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Abstract

In order to protect the security of the image, it is neces-
sary to encrypt image and process domain image. There-
fore, this paper proposes a new encryption domain im-
age processing algorithms, image is encrypted using a
sub-block scrambling pixel location algorithm. Then
the image is denoised. Considering a given noisy im-
age, the selection of thresholds should significantly af-
fect the quality of the de-noising image. Although the
state-of-the-art wavelet image de-noising methods per-
form better than other de-noising methods, they are not
very effective for de-noising with different noise and with
redundancy convergence time, sometimes. To mitigate
the poor effect of traditional de-noising methods, this
paper proposes a new wavelet soft threshold based on
the Chi-square distribution-Kernel method. The Chi-
square distribution-Kernel (CSDK) model is constructed
to find the customized threshold that corresponds to the
de-noised image. Then, the image receiver gets the de-
crypted image using the key restored pixel location. Fi-
nally, experimental results illustrate that this computa-
tionally scalable algorithm achieves state-of-the-art de-
noising performance. The encryption results are also bet-
ter.

Keywords: Chi-square Distribution-Kernel; Decryption;
Image De-noising; Image Encryption

1 Introduction

In order to protect the security of the image [16, 27], to
prevent leakage of image content, especially for military
medical images, encryption processing is required. The
image can take advantage of the existing image encryption
algorithms to encrypt image and guarantee the security of
the image. But it needs to compress, denoise the original
image. If there are a lot of images, it provides to the
third party equipment for processing that can significantly
improve processing efficiency.

Cloud has attracted widespread attention and recogni-

tion as it transfers the traditional computing and storage
functions into the cloud environment, which saves lots
of hardware cost for users [18, 30]. With the develop-
ment of cloud, more sensitive information (such as med-
ical records, financial information and important docu-
ments of company) are stored in cloud [12, 19, 28]. Once
the data are received by cloud provider, users lose the di-
rectly control for their data, which can cause the leak of
privacy data. Encryption is an effective method to pro-
tect privacy of users’ data. However, this way loses many
features and can lead to difficult encryption [5, 6]. Espe-
cially, how to conduct encrypted data query in untrusted
cloud environment has aroused people’s attention.

During the process of image formation, transmission
and processing, images are interfered by noise. Thus, the
quality of the image can decrease. To remove or suppress
the noise in the image and improve the image quality,
many de-noising methods are proposed, such as linear and
nonlinear filtering, spectral analysis, and multi-resolution
analysis. However, these traditional methods largely de-
pend on explicit or implicit assumptions to properly sep-
arate the true signal from the random noise. Over the
past decade, wavelet analysis in the time domain and fre-
quency domain, which has good localization properties
and the multi-resolution analysis characteristics, has re-
ceived much attention from researchers in different areas,
including pattern recognition, image de-noising, signal
processing and image compression. The wavelet analy-
sis can effectively distinguish useful signal and noise, so it
has become a notably effective image de-noising method.

At present, wavelet de-noising mainly includes three
methods. First, it adopts the wavelet’s singularity detec-
tion features to separate the signal and the noise. Sec-
ond, it uses a wavelet coefficient threshold function to
reduce the image noise. Third, the Bayesian criterion
coefficient of the wavelet domain is used for image noise
reduction. The wavelet threshold shrinkage method is the
most widely used in image de-noising because of its sim-
plicity and effectiveness.

The idea of wavelet threshold processing is derived
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from the Donoho theory. Donoho first provided the gen-
eral threshold de-noising formula based on an orthogonal
wavelet transform, which made the complex de-noising
problem easy to solve. However, because of the lack of
adaptability of the scale space, the threshold is difficult
to determine. The result can lead to fuzzy image edge and
poor de-noising performance. Thus, many scholars have
introduced different wavelet coefficient scales and their
corresponding threshold to reduce image noise, such as
the hard threshold, soft threshold [23], VisuShrink thresh-
old [3], improved sub-band adaptive SureShrink thresh-
old [8] and NormalShrink threshold [7]. Although these
de-noising algorithms can obtain good de-noising effect,
much detail information is eliminated.

The image quality seriously declines, and the pseudo
Gibbs phenomenon may even be generated. To date,
Wang [24] proposed an optimized shape parameter
method for image de-noising. Kadhim [15] presented a
Particle Swarm Optimization (PSO) algorithm to esti-
mate the threshold value with no prior knowledge for
these distributions. This process was achieved by imple-
menting the PSO algorithm for kurtosis measuring of the
residual noise signal to find an optimal threshold value,
where the kurtosis function is maximal.

Ji [14] proposed a de-noising algorithm using the
wavelet threshold method and exponential adaptive win-
dow width-fitting. His method was divided into three
parts. First, the wavelet threshold method was used to
filter the white noise. Second, the data were segmented
using a data window. Then, an exponential fitting algo-
rithm was used to fit the attenuation curve of each win-
dow, and the data polluted by non-stationary electromag-
netic noise were replaced with their fitting results.

These methods have produced good effects for image
de-noising, but few works aim to improve the thresh-
old function, or their threshold functions are not better.
Thus, we propose a new wavelet threshold function based
on the Chi-square distribution-Kernel function for image
de-noising. We also propose to consider shape parame-
ters on the wavelet coefficients to be thresholded. Hence,
the soft transformation can achieve a high precision of
the true signal until the noise is commendably separated
by shrinkage. To evaluate the performance of our new
function, experiments were conducted on MATLAB to
compare with other state-of-the-art methods. The results
show that our new method performs better than other
functions in terms of de-noising precision. Furthermore,
the new function can enhance the image de-noising effi-
ciency without the effect of layers or the number of im-
age decompositions. New method can effectively removes
noise and preserves the image details for de-noising image.

The remainder of this paper is organized as follows.
The Preliminaries are presented in Section 2. Section 3
illustrates the new threshold based on CSDK in detail,
and Section 4 presents the experimental results. The pa-
per is concluded in Section 5.

2 Preliminaries

The presence of Gaussian white noise degrades images
significantly and may hide important details and back-
ground on the images, leading to the loss of crucial in-
formation of original images. Traditionally, the first step
toward removing related noise in images is to understand
its statistical properties. Despite the theoretical appeal
and the analytical simplicity of the Gaussian model, im-
ages of some natural scenes such as fog deviate from the
Gaussian distribution. To mitigate this situation, var-
ious distributions such as the Weibull distribution [10],
the log-normal distribution [1], the k-distribution [26] and
Cauchy distribution [25] have been suggested.

However, in the above distributions, the log-normal
distribution provides a convenient choice, but fails in
modeling the lower half of the image histograms and over-
estimates the range of variation. Weibull distribution is
an empirical model with limited theoretical justification.
K-distribution is a successful model for SAR image de-
speckling, but not for this paper’s testing data. Mean-
while, Generalised Cauchy distribution (GCD) is a sym-
metric distribution with bell-shaped density function as
the Gaussian distribution but with a greater probability
mass in the tails. GCD is a peculiar distribution due to
the difficulty of estimating its location parameter and its
heavy tail. Because it has no mean, variance or higher mo-
ments defined, GDC has a long convergence time. To al-
leviate the above problems, this paper utilizes Chi-square
distribution-Kernel method for image de-noising. The fol-
lowing is illustration for Chi-square distribution.

Supposing that n independent random variables
(ξ1, · · · , ξn) obey the Gaussian distribution, its sum of
squares Q =

∑n
i−1 ξ

2
i composes of a new random vari-

able, which is named the Chi-square distribution, where
n is the freedom degree [4, 11]. The probability density
function (PDF) of the Chi-square distribution is described
as:

f(PDF ) =


(1/2)n/2

Γ(n/2)
x(n/2)−1e−x/2, if x ≥ 0

0, otherwise

The cumulative distribution function (CDF) Fn(x) of the
Chi-square distribution is defined as,

Fn(x) =
γ(n/2, x/2)

Γ(k/2)

where Γ(n/2, x/2) and γ(k/2) are Gamma function and
incomplete Gamma function, respectively.

3 Image Encryption and New De-
noising Method

3.1 Image Encryption

In this paper, we use sub-block scrambling pixel location
algorithm to encrypt the images. Assuming that size of
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Figure 1: CSDK function with different n

grayscale image I is M × N . First, the image is divided
into small patches (size is S × S, number is [MS ] × [NS ])
without overlap. Second, And then, places of these small
patches are messed up. Under key controlling, the patch
in (m,n) is moved to m′, n′. Finally, for each piece, pixels
are scrambled using the key within the block. Because the
locations of the original image pixels are disrupted, who
wants to know the image content will need to have the
key. Through the encryption process, it can well protect
the security and privacy of images.

3.2 Chi-square Distribution-Kernel
Model Construction

The main hypothesis of our chi-square distribution-kernel
model is that a combination of the structure Gaussian ker-
nel of an image can significantly improve its reconstruc-
tion. The Gaussian kernel function has three important
properties, which are conducive to image post-processing.

The Gaussian kernel function [2] can be written as:

y = εe−
(x−µ)2

2σ2 .

where ε = 1 is the height of the function; µ is the center
of curve in the x-axis; σ is the width.

Based on the principle of the Gaussian kernel function,
we construct the Chi-square Distribution-Kernel Model
(CSDK). The new function <(x) is summarized as:

<(x) = e−
(1/((n/4)

∫∞
0 e−xdx)(n/x2−1)e−x/2−µ)2

2σ2 .

In <(x), n > 0 is defined as the torsion resistance; µ and σ
are the shape parameters. If n varies, <(x) will change as
shown in Figure 1. Figure 1 shows that the CSDK retains
the better properties of the Chi-square distribution.

Figure 2: Wavelet soft thresholding based on CSDK

3.3 Wavelet Soft Thresholding Based on
CSDK

The new wavelet soft thresholding proposed in this paper
can be expressed as follows:

ŵi,j =

{
sign(wi,j)(|wi,j | − λ<(wi,j)), if |wi,j | ≥ λ

0, otherwise

Where wi,j is wavelet coefficient and λ is a threshold
value. So a new function curve is drawn in Figure 2.

The properties of the new function are as follows.

Theorem 1. Continuity: There is no breakpoint, so
f(newx) is a continuous function in its domain.

Proof. From its curve, we can know the domain, and the
range of the function is (−∞,+∞).

When x > λ,

f(newx) = sign(wi,j)(wi,j − λ<(wi,j)).

Therefore, the right-hand limit of the function is:

lim(f(newx)x→λ+) = x− λe0 = 0.

When x < −λ,

f(newx) = sign(wi,j)(−wi,j − λ<(wi,j)).

Therefore, the right-hand limit of the function is:

lim(f(newx)x→λ−) = −x− λe0 = 0.

When −λ ≤ x ≤ λ

f(newx) ≡ 0.

Considering the above formulas, lim(f(newx)x→λ−) =
lim(f(newx)x→λ+) = lim(f(0)).

Thus, the new function is a continuous curve in its
domain. Moreover, it compensates for the shortcomings
of the hard threshold function.
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Theorem 2. Monotonicity: f(newx) is a monotonically
increasing function in (−∞,+∞), so f(newx) is an in-
creasing function in the domain of (−∞,+∞).

Proof. When x > λ,

f(newx) = sign(wi,j)(x− λe−
[α(x−λ)/λ−µ]2

2σ2 ).

The first derivative of f(newx) is:

f ′(newx) = 1 +
2xα2

eαx2 .

Regardless of α, f ′(newx) > 0. We use the identical cal-
culation method: if x < −λ, similarly, f ′(newx) > 0.

When −λ ≤ x ≤ λ

f(newx) ≡ 0.

Therefore, f(newx), which is a monotonically increasing
function, is proven.

Theorem 3. Differentiability: f(newx) is differentiable.

Proof. The new function is continuous and monotonic,
and its right and left limits are equal. Thus, it is differ-
entiable.

3.4 Optimized Threshold Parameter λ

As we know, parameter λ plays an important role in the
wavelet threshold function. Donoho [9] proposed a com-
mon threshold formula,

λ = ε
√

2log(N).

where ε is the noise variance, andN is the sampling length
of the signal. When multiple wavelet decompositions for
an image are analyzed, the noise amplitude notably de-
creases with the increase in the number of image layers.
However, the amplitude of image information increases.
Therefore, this paper proposes an optimized threshold pa-
rameter λ:

λ = ε
√

2log(N)/log(1 + ej).

where j denotes the layer of image decomposition. In
this formula, if j increases, the optimized λ gradually
decreases. The improved λ is superior to that in some
state-of-the-art functions.

Then, we study the effect of j on the new wavelet
threshold function. When j is large, the effect of α is
notably small, which can reduce the noise turbulence.
Hence, our new function is effective.

3.5 Image Decryption

Image processing party will transform the encryption im-
age with improved denoising algorithm to the image re-
ceiver. The image receiver is trusted by the sender with
image decryption key. Therefore, it can decrypt the im-
age successfully. After decrypting image, it is the denoised
image.

4 Experiment and Analysis

In this section, experiments are conducted to demonstrate
the effectiveness of the CSDK with MATLAB R2014b,
Core i7 CPU, 8 GB memory and Windows 10 platform
environment. In Section 4.1, the evaluation criterion and
its function are introduced to evaluate our new method.
First, we experimented with different parameter values in
the new function and analyzed their effect on the wavelet
threshold de-noising in Section 4.2. Then, we made a
comparison to state-of-the-art threshold functions to ver-
ify the effectiveness of our new method in Section 4.3.
All experiments were conducted using the same software,
hardware and laptop.

The image evaluation criterion contains two aspects:
subjective evaluation and objective evaluation. In this
subsection, we mainly evaluate the new function with ob-
jective evaluation. In the new function, the shape pa-
rameter is adjusted to improve the effect on image de-
noising. Two widely used indicators are employed to in-
dicate the effect of image de-noising: the signal-to-noise-
ratio (SNR), (normalized mean square error) NMSE and
(Structural Similarity) SSIM.

4.1 Performance Evaluation of Different
Parameters for Image De-noising

As we know, the shape parameter significantly affects the
image de-noising. Thus, the shape parameter selection is
notably important. According to the principle of Gaus-
sian kernel function, α = 1. First, we study the effect of
µ and σ on the image de-noising. Assuming that N = 30,
ε = 0.6, and j = 0.2, we selected ”Lena”, ”Barbara”,
”Baboon” in international standard test images as the
testing images. Figure 3 shows the original images and
noisy images under Gaussian noise=0.04, 0.3, 07. These
results are shown in Figures 4, 5, 6(a-i) only when Gaus-
sian noise=0.04.

4.2 Effect of Parameter ε on Image De-
noising

The analyzed parameters were manually optimized for the
best peak SNR, which is the metric in our evaluation. Let
µ = 0, j = 5, σ2 = 0.1, and N = 30 in this subsection.
We conducted six experiments to study the effect of shape
parameter on the trend of the SNR, which are listed in
Tables 1, 2, and 3 (the fourth, fifth and sixth column de-
note the noise 0.04, 0.3 and 0.7 respectively). Obviously,
with the increase in ε, the SNR of the new function is
gradually reduced.

4.3 Comparison Experiments

In this subsection, we compare our method with state-
of-the-art threshold functions (the wavelet based includ-
ing soft threshold function, Reference [20] and Refer-
ence [21]) and other famous non-wavelet-based image de-
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Figure 3: Testing images. Original images: (a) Lena,
(b) Baboon, (c) Barbara; Noisy images with Gaussian
noise=0.04: (d) Lena, (e) Baboon, (f) Barbara; Gaussian
noise=0.3: (g) Lena, (h) Baboon, (i) Barbara; Gaussian
noise=0.7: (j) Lena, (k) Baboon, (l) Barbara

Figure 4: Image Lena de-noising with different σ and µ

Table 1: SNR values of Lina with different ε

N P SNR1 0.04 0.3 0.7
1 ε = 0.1 8.8158 18.9769 17.6859 17.3247
2 ε = 0.2 8.8052 18.9373 17.6321 17.2967
3 ε = 0.4 8.7992 18.9638 17.5847 17.1169
4 ε = 0.6 8.8120 18.9694 17.1365 17.0954
5 ε = 0.8 8.8097 18.9351 16.5846 16.8796
6 ε = 0.9 8.8241 18.9585 16.5787 16.8219

Figure 5: Image Baboon de-noising with different σ and
µ

Figure 6: Image Barbara de-noising with different σ and
µ

Table 2: SNR values of Barbara with different ε

N P SNR1 0.04 0.3 0.7
1 ε = 0.1 8.1170 15.8529 14.6582 14.3213
2 ε = 0.2 8.1024 15.8523 14.6108 14.3106
3 ε = 0.4 8.0901 15.8218 14.5837 14.2885
4 ε = 0.6 8.0823 15.8295 14.5086 14.1907
5 ε = 0.8 8.0964 15.7821 14.4975 14.1537
6 ε = 0.9 8.0942 15.8028 14.4617 14.0662
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noising methods (Reference [13,17,22,29]) to demonstrate
the effectiveness of our new method. In the simulated
study, three images were used for testing: ”Lena”, ”Ba-
boon” and ”Barbara”.

In all experiments, the parameters of the references
were set according to the above analysis: µ = 0, j = 5,
σ2 = 0.1, N = 30, ε = 0.1, and α = 1. They were used for
all comparison experiments. We have extensively tested
these values as the criteria for image de-noising and find
them succeed in virtually all cases.

In Lena test experiment, the denoised image using the
new method in Figure 7 is compared with the denoised
image of other de-noising methods. As observed, the new
method successfully eliminates noise and obtains more
accurate results than other methods. Note that there
are some spots in soft threshold function. Reference 24
method indicates that the de-noising effect has better
smoothness, but the image is fuzzy.

Similarly, in Baboon and Barbara experiments (Fig-
ures 8 and 9), the new method effectively removes the
baseline noise and can better retrieve the images com-
pared to other de-noising methods.

Tables 4, 5 and 6 show the SNR, NMSE, SSIM of
the original noisy and denoised image with different de-
noising methods. According to table 7, SNR2, NMSE,
SSIM with our new method are 18.9692, -8.8180 and
0.9846, which are the largest values among the methods;
the soft threshold function has second largest SNR value
(18.9387), followed by Reference [30] (18.8827) and Refer-
ence [17] (18.7109). Overall, the table shows that our new
method can obtain better effect than the other methods.

Similarly, Tables 5 and 6 imply that the new method
outperforms the current de-noising methods and success-
fully recovers the desired images. The values of SNR,
NMSE, SSIM of the proposed adaptive de-noising algo-
rithm are slightly higher than that of the other compared
state-of-the-art methods. It shows that the proposed al-
gorithm has a stronger ability to enhance the edges, the
texture regions of the image, and preserve the smooth
regions of the image while removing the noise.

5 Conclusion

This paper proposed a new image encryption and de-
noising method, the image de-noising combines wavelet
threshold function and the Chi-square distribution-Kernel
function. In this paper, we discussed our new function
including the relation between j and α and the effect of
ε. Then, the proposed method was tested on three sim-
ulated images and made comparison with several other
popular de-noising methods. Both numerical and visual
results demonstrate that the proposed method in this ar-
ticle could strongly better remove most of the noise. Few
image details were lost. The new algorithm could not only
achieve the goal of removing noise, but prevented the im-
age content leaking again, which effectively protected the
image’s security and privacy.

Figure 7: Image Lena de-noising results and experiment
contrast. (a) Soft threshold; (b) reference [20]; (c) refer-
ence [21]; (d) reference [29]; (e) reference [13]; (f) refer-
ence [22]; (g) reference [17]; (h) the proposed CSDK

Figure 8: Image Baboon de-noising results and experi-
ment contrast. (a) Soft threshold; (b) reference [20]; (c)
reference [21]; (d) reference [29]; (e) reference [13]; (f)
reference [22]; (g) reference [17]; (h) the proposed CSDK

Figure 9: Image Barbara de-noising results and experi-
ment contrast. (a) Soft threshold; (b) reference [20]; (c)
reference [21]; (d) reference [29]; (e) reference [13]; (f)
reference [22]; (g) reference [17]; (h) the proposed CSDK



International Journal of Network Security, Vol.21, No.5, PP.804-811, Sept. 2019 (DOI: 10.6633/IJNS.201909 21(5).12) 810

Table 3: SNR values of Baboon with different ε

N P SNR1 0.04 0.3 0.7
1 ε = 0.1 8.8960 14.2881 13.1968 12.9878
2 ε = 0.2 8.9035 14.2825 13.1724 12.9673
3 ε = 0.4 8.9075 14.2776 13.1309 12.8755
4 ε = 0.6 8.9026 14.2662 13.0859 12.8106
5 ε = 0.8 8.9001 14.2486 13.0554 12.7984
6 ε = 0.9 8.9154 14.2672 12.9975 12.7763

Table 4: SNR values of Lena with different methods

Method SNR1 SNR2 NMSE SSIM
Soft threshold 8.8078 18.9387 -10.8537 0.7264
Reference [20] 14.4077 16.1786 -10.6529 0.7922
Reference [21] 8.2921 17.6859 -10.5649 0.7916
Reference [29] 8.6795 18.6653 -9.2416 0.8523
Reference [13] 8.3549 18.6941 -8.9761 0.8467
Reference [22] 8.5837 18.7109 -89178 0.8824
Reference [17] 8.6714 18.8827 -8.8596 0.8927

CSDK 8.7965 18.9692 -8.8180 0.9846

Table 5: SNR values of Baboon with different methods

Method SNR1 SNR2 NMSE SSIM
Soft threshold 8.9129 14.2760 -10.8795 0.8593
Reference [20] 8.5807 14.3085 -10.6547 0.8654
Reference [21] 8.2921 13.6859 -10.5466 0.8746
Reference [29] 8.3164 14.2128 -9.9762 0.8922
Reference [13] 8.3253 14.3107 -9.8524 0.9137
Reference [22] 8.5508 14.3193 -9.7688 0.9248
Reference [17] 8.5674 14.2984 -9.6417 0.9617

CSDK 8.9038 14.3692 -8.1251 0.9835

Table 6: SNR Values of Barbara With Different methods

Method SNR1 SNR2 NMSE SSIM
Soft threshold 8.5746 15.2381 -10.81537 0.8601
Reference [20] 8.6472 15.6812 -9.9054 0.8639
Reference [21] 8.3451 15.8787 -9.7822 0.8854
Reference [29] 8.3188 16.4827 -8.5897 0.9025
Reference [13] 8.2643 16.5374 -8.3074 0.9437
Reference [22] 8.7549 16.6548 -8.3576 0.9548
Reference [17] 8.7654 16.7876 -8.5917 0.9627

CSDK 8.9277 16.8763 -7.6548 0.9829
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