are many types of attacks on any cryptosystem
such as Ciphertext Only Attack (COA), Known Plaintext
Attack (KPA), Chosen Plaintext Attack (CPA), Dictio-
nary Attack, Brute Force Attack (BFA), and Fault Anal-
ysis Attacks (FAA). In this section we shall discuss the
security of our cryptosystem, and prove that it is immune
to all kind of these attacks.

In this section we assume that, m = 8 and n = 216,
this means 21024 different pairs of plaintext/ciphertext,
and a keyspace equals to 23066 = 9.0775× 10922 key.

6.1 Ciphertext Only Attack (COA)

In this type of attack, an adversary has access to a col-
lection of ciphertexts. The adversary does not know the
corresponding plaintexts. The cryptosystem is vulnerable
to COA if the adversary can determine the corresponding
plaintext of any ciphertext.
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So, in this case, an adversary should search for a plain-
text (which is corresponding to a specific ciphertext) in
m2 × log2n = 21024 = 1.79769 × 10308 different values
(m × m matrices). Doing this is practically impossi-
ble with the fastest computer on the earth. According
to [26], the fastest computer has speed equals to 122.3
PFLOPS ∼= 102.087 PFLOPS= 1017.087 FLOPS (FLOPS
or flops ;an acronym for FLoating-point Operations Per
Second). The FLOPS is used to measure the computer
performance.

To prove this, let us consider a computer with a speed
of EFLOPS = 103 PFLOPS = 1018 FLOPS (there
is no announcement of creating such computer). In
other words, let us consider the fastest computer on the
earth can do 1018 FLOPS. In a billion year, there are
3.15576 × 1016 seconds1. Then, this computer can per-
form 1018FLOPS × 3.15576 × 1016 = 3.15576 × 1034 op-
erations per billion years. Let us consider that, the op-
eration means to decrypt the ciphertext and compare it
with all the possible plaintexts to get the correct secret

keys. Then this computer needs time = 1.79769×10308

3.15576 ×1034 =

5.69653 × 10273 billion years to do this attack; a much
greater time than the universe age. According to last an-
nouncement in 2013, the age of the universe = 13.8 billion
year [3]. For generic purposes, let us consider a computer
with speed = 10u FLOPS, then the computer can per-
form 10uFLOPS× 3.15576 ×1016 = 3.15576 ×1016+u oper-
ations per billion years. So, to break AHC, this computer

needs time BT = 2(m
2×log2n )

3.15576 ×1016+u billion years. Thus, BT
should be much greater than 1; i.e.BT � 1. So, if u gets
bigger (the computer speed is upgraded), then the secu-
rity parameters m and n should be enlarged in order to
maintain the security of AHC.

6.2 Known Plaintext Attack (KPA)

In this type of attack an adversary knows the corre-
sponding plaintexts for some ciphertexts, i.e.the adver-
sary knows some pairs of (plaintext, ciphertext). In
this case the attacker tries to figure out the key using
plaintext-ciphertext pairs and the nature of cryptosystem.

In our cryptosystem we hide any relationship between
the plaintext and its corresponding ciphertext. Let us
consider that the adversary has (Pi−1, Pi and Ci−1, Ci).
Since Ci=C

′

i⊕C
′

i−1 and C
′

i=
(
Ki mod 3 Pi+K(i+1) mod 3

)
mod n then Ci=

((
Ki mod 3 Pi+K(i+1) mod 3

)
mod n

)
⊕
( (

K(i−1) mod 3 Pi−1+Ki mod 3

)
mod n

)
. Although

the adversary has Pi−1, and Pi he/she has no clue of the
secret keys K0, K1and K2.

6.3 Chosen Plaintext Attack (CPA)

In this type of attack the adversary chooses the plain-
text to be encrypted. In other words, the adversary has

160Seconds × 60Minutes × 24Hours × 365.25Days × 1000Years ×
1000Thousand Years × 1000Billion Years = 3.15576 × 1016 seconds

the power to choose the plaintext-ciphertext pairs. Some-
times, this attack could help the adversary to gain the
secret key(s).

In Augmented Hill Cipher, consider that the adversary
chooses a small plaintext such that P =P0=0, where
0 is the zero matrix. Then the ciphertext should be
C =C0=K1⊕K2. So, the adversary still has no clue about
K1 or K2. Also, if the adversary chooses a plaintext such
that P =P0=I, where I is the identity matrix. Then the
ciphertext should be C =C0= (K0+K1) mod n⊕K2. In
other words, the adversary still does not have any infor-
mation about K0,K1 or K2. Even if he/she XOR the first
ciphertext with the second one to gain a new furmula, i.e.
[K1⊕K2]⊕ [(K0+K1) mod n ⊕K2] = K1⊕K2⊕ (K0+K1)
mod n ⊕ K2=K1⊕ (K0+K1) mod n. Clearly, the adver-
sary has no idea about the secret keys K0, K1 or K2. So,
our cryptosystem resists the chosen plaintext attack.

6.4 Dictionary Attack (DA)

In this type of attack, the adversary builds a dictionary of
plaintext-ciphertext pairs which have been obtained over
a period of time. In our new cipher, to build such dictio-
nary, the adversary needs to know each possible plaintext
(with any length) and its corresponding ciphertext. In
our new cipher, if only one bit is changed in a plaintext,
the corresponding ciphertext will change too. Also, the
keys are changed in each session, i.e.in AHC, the keys are
session keys which means they change in each session. So,
it is impossible for adversary to build such dictionary.

6.5 Brute Force Attack (BFA)

In this type of attacks, the adversary tries all possible
keys until she\he finds the correct keys K0,K1 and K2.
As we dissected before in this section, if we let m = 16,
and n = 216, and the number of possible keys is 23066 =
9.0775 × 10922 key. As we prove in COA attack, it is
impossible for an adversary to try all these possible keys.

6.6 Fault Analysis Attacks (FAA)

In this type of attack, the adversary tries to take advan-
tage of any error in designing the cryptosystem, in or-
der to crack the system. As we discussed in this section,
ACH is immune to COA, KPA, CPA, DA, and BFA at-
tacks. Moreover, ACH is similar to a block cipher with
Semi-CBC mode which has been presented is Section 4.
This means that the value of each block of ciphertext de-
pends on all the previous plaintexts. In other words, our
new cipher is well thoughtful and all possible attacks are
considered when we design this cryptosystem. So AHC is
immune to fault analysis attacks.

7 Performance Evaluation

In this section we present a complexity analysis for AHC.
Then we present a brief comparative study among AHC
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Table 1: Comparison among AHC and some other existing algorithms

Algorithm
Attacks Key Space

Chosen Plaintext attack Known Plaintext attack provides k-bit security Remark; m = 8

Original Hill Cipher Yes Yes 1022-bit key n = 216

Affine-Hill Cipher Yes Yes 2046-bit key n = 216

Reddy et al. Cipher Yes Yes 1024-bit Key n = p sit dlog2p e= 16
Augmented Hill Cipher No No 3066-bit key n = 216

and some variants of Hill cipher. Thereafter, we will show
the advantages of AHC.

7.1 Complexity Analysis

Time Complexity: According to [6], the time complex-
ity of matrix multiplication is O(m2.373), where m
is the degree of the matrix. Also, the time com-
plexity of adding two matrices is O

(
m2
)
, More-

over, the time complexity of XOR two matrices is
O
(
m2
)
. Thus, the total time complexity of AHC

is O
(
m2.373

)
+
(
2×O

(
m2
)) ∼= O

(
m2.373

)
; i.e.the

complexity of AHC is O
(
m2.373

)
which is equals to

the complexity of the original Hill Cipher.

Space Complexity: Since each matrix needs a space of
m2 × dlog2n e bits to be stored in the system, thus
AHC needs space of 6 × m2 × dlog2n e bits. This
because AHC needs to store three keys K0,K1 ,K2

and two matrices to hold plaintext and ciphertext,

in addition to a matrix to hold C
′

i−1; the previous
half encrypted plaintext. In the instance of AHC
described in Section 5.3, in which m = 8 and n =
216, each matrix needs 1024bits = 128 byte to be
stored; i.e.AHC needs memory space equals to 6 ×
m2 × dlog2n e = 6 × 1024 bits = 6 × 128 byte =
768 byte less than 1 KB.

7.2 Comparative Study

Table 1 presents a brief comparison between AHC and
other algorithms such as Hill Cipher, Affine-Hill Cipher,
and Reddy et al. Cipher. As shown in Table 1, the key
space of Hill Cipher is corresponding to 1022-bit key if
m = 8 and n = 216, this is because the secret matrix of
Hill Cipher should be invertible matrix; i.e., in this case,
Hill Cipher provides 1022-bit secuiry.

The complexity of all these cryptosystems is
O
(
m2.373

)
[6], which is equal to the complexity of ma-

trix multiplication.

7.3 Advantages of AHC

AHC is a promising encryption algorithm, which provides
many advantages. These advantages can be described as
follows.

7.3.1 Security Advantages

• The keyspace is very large; 23066 key, which prevents
any type of the brute force attack.

• Ensures the Avalanche Effect (any small changes in
plaintext causes a great change in ciphertext) and
Completeness (each bit of the ciphertext depends on
many bits of the plaintext).

• Evolves with computer speed.

• Multiple encryption with AHC (with the same or dif-
ferent keys) can be implemented in order to achieve
a higher level of security. Using Multiple encyption
with AHC will increase the effects of desirable fea-
tures such as conffution and diffusion.

7.3.2 Performance Advantages

• Very fast encryption and decryption algorithms; time
complexity = O(m2.373).

• Each matrix is considered as a block of
1024 bits = 1 Kib, which makes it easy to di-
vide the plaintext and to estimate the number of
matrices (N + 1) that form the plaintext.

8 Conclusions

In this paper we have shown that Reddy et al. Cipher is
vulnerable to both chosen plaintext and known plaintext
attack. Then we presented a new mode of operations
of block ciphers, which inspires the schema of our new
cryptosystem. After that, we proposed a new variant of
Hill Cipher, namely Augmented Hill Cipher (AHC). To
support AHC we presented a security analysis and per-
formance evaluation of AHC. We have shown that AHC
resists all kinds of attacks. Also, we have proven that,
AHC has much greater key space than original Hill Ci-
pher, which is corresponding to 3066-bit key although the
complexity of AHC is almost the same with other variant
of Hill Cipher.

Acknowledgments

I would like to thank Porf. Kamal ElDahshan for his kind
help and support during this research.



International Journal of Network Security, Vol.21, No.5, PP.812-818, Sept. 2019 (DOI: 10.6633/IJNS.201909 21(5).13) 818

References

[1] M. N. AbdElRahman et al., “Cryptography: A new
approach of classical hill cipher,” International Jour-
nal of Security and Its Applications, vol. 7, no. 2,
pp. 179–190, 2013.

[2] A. S. Al-Khalid and A. O. Al-Khfagi, “Cryptanalysis
of a hill cipher using genetic algorithm,” in World
Symposium on Computer Networks and Information
Security (WSCNIS’15), pp. 1–4, 2015.

[3] C. L. Bennett et al., “Nine-year wilkinson microwave
anisotropy probe (WMAP) observations: Final maps
and results,” in Cosmology and Nongalactic Astro-
physics Cornell University: NY , United States,
pp. 1–177, 2013.

[4] P. Praveenkumar et al., “Fusion of confusion and
diffusion: A novel image encryption approach,”
Telecommunication Systems, vol. 65, no. 1, pp. 65–
78, 2017.

[5] S. Farooq, D. Prashar, and K. Jyoti, “Hybrid en-
cryption algorithm in wireless body area networks
(WBAN),” in Intelligent Communication, Control
and Devices, Advances in Intelligent Systems and
Computing, pp. 401–410, vol. 624, 2018.

[6] F. L. Gall, “Powers of tensors and fast matrix mul-
tiplication,” in The 39th International Symposium
on Symbolic and Algebraic Computation (ISSAC’14),
pp. 296–303, 2014.

[7] R. M. Gray, “Toeplitz and circulant matrices: A
review,” Foundations and Trends R© in Communica-
tions and Information Theory, vol. 2, no. 3, pp. 155–
239, 2006.

[8] L. S. Hill, “Cryptography in an algebraic alphabet,”
The American Mathematical Monthly, vol. 36, no. 6,
pp. 306–312, 1929.

[9] R. Jothi and A. Ojha, “On multi-secret sharing using
hill cipher and random grids,” in International Con-
ference on Advances in Computer Engineering and
Applications, pp. 683–687, 2015.

[10] L. Keliher and A. Z. Delaney, “Cryptanalysis of the
toorani-falahati hill ciphers,” in IEEE Symposium
on Computers and Communications (ISCC’13),
pp. 436–440, 2013.

[11] L. Keliher and S. Thibodeau, “Slide attacks against
iterated hill ciphers,” in Security in Computing
and Communications: International Symposium,
pp. 179–190, 2013.

[12] A. A. M. Khalaf, M. S. A. El-karim, and H. F. A.
Hamed, “Proposed triple hill cipher algorithm for in-
creasing the security level of encrypted binary data
and its implementation using fpga,” in 17th Inter-
national Conference on Advanced Communication
Technology (ICACT’15), pp. 454–459, 2015.

[13] S. Khazaei and S. Ahmadi, “Ciphertext-only attack
on d x d hill in o(d13d),” Information Processing Let-
ters, vol. 118, pp. 25–29, 2017.

[14] M. Kompara and M. Hölbl, “Survey on security in
intra-body area network communication,” Ad Hoc
Networks, vol. 70, no. 1, pp. 23–43, 2018.

[15] A. K. Lenstra, “Unbelievable security: Matching
AES security using public key systems,” in Inter-
national Conference on the Theory and Application
of Cryptology and Information Security, pp. 67–86,
2001.

[16] R. Mahendran and K. Mani, “Generation of key ma-
trix for hill cipher encryption using classical cipher,”
in World Congress on Computing and Communica-
tion Technologies (WCCCT’17), pp. 51–54, 2017.

[17] A. McAndrew, “Using the hill cipher to teach crypto-
graphic principles,” International Journal of Mathe-
matical Education in Science and Technology, vol. 39,
no. 7, pp. 967–979, 2008.

[18] J. Overbey, W. Traves, and J. Wojdylo, “On the
keyspace of the hill cipher,” Cryptologia, vol. 29,
no. 1, pp. 59–72, 2005.

[19] K. H. S. Ranjan et al., “A survey on key(s) and key-
less image encryption techniques,” Cybernetics and
Information Technologies, vol. 17, no. 4, pp. 134–164,
2017.

[20] K. A. Reddy et al., “A modified hill cipher based
on circulant matrices,” Procedia Technology, vol. 4,
pp. 114–118, 2012.

[21] M. Salayma et al., “Wireless body area network
(wban): A survey on reliability, fault tolerance, and
technologies coexistence’,” ACM Computing Sur-
veys, vol. 50, no. 1, pp. 1–38, 2017.

[22] V. U. K. Sastry and K. Shirisha, “A block cipher
involving a key bunch matrix and an additional key
matrix, supplemented with XOR operation and sup-
ported by key-based permutation and substitution,”
International Journal of Advanced Computer Science
and Applications (IJACSA’13), vol. 4, no. 1, pp. 131–
138, 2013.

[23] Y. Sazaki and R. S. Putra, “Implementation of affine
transform method and advanced hill cipher for secur-
ing digital images,” in 10th International Conference
on Telecommunication Systems Services and Appli-
cations (TSSA’16), pp. 1–5, 2016.

[24] W. Stallings, Cryptography and Network Security:
Principles and Practice, Pearson, 2017.

[25] D. R. Stinson, Cryptography: Theory and Practice,
Chapman & Hall/CRC, 2005.

[26] TOP500.org, The list; June 2018, 2018. (https://
www.top500.org/lists/2018/06/)

Biography

Dr. AbdAllah Adel AlHabshy is a lecturer of com-
puter science at Mathematics department, faculty of sci-
ence, AlAzhar University, Egypt. He is an experienced
scientist researcher and educator with over twelve years
of IT experience. His fields of research are Cryptogra-
phy, Network Security, Mobile Security, Database Secu-
rity, and Internet of things.


