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Abstract

In Bitcoin financial system, a user is required to generate
a fresh key pair to sign a new transaction for protecting
privacy. Therefore, a large volume of key pairs need to be
stored in Bitcoin wallets. The password-protected wallet,
however, is vulnerable to computer crash and ransomware
attack. On the other hand, the password itself could be
contained in the wallet which would result in the password
information leakage by the so-called Key-Dependent Mes-
sage (KDM).To address these two problems, we propose
a new password-protected wallet scheme in this paper.
Users can upload the encrypted backup files to the cloud.
When the local wallet is lost or damaged, users can re-
cover it via the backup files. To resist against the KDM
attack, we use a KDM secure scheme to encrypt wallet
files.We prove that our scheme is KDM-CCA secure and
the semi-trust cloud server cannot get any information of
the backup files. The simulation results show that our
scheme is efficient and practical.

Keywords: Bitcoin; Key-dependent Message (KDM);
Password-protected Wallet; Privacy Protection

1 Introduction

Bitcoin has possessed the world’s largest trading vol-
ume of virtual currencies in recent years. Accord-
ing to economic statistics of the cryptocurrency market
(http://coinmarketcap.com/), by January 2018, there are
a total of 1381 kinds of cryptocurrencies in the world
with a total market capitalization of more than 644 bil-
lion dollars. Among them, the market cap of Bitcoin ac-
counts for about 36%. Bitcoin originated in a ground-
breaking paper−”Bitcoin: a peer-to-peer electronic cash
system” [25]. Instead of depending on a specific central
organization, Bitcoin system establishes trust mechanism
using a distributed peer-to-peer(P2P) network. All nodes
participate in a consensus process called Proof of Work
(PoW) to verify and record transactions. The nature

of the P2P network is very suitable for establishing an
anonymous reputation model [21, 26, 28]. The techno-
logical support of Bitcoin is blockchain. Blockchain is
a decentralized distributed shared ledger built on P2P
networks, which achieves extremely high security in a
highly redundant way and creates trust by mutual co-
operation [12,22,23]. Trading in Bitcoin, transaction fees
are cheaper and cross-border fund transfers become more
convenient. Bitcoin transactions can be publicly verified,
and the underlying cryptographic mechanisms ensure that
records cannot be tampered with. The Bitcoin network is
robust enough so that the amount of CPU/GPU needed
to control 51% computing power of the network would
be astronomical. Due to all these distinguishing features,
Bitcoin has recently aroused widespread concerns by aca-
demics, financial institutions, government departments,
and so on [8, 17,20].

Of course, the most appealing feature is that Bitcoin
transactions can provide anonymity [27]. In order to en-
sure the anonymity and increase the transaction security,
the current mechanism is that a user has to employ a fresh
key pair, i.e., a new pair of public key and private key,
to sign each transaction [18, 27]. Although time consum-
ing and cumbersome, this is the only available solution
currently. As we all know, each transaction requires a
valid signature for verification. Only a valid private key
can produce a valid digital signature, so one who owns the
private key has controlled over the corresponding Bitcoin.
If the private key is leaked out, the user’s Bitcoin will be
lost. All those key pairs are stored in the user’s personal
wallet. Therefore, how to provide security for personal
wallet needs a comprehensive consideration.

Many related wallet schemes have been proposed in re-
cent years. In [5], the authors proposed a scheme called
”BlueWallet”, using a hardware token to authorize trans-
actions. This scheme is essentially to isolate the trad-
ing device from the signature device to prevent malicious
attacks. However, usability is also reduced since users
have to carry the hardware token with them anytime any-
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where. In [24], the authors combined random seeds with
a passphrase that easy to remember to generate private
keys. Therefore, users only need to store the random seeds
in the local files. But once the local files are lost, users
cannot recover all the keys. In [15], the first threshold
signature scheme compatible with Bitcoin’s ECDSA sig-
natures was presented. And this cryptographic primitive
could be used to build Bitcoin wallets to enhance the se-
curity. In [14], the authors analyzed the setback of [15],
then presented a threshold-optimal and efficient signa-
ture scheme. Taking into account the priority/weight
of participants, Dikshit et al. proposed a more prac-
tical scheme−a weighted threshold ECDSA scheme−to
secure the Bitcoin wallet in [9]. Although this scheme
uses joint control to eliminate the risk of internal fraud,
once multiple participants with different priority/weight
are combined to reconstruct the key, the security of this
scheme cannot be guaranteed. In [19], a social-network-
based wallet-management scheme was proposed. The au-
thors utilize an identity-based hierarchical key-insulated
encryption scheme and a secret sharing scheme to achieve
time-sharing authorization. However, due to many bilin-
ear pairing operations involved, the efficiency of the whole
scheme is reduced.

In general, existing Bitcoin wallets can be divided into
four major categories [11], namely: offline storage wal-
lets, hosted wallets, local wallets and password-protected
wallets.

Since the key pairs are stored in the offline device, such
as a USB thumbdrive, the offline storage wallet is rela-
tively secure but with low accessibility as the user can-
not spend funds unless the offline device is nearby. And
the wallet will be easily exposed on an online computa-
tional device, such as a computer or mobile connected to
the network, possibly to malware. The ”BlueWallet” we
mentioned above is an offline storage wallet.

Hosted wallets use a third-party web service to host
users’ accounts. In other words, the service is responsible
for maintaining the users’ private keys, which will make
the third-party service vulnerable to malicious attacks.
Once the web service crashes, users need to bear the risk
of financial losses.

Local wallet stores the key pairs on the device’s local
storage, generally in a file or a database in a preset file
system path. When launching a new transaction, Bitcoin
client can read the key in the local wallet directly. For
example, the wallet scheme proposed in [24] is a kind of
local wallet. Despite the convenience of this kind of wal-
let, malware may also read the wallet files, which would
lead to disclosure of user’s key information. Besides, the
device has the risk of computer crash, artificial errors and
being stolen. Both of these can result in loss of users’
assets.

In order to address the potential physical theft of the
local storage devices, password-protected wallets are pre-
sented where Bitcoin clients allow a local wallet file to
be encrypted with a password. When launching a new
transaction, a user needs to unlock the wallet by entering

the password before Bitcoin client reads the key in the
wallet. In brief, this method reduces the usability of the
wallet for the mitigation of the physical theft. However, if
the wallet file is only stored locally, though the encrypted
file can ensure that a malicious attacker cannot obtain
the contents of the file, the user still cannot get back his
own transaction keys, which is equivalent to losing money.
Besides,ransomware attacks have been frequent in recent
years. Once the user’s local device encounters this attack,
the wallet files cannot be recovered unless the user pays a
high amount of ransom. And we have noticed that, when
encrypting the wallet, since there are many key pairs in-
volved, the user is likely to put the encryption key into the
local wallet file, or directly select a transaction key as the
encryption key, which will lead to encrypt the key itself.
This is the so-called key-dependent message (KDM) [6],
or circular encryption [1].

As early as 1984, when Goldwasser and Micali pro-
posed the definition of semantic security [16], it was
pointed out that it would be dangerous to encrypt in-
formation that an attacker could not have, such as pri-
vate keys. If the plaintext is associated with the key,
the obtained ciphertext will leak key information. Today,
with the demand for encryption gradually diversifies, the
probability of such situation is increasing. For example,
a data backup system may place the backup encryption
key on disk, and then encrypt the contents of the entire
disk, including the key [2]. It has been found that in Bit-
Locker disk encryption application of the Windows Vista,
the disk encryption key is eventually stored on disk and
encrypted with the data on the disk. Once this happens,
it can result in an entropy leak of the private keys in the
user’s wallet file, which can also result in financial losses.

In this paper, we propose a secure and efficient
password-protected wallet scheme utilizing backups with
key-dependent message security for single user to store
and manage personal wallet files. In our scheme, by us-
ing a semi-trusted third-party cloud service provider, we
store the backups of local encrypted wallet files in the
cloud. Once the local device encountered with computer
crashes, being stolen or ransomware attacks, the user can
recover wallet files from the cloud. Taken the circular en-
cryption§ into account, we use a KDM secure symmetric
encryption algorithm [3] to encrypt the wallet files and
use HMAC-MD5 algorithm to enhance the security [4] of
the scheme. We prove that the proposed scheme can resist
active KDM attack and prevent the disclosure of key in-
formation. So we will not reveal the private keys of users’
to outsiders. In addition, we use a keyword-based search-
able encryption algorithm to facilitate the interaction be-
tween user and cloud service provider. User can submit
the search credential to enable the cloud service provider
to return the corresponding backup file instead of down-
loading all the backup files to local device, making the
retrieval time greatly reduced. We utilize one-way trap-
door functions and the learning parity with noise prob-
lem which can make sure that the cloud service provider
cannot get any detail about the backup files and search
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credentials. In our scheme, the adopted algorithms are
based on matrix operations or binary bitwise operations
and have a low total data volume, which make our scheme
more efficient.

The rest of this paper is organized as follows. Section 2
presents some preliminaries used in this paper. Section 3
gives our system model. We give a detailed description of
the proposed efficient Bitcoin password-protected wallet
scheme in Section 4. The security analysis is presented
in Section 5 and the efficiency analysis is presented in
Section 6. Finally, in Section 7, we will conclude this
paper.

2 Preliminaries

We use bold uppercase letters, such as X , represent a
matrix, and use bold lowercase letters, such as x , to rep-
resent a vector. If A is a set, then the notation a ← A
denotes randomly and uniformly to choose an element a
from A. If A is a probabilistic algorithm, then the no-
tation a ← A denotes that a is computed by A. For a
positive integer n ∈ N, let [n] denote the set {1, 2, ...,n}.
For a string s, let s[i] denote its i-th bit. Let Berε denote
the Bernoulli distribution over {0, 1} that 1 with proba-
bility ε and 0 with probability 1 − ε. And we use PPT
to denote probabilistic polynomial time. In addition, for
a function f , let |f| denote its output length. We say a
function f is negligible in η if for any polynomial p there
exists a η0 such that for all η > η0, we have f(η) < 1/p(η).

2.1 Key-dependent Message Security

We first review the definition of key-dependent message
security (KDM) in the symmetric setting from Black et
al. [6], and then modify it slightly by restricting the adver-
sary to a special set of functions. We describe the notion
of KDM security for a symmetric encryption scheme Π,
which consists of three algorithms (G,E,D) as follows:

• G(1λ): The key generation algorithm on input of the
security parameter λ outputs a private key S which
we denote by S← G(1λ).

• E(S,m): The encryption algorithm encrypts message
m with private key S and outputs the ciphertext c.
We let c← E(S,m) denote this algorithm.

• D(S, c): The decryption algorithm decrypts the ci-
phertext c with private key S and outputs the mes-
sage m or an error symbol ⊥. We let m ← D(S, c)
denote this algorithm.

Correctness: We respectively use Ω and M to denote
the key space and the message space. According to
the correctness condition, we require that, for every
S ∈ Ω,m ∈ M,D(S,E(S,m)) = m.

Now, we define the KDM security with respect to the
fixed set of functions Γ = {f : Sn → M} by using the

following game that takes place between a challenger and
an adversary A, where n > 0 is an integer. We require
that for all inputs α ∈ Sn, the output length of function
f ∈ Γ is fixed, which means that |f(α)| is the same for
every input. The game is defined as follows:

• Initialization: The challenger chooses a random
bit b ← {0, 1}. Select a vector of keys S =
{S1,S2, ...,Sn} where each key Si(1 ≤ i ≤ n) is de-
termined by running the key generation algorithm
G(1λ).

• Queries: The adversary repeatedly issues queries
where each query is of the form (i, f) where 1 ≤
i ≤ n and f ∈ Γ. If b = 0, the challenger returns
c = E(Si, f(S)); if b = 1, the challenger returns
c = E(Si, 0

|f(S))|.

• Final phase: Finally, the adversary A outputs a bit

b
′
← {0, 1}.

We say that A is a Γ-KDM adversary and that A wins

the game if b = b
′
. The IND-KDM advantage of an ad-

versary A is defined as:

AdvKDMΠ (A) = |Pr[b = b
′
]− 1/2|. (1)

Definition 1. We say that an encryption scheme Π is
KDM secure with respect to Γ if for any PPT adversary
A, we have AdvKDMΠ (A) = negl(λ).

2.2 Searchable Encryption

To prevent information disclosure, the data is generally
stored in the cloud in encrypted form. When the user
needs to find the specific plaintext and does not want
to disclose any information, it is difficult for the cloud
service provider to search the corresponding ciphertext.
Searchable encryption technology (referred to as SE) is a
good solution to this problem. It can reduce computa-
tional overhead, and make full use of the huge comput-
ing resources of cloud service provider. Formally, a basic
searchable encryption scheme based on keyword search [7]
consists of four algorithms as follows:

• Setup: The data owner selects the corresponding set
of keywords based on the contents of all files and
creates a keyword dictionary.

• BuildIndex: The data owner builds a typical index
for each file.

• GenToken: The algorithm generates a specific search
credential based on the keywords that the user needs
to search for. The implementation of this algorithm
is performed by the data searcher.

• Query: This algorithm is carried out by the cloud
service provider. After receiving the search creden-
tial, the cloud service provider starts the matching
calculation and eventually returns the corresponding
search results.
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2.3 HMAC

HMAC is a kind of key-related message authentication
code. It makes use of a hash algorithm, with a key and a
message as input, and outputs a message digest [13]. In
this paper, we adopt HMAC-MD5 algorithm (hereinafter
referred to as HMAC). A HMAC scheme consists of three
algorithms as follows:

• MAC-KeyGen(1λ): The PPT key generation algo-
rithm on input of the security parameter λ out-
puts a key kmac which we denote by kmac ←
MAC-KeyGen(1λ).

• Tag: The user takes the key kmac and message ψ as
input, and outputs the message certification tag T.
We denote by T← Tag(kmac, ψ).

• Verify: The verifier takes the key kmac, the message
certification tag T and the corresponding message
ψ as input to verify the legitimacy of this message.
If the message was modified,Verify(kmac,T, ψ) = 0;
otherwise,Verify(kmac,T, ψ) = 1.

2.4 Learning Parity with Noise (LPN)

For positive integers n and q(q ≥ 2), a vector s ∈ Zn
q ,

and a probability distribution χ on Zq, define As,χ to be
a distribution over Zn

q ×Zq obtained by choosing a vector
a ∈ Zn

q uniformly at random, an error term x ← χ, and
outputting (a , 〈a , s〉+ x).

Definition 2. [3]. For q = 2 and an error distribution
χ = Berε, the learning parity with noise problem LPNε
is defined as follows: given access to an oracle that pro-
duces independent samples from As,χ for some arbitrary
s ∈ Zn

2 , output s with noticeable probability over all the
randomness of the oracle and the algorithm.

3 System Model

As shown in Figure 1, the system model contains three
entities: the User, the Cloud service provider (CSP), and
the Certificate Authority (CA). The User is an entity who
can encrypt his/her own wallet files and upload encrypted
backup files to the Cloud service provider. User can also
download the specific backup files from the Cloud service
provider when recovering the data. The Cloud service
provider is an entity that can provide excellent comput-
ing service and storage capacity for users. The CA is
a credible entity who is responsible for investigating the
user’s identity and providing key pair generation service.

Because physical theft cannot be blocked, the user
encrypts all wallet files using a password in password-
protected wallet. In this case, even if the adversary gains
physical device, the contents of the wallet files are still
not available (due to the lack of an unlocked password).
The user who has been stolen also cannot use his/her own
Bitcoin, as no one can remember so many key pairs.

CSPCA

Regist Distribute keys Return ciphertext
Request to 

download 
Upload

User

Figure 1: System model

Our model introduces a situation that users can lock
their wallet files by encrypting with password and also up-
load the backup files to the cloud service provider. Once
the local wallet files are lost, the user can request the cloud
service provider to download the corresponding backup
files to recover the original data. In order to prevent the
adversary from reading the wallet files, each file should
be encrypted with a pre-selected key. And to prevent
the occurrence of the key entropy leakage problem caused
by circular encryption§, we select the KDM-CPA secure
symmetric encryption algorithm to perform the encryp-
tion process. When a user uploads the backup files to the
cloud service provider, we combine the HMAC scheme to
verify the integrity of the data transmitted between the
user and the cloud service provider, which can enhance
the security of the whole scheme.

Since the third-party CSP is curious, we require to keep
the contents of wallet files private from CSP which means
CSP cannot access the wallet data throughout the data
upload and download process. We utilize a keyword-based
searchable encryption algorithm to achieve this goal. In
data upload phase, as the backup files are encrypted, the
CSP cannot get any message about the private keys. In
data download phase, the search credential submitted by
the user to the CSP is calculated based on one-way func-
tions, which means that it is impossible for the CSP to
recover the original keywords. Therefore the CSP cannot
obtain any valuable information from any backup file or
any search credential.

As we have presented above, our scheme has two stages,
the data processing and data recovery.

1) Data processing: The data processing phase mainly
encrypts the wallet files and uploads the backup
files to the CSP. It includes four algorithms: system
setup, key generation, plaintext processing and data
upload. In system setup, system parameters are con-
firmed according to a given security parameter. Then
the communal parameters will be published. In key
generation, CA runs key generation algorithm to gen-
erate the needed keys. After that, distribute them to
the user through a secure channel. In plaintext pro-
cessing, as shown in Figure 2, there are three steps
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HMACEncryption

CSPUser

TagCiphertext

Index string

Searchable 

encryption

Figure 2: The specific descriptions of plaintext processing

Trapdoor

Cipertext

CSP User

Figure 3: The specific descriptions of data download

to process the wallet files. First, encrypt the wal-
let file. Second, generate the message authentication
code. Third, generate an index string for the wallet
file based on the keywords. In data upload, the user
needs to share the HMAC key with the CSP firstly,
and then upload backup file, message authentication
code and the index string to the CSP. CSP checks
the integrity of those files.

2) Data recovery: The data recovery phase mainly re-
quests the CSP for downloading the backup file,
and decrypts the corresponding ciphertext to obtain
plaintext. The data recovery contains one algorithm:
data download. In data download, as shown in Fig-
ure 3, there are three steps: trapdoor generation,
match retrieval and data decryption. First, the user
creates the search credential (trapdoor) based on the
keywords contained in the backup file and then sends
it to the CSP. Second, CSP does a matching search
and returns the corresponding ciphertext to the user.
Third, the user calls the decryption algorithm to de-
crypt the ciphertext.

We will give a detailed description for our scheme in
next section.

4 Our Construction

This section is divided into two parts. We start with the
data processing phase which includes four algorithms, re-
spectively system setup, key generation, plaintext pro-
cessing and data upload. In the second part, we present
the data recovery phase which contains one algorithm,
that is data download.

4.1 Data Processing

System setup: This algorithm takes a security parame-
ter λ as input, and respectively generates communal
system parameter prm as follows:

1) Choose three arbitrary polynomials of λ: l =
l(λ),N = N(λ),m = m(λ). Employ an efficiently
decodable error correcting code, whose binary
generator matrix is Gm×l.

2) Choose the keyword dictionary param-
eter τ and determine the function set
{PK(x),FK(x), JK(x)}. For K ∈ {0, 1}λ,
PK(x) is a family of pseudo-random permuta-
tions with domain {0, 1}τ , FK(x) is a family of
pseudo-random functions mapping {0, 1}τ to

{0, 1}λ, and JK(x) is a family of pseudo-random
functions mapping [n] to {0, 1}.

3) Publish prm = {Gm×l,PK,FK, JK, l,N,m} as
system parameter.

Key generation: When a user registers with the CA,
he/she needs to submit personal identifiable infor-
mation. If the CA determines that the user is legal,
CA will generate keys for the user and issue them
through a secure channel; otherwise, denial of ser-
vice. Given λ, CA does as follows:

1) Run G(1λ) algorithm to generate the symmetric
encryption key S ∈ Zλ×N2 .

2) Run MAC-KeyGen(1λ) algorithm to generate
the HMAC key kmac.

3) Distribute {S‖kmac} to the user through a se-
cure channel, where ‖ is a concatenation symbol.

Plaintext processing: After the user is successfully regis-
tered and obtains the keys issued by the CA, he/she
can store and manage the wallet files on the basis of
our scheme. The steps of the plaintext processing are
described as follows:

Step 1. Encrypt wallet file:

Firstly, the user needs to encrypt the wallet file θj,
1 ≤ j ≤ ρ (ρ is a positive integer, represents the total
number of documents) by performing the following
procedures:

1) Divide the plaintext into blocks such as M ∈
Zl×N

2 .

2) Randomly select a coefficient matrix A ∈ Zm×λ
2

and a noise matrix E ∈ Berm×Nε .

3) Apply encryption algorithm E(S,m) to encrypt
M with S . Obtain encrypted block W as fol-
lows:

C = A · S + E + G ·M . (2)

W = (A,C ). (3)
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4) All the encrypted blocks of the current file θj
form a ciphertext file ψj. We also use ψj on
behalf of the corresponding backup file.

Step 2. Generate the message authentication code:

Then, the user computes authentication tag Tj of ci-
phertext file ψj by applying algorithm Tag and using
the HMAC key kmac. The expression is as follows:

Tj = Tag(kmac, ψj). (4)

Step 3. Generate index string:

Lastly, the user calculates the index string according
to the following procedures:

1) Select s ∈ {0, 1}λ,r ∈ {0, 1}λ uniformly at ran-
dom and keep them secret.

2) Run the Setup algorithm to build a keyword
dictionary contains 2τ index-keyword pairs in
the form (i, wi), where the index i ∈ [2τ ], the
keyword wi ∈ {0, 1}∗.

3) Set a 2τ -bit string I
′

j . If θj contains wi, set

I
′

j [Ps(i)] = 1; otherwise, set I
′

j [Ps(i)] = 0.

4) For ri = Fr(i),i ∈ [2τ ], compute the index string
Ij by

Ij [i] = I
′

j [i]⊕ Jri(j). (5)

Data upload: After the user finishes processing the plain-
text files, the obtained backup files and the related
contents can be uploaded to the CSP. The specific
interaction process between user and the CSP is as
follows.

User:

1) Share the HMAC key kmac with the CSP
through a secure channel.

2) Upload {ψj‖Tj‖Ij} to CSP, where 1 ≤ j ≤ ρ
and ‖ is a concatenation symbol.

CSP: Run the V erify algorithm to check the in-
tegrity for each ciphertext file:

If V erify(kmac, Tj , ψj) = 0, return an error
notification and a request for re-uploading; if
V erify(kmac, Tj , ψj) = 1, return the storage

address V
′
.

4.2 Data Recovery

Data download: Once a local wallet file is lost for some
reason, user can recover this wallet file from the CSP.
The steps of data download are described as follows:

Step 1. Trapdoor generation:

1) The user runs the GenToken algorithm to gen-
erate the search credential Twµ of a specific file
which contains the keyword wµ. µ is the cor-
responding index from the dictionary. The ex-
pression is as follows:

Twµ = (p, f) = (Ps(µ), Fr(Ps(µ))). (6)

2) The user submits the generated search creden-
tial Twµ and the corresponding storage address

V
′

to the CSP.

Step 2. Match retrieval:

1) The CSP runs the Query algorithm and com-
putes I

′

j [p] = Ij [p] ⊕ Jf (j),j ∈ [ρ] for all files

stored in V
′
.

2) If there exists I
′

j [p] = 1, CSP sends the corre-
sponding ciphertext file ψj to the user.

Step 3. Data decryption:

1) Divide the ciphertext into blocks such as W .

2) The user calls the decryption algorithm D(S, c)
to decrypt W with S .

Obtain the matrix as follows:

W = (A,C ), (7)

Q = C −A · S . (8)

3) Obtain the plaintext by applying the decodable
error correcting code to decode each columns of
the matrix Q .

5 Security Analysis

In this section, we give a detailed description of the secu-
rity analyses of the whole scheme.

This section is divided into four parts. First, we de-
fine security for our scheme in the sense of IND-CCA se-
curity, KDM-CCA security and trapdoor indistinguisha-
bility. Second, we present our security models. Third,
we give a complete proof of our scheme according to the
above security definitions and security models. Finally,
we compare the usability and security of our scheme with
other related schemes by using the evaluation framework
proposed in [11].

5.1 Security Definitions

The IND-CCA security guarantees that no adversary,
given an encryption of a message randomly chosen from a
two-element message space determined by the adversary,
can identify the message choice with probability signifi-
cantly better than that of random guessing even if the
decryption training was carried out in advance.
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KDM-CCA security guarantees that the scheme can
resist active key-dependent message attack, that is, the
adversary cannot distinguish between the encryption of
the key-dependent message and the encryption of a ran-
dom message even if the decryption training was carried
out in advance.

The trapdoor indistinguishability guarantees that an
adversary cannot distinguish between the trapdoors of
two challenge keywords.

5.2 Security Models

Let A be an adversary whose running time is bounded by
t which is polynomial in security parameter λ and C be
a challenger. We consider the following three models:

1) IND-CCA Model: A is assumed to be an IND-CCA
attacker. This model depicts the indistinguishabil-
ity of our scheme under the chosen-ciphertext attack
(IND-CCA).

Setup. After the system is established, the genera-
tion algorithm G(1λ) is run by the challenger C.
System parameter prm and the symmetric en-
cryption key S are then generated. prm is given
to the adversary A while S is kept secret from
A. A queries a number of arbitrary ciphertexts
c to the challenger C and gets the corresponding
decryption results.

Query. A outputs a target plaintext pair (M0,M1)
to the challenger C (Notice that none of M0

nor M1 has been given as an answer in Setup
phase). The challenger C selects a random bit
β ← {0, 1} and creates a target ciphertext ψβ =
E(S ,Mβ) and returns it to the adversary A.

Challenge. A outputs its guess β
′ ← {0, 1}.

We define the adversary A’s advantage in this model
by AdvIND−CCA(A) = |Pr[β = β

′
]− 1/2|.

2) KDM-CCA Model: A is assumed to be a KDM-CCA
attacker. This model depicts the indistinguishability
of our scheme under key-dependent message chosen-
ciphertext attack (KDM-CCA).

Setup. After the system is established, the two
generation algorithms G(1λ) and MAC −
KeyGen(1λ) are run by the challenger C. Sys-
tem parameter, a fixed set of affine function
class, the symmetric encryption key and the
HMAC key, which we denoted by prm, Γ, S =
{S1, S2, ..., SN} and kmac are then generated re-
spectively. prm and Γ are given to the adver-
sary A while S and kmac are kept secret from
A. The challenger C selects a random bit β ←
{0, 1}. The adversary A issues queries where
each query of the form (i, cc) where 1 ≤ i ≤ N
to the challenger C. The challenger C responds
with mm = D(Si, cc) on the basis of the value
of β.

Query. A outputs a target query of the form (i, f)
where 1 ≤ i ≤ N and f ∈ Γ to the challenger
C (Notice that none f(S) nor 0|f(S)| has been
given as an answer in Setup phase). If β = 0, the
challenger C responds with cc0 = c0‖T0, where
c0 = E(Si, f(S)) and T0 = Tag(kmac, c0); if
β = 1, the challenger C responds with cc1 =
c1‖T1, where c1 = E(Si, 0

|f(S)|) and T1 =
Tag(kmac, c1).

Challenge. A outputs its guess β
′ ← {0, 1}.

We define the adversary A’s advantage in this model
by AdvKDM−CCA(A) = |Pr[β = β

′
]− 1/2|.

3) Trapdoor indistinguishability Model: A is assumed
to be a trapdoor-indistinguishable attacker. This
model depicts the trapdoor indistinguishability of our
scheme.

Setup. After the system is established, system param-
eter prm is then generated. prm is given to the
adversary A.The challenger C selects s ∈ {0, 1}λ,

r ∈ {0, 1}λ uniformly at random and keeps them se-
cret. Then the challenger C builds a keyword dic-
tionary which contains 2τ index-keyword pairs in the
form of (i, wi), where i ∈ [2τ ], wi ∈ {0, 1}∗. A queries
a number of arbitrary keywords, each of which is de-
noted by w, to the challenger C and gets the corre-
sponding trapdoor Tw.

Query. A outputs a target keyword pair (w0, w1) to the
challenger C (Notice that none of w0 nor w1 has been
queried in Setup phase). The challenger C selects a
random bit β ← {0, 1} and responds with a target
trapdoor Twβ = (pβ , fβ), where pβ = Ps(µβ),fβ =
Fr(pβ) and µβ is the corresponding index of the key-
word wβ .

Challenge. A outputs its guess β
′ ← {0, 1}.

We define the adversary A’s advantage in this model
by AdvTrap−IND(A) = |Pr[β = β

′
]− 1/2|.

5.3 Security Proofs

We show that the new password-protected wallet scheme
proposed in Section 4 is KDM-CCA secure. At the same
time, we also prove that our scheme is IND-CCA secure
and can provide trapdoor indistinguishability. We have
the following theorems.

Theorem 1. Our data processing algorithm is KDM-
CCA secure as the LPN problem holds hard.

Proof. We use the KDM-CCA Model to prove this theo-
rem. Without loss of generality, we suppose β = 0. We
consider the following three games:

Game0. The same as the KDM-CCA Model.
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Game1. The same as the Game0, except in Query phase,

the challenger C responds with cc
′

= c
′‖T

′
, where

c
′

= E(Si, f(S + S
′
)),T

′
= Tag(kmac, c

′
) and S

′
∈

Uλ×N2 .

Game2. The same as the Game1, except in Query phase,

the challenger C responds with cc
′′

= c
′′‖T

′′
, where

c
′′

= E(Si,R),T
′′

= Tag(kmac, c
′′
) and R ∈ Ul×N

2 .

For Game0 and Game1, as noise matrix E ∈ Berm×Nε is
randomly selected, the adversary cannot distinguish the

ciphertext of f(S+S
′
) with the ciphertext of f(S). Thus

the Game0 and Game1 are computationally indistinguish-
able.

For Game1 and Game2, as solving the LPN problem is
difficult, the adversary cannot distinguish the ciphertext

of f(S + S
′
) with the ciphertext of R. Thus the Game1

and Game2 are computationally indistinguishable.
In summary, Game0 and Game2 are computationally

indistinguishable. The adversary A’s advantage in this
model is negligible in λ. Therefore, our data processing
phase is KDM-CCA secure.

Theorem 2. Our data processing algorithm is IND-CCA
secure.

Proof. According to [10], KDM-CCA security implies
IND-CCA security. From Theorem 1, our data pro-
cessing algorithm is proved to be KDM-CCA secure. So
the advantage of the adversary A to distinguish the two
ciphertext in IND-CCA Model is also negligible, which
means that the encryption algorithm in the proposed
scheme is IND-CCA secure.

Theorem 3. The proposed scheme satisfies the property
of trapdoor indistinguishability, if s, r, are kept secret.

Proof. When the adversary A submits a target keyword
pair (w0, w1) to the challenger ? in the Trapdoor indistin-
guishability Model, the challenger C will find the corre-
sponding index µβ of the keyword wβ from the dictionary
and respond with the corresponding trapdoor Twβ . The
calculation process is as follows:

Twβ = (pβ , fβ) = (Ps(µβ), Fr(Ps(µβ))). (9)

If s ∈ {0, 1}∗, r ∈ {0, 1}∗ are kept secret, according
to the one-way property of pseudo-random permutations
PK(x) and pseudo-random functions FK(x), the advan-
tage of the adversary A to distinguish the two trapdoors
is negligible. Therefore, the proposed scheme is trapdoor-
indistinguishable.

Theorem 4. The cloud service provider(CSP) cannot get
any information of the backup files or the search creden-
tials.

Proof. Though the third-party cloud service provider is
curious, we can prove that in our scheme CSP cannot get
any information during the whole process. From The-
orem 2, our data processing algorithm is proved to be

IND-CCA secure. So CSP cannot distinguish between
any two ciphertexts which means that CSP cannot ob-
tain any valuable data during the data processing phase.
From Theorem 3, it is impossible for the CSP to recover
the original keywords from the search credential submit-
ted by the user as s, r holds secret. Therefore our scheme
keeps the contents of wallet files private from the CSP.

5.4 Security Evaluation

In this subsection, we use the evaluation framework pro-
posed by Eskandari et al. in citeeskandari2015first to
analyze the usability and security of our scheme. This
evaluation framework considers the attacks that occur in
practice, such as malware attack, physical theft, physi-
cal observation, password loss and so on. In addition,
it considers the usability, such as accessibility and cross-
device portability. According to these evaluation criteria,
we make a comparison with several related schemes. The
security evaluation results are shown in Table 1.

As can be seen from Table 1, we compare our scheme
with the scheme proposed in [5], the scheme proposed
in [24] and the scheme proposed in [19]. In Table 1, the
black dot(·) means that the scheme can satisfy this prop-
erty. The black circle(◦) means that the scheme can par-
tially satisfy this property. Empty means that the scheme
cannot satisfy this property.

From the evaluation results, our scheme satisfies many
properties. First of all, users can unlock the wallet files
only by entering a password token, so we claim that our
scheme is immediate access to funds. Second, since our
encryption algorithm is KDM-CCA secure, our scheme
can resist key leakage when a malicious attack or physical
theft occurs. Third, the backups of the wallet files are
stored in CSP, so even if malware attacks such as ran-
somware attacks occur, users do not have to worry about
the security of the wallet files. Furthermore, wallet files
can also be obtained on other devices by interacting with
CSP, which achieving cross-device portability. Finally,
the key generation is executed by CA, and CA distributes
the keys through a secure channel, which avoiding phys-
ical observation attack. Beyond the evaluation results,
our scheme can recover the private keys via backup files
stored in CSP, which is very important for preventing the
loss of assets.

6 Efficiency Analysis

In this section, we present the efficiency analyses of the
whole scheme.

This section is divided into two parts. We start with
the data volume analysis which includes local storage,
data upload phase and data download phase. In the sec-
ond part, we present the performance evaluation.
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Table 1: Security evaluation

Schemes
Malware
Resistant

Keys
Kept

Offline

No
Trusted
Third
Party

Resistant
to

Physical
Theft

Resistant
to Physical
Observation

Resilient
to

Password
Loss

Resilient
to Key
Churn

Immediate
Access

to Funds

No New
User

Software

Cross
-device

Portability

Our
scheme

• ◦ • • • • •

Scheme
in [5]

◦ • • •

Scheme
in [24]

• • • • •

Scheme
in [19]

◦ ◦ • • • • • •

6.1 Data Volume Analysis

In our scheme, the amount of data volume is divided into
three parts, respectively derived from the KDM-CPA se-
cure symmetric encryption algorithm, the HMAC algo-
rithm and the symmetric keyword-based searchable en-
cryption algorithm.We will successively analyze the data
volume in local storage, in data upload phase and in data
download phase.

When applying the KDM-CPA secure symmetric en-
cryption algorithm, the user stores the symmetric
key which occupies |S | bits of storage locally. When
applying the HMAC algorithm, the user stores the
HMAC key which occupies |kmac| bits of storage lo-
cally. And when applying the searchable encryp-
tion algorithm, the user stores s, r, which occupies
2λ bits, plus an index dictionary locally. To make
the discussion more convenient, we use Φ to denote
the index dictionary. In summary, the user stores
|S |+ |kmac|+ 2λ+ |Φ| bits locally.

Assume that the user uploads ρ files per time. The
shared HMAC key occupies |kmac| bits. The cipher-
texts obtained by applying the KDM-CPA secure
symmetric encryption algorithm occupies |Σj∈ρ(ψj)|
bits in total. In the practical application, the output
length of HMAC-MD5 algorithm is fixed to 128bits.
So the total authentication tags and index strings oc-
cupies ρ · (2τ +128) bits. In summary, the user needs
to send total |Σj∈ρ(ψj)|+ ρ · (2τ + 128) + |kmac| bits
to the CSP.

Assume that only one trapdoor is allowed to submit at
a time. The user needs to send the trapdoor, which
occupies (τ + λ) bits, to the CSP.

The whole data volume analysis is shown in Table 2.

As can be seen from the contents of the Table 2, our
scheme has a low total data volume. The user stores |S |+
|kmac| + 2λ + |Φ| bits locally and sends |Σj∈ρ(ψj)| + ρ ·
(2τ + 128) + |kmac| bits to the CSP in data upload phase
and sends (τ+λ) bits to the CSP in data download phase.
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Figure 4: Performance evaluation of data processing
phase
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Figure 5: Performance evaluation of data recovery phase

6.2 Performance Evaluation

In this section, we use the Java security APIs to imple-
ment all cryptographic operations in our scheme. All al-
gorithms are implemented by using Java language. The
simulation is performed on a laptop computer with a Core
i3-2310M, 2.10 GHz processor. The simulation results are
shown in Figure 4 and Figure 5.

The application scenario of our scheme is for single-
user to store and manage personal wallet files. As we
mentioned earlier, our scheme has two stages, respectively
the data processing phase and data recovery phase. Dur-
ing the simulation, we ignore the time cost of commu-
nications between users and the CSP so that the results
below will not be good enough than theoretical results.
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Table 2: Data volume analysis

Phase Enc HMAC Index Trapdoor Total
Local storage |S | |kmac| |Φ| 2λ |S |+ |kmac|+ 2λ+ |Φ|
Data upload |Σj∈ρ(ψj)| ρ · 128 + |kmac| 2τ · ρ / |Σj∈ρ(ψj)|+ ρ · (2τ + 128) + |kmac|

Data download / / / (τ + λ) (τ + λ)

In data processing phase, the user needs to perform one
encryption operation, one HMAC operation and several
binary bitwise operations. Since binary bitwise operation
is fast, we ignore the computation time of it. As shown
in Figure 4, the time spent in the data processing phase
mainly includes encryption and hash. In data recovery
phase, the user submits the search credential to the CSP
to obtain the backup file. The user needs to compute
pseudo-random permutation and pseudo-random function
respectively one time firstly. And then call the decryption
algorithm to recover the plaintext. As mentioned above,
we still ignore the computation time of binary bitwise op-
erations. So the time spent in the data recovery phase
mainly includes decryption as shown in Figure 5.

Because the size of plaintext has a polynomial rela-
tionship with the security parameter, as the security pa-
rameter increase, the size of plaintext increases. So as
the security parameter increase, the time spent is also in-
creasing. As can be seen from both the two figures, when
the security parameter λ exceeds 128, the time consumed
increases significantly. Without loss of generality, when
the security parameter λ is 80, it is efficient to use our
scheme to store and manage the wallet files.

7 Conclusions

Aiming at enhancing the security of password-protected
wallet in Bitcoin, we put forward a new password-
protected wallet scheme utilizing backups. Specifically,
the encryption algorithm is able to resist the active KDM
attack. So the user can rest assured that the backup files
are securely encrypted, without fear of key information
disclosure. And the encrypted backup files will be up-
loaded to the CSP to prevent local data loss. Although
we introduce a semi-trusted third-party cloud server, we
prove that the cloud server cannot get any detail about
the backup files or the search credentials.

We also give a detailed security analysis and efficiency
analysis of the proposed scheme. The analyses show that
the proposed scheme is secure and efficient. In the future,
the more transactions are initiated, the more key pairs
will be stored in personal wallet. The encryption of key-
dependent messages is inevitable. So the proposed scheme
will play an important role in improving the security of
password-protected wallet, providing privacy protection
and promoting the development of Bitcoin economy. Our
scheme is only applicable to single user scenario currently,
and the scheme for multi-users is worthy of further study.
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