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Abstract

Elliptic curve cryptosystem is one of the important
branches of public key cryptosystem. Based on balanced
ternary scalar multiplication algorithm, using segmenta-
tion method and combing Montgomery algorithm, a Sim-
ple Power Analysis (SPA) resistant algorithm is possible
implemented. Compared with Anti-SPA balanced ternary
scalar multiplication algorithm, the efficiency of our algo-
rithm is increased 12.5% under affine coordinate on av-
erage; compared to the previous binary scalar multiplica-
tion with Anti-SPA algorithm, the efficiency of the bal-
anced ternary segmented algorithm increased by 38% in
Jacobian coordinate. When the length of key is 256bits,
the efficiency of the new advanced algorithm increased by
16.6% than HSTF algorithm in Jacobian coordinate.

Keywords: Balanced Ternary; Montgomery Algorithm;
Scalar Multiplication; Segmentation Method; Simple
Power Analysis

1 Introduction

Elliptic curve cryptography (ECC) was proposed by
Miller [15] and Koblitz [8] independently in 1985. It is
a public key cryptosystem that builds on the discrete log-
arithm problem of elliptic curve. Compared with others,
ECC has the advantages of low cost, small storage space,
low bandwidth requirements and short operation time.
Such as, the security of a 160-bit ECC key is equivalent
to that of a 1024-bit RSA key. Therefore, ECC is suit-
able for used in resource-constrained hardware devices,
such as smart cards cell phone cards and wireless appli-
cation environments [5]. With the popularization of the
Internet, people pay more and more attention to infor-
mation security, and the application range of ECC has
become more and more extensive. For example, Guo and
Wen [4] proposed an authentication scheme that in global
mobility networks using ECC in 2016. And shortly after,
a secure ECC-based Mobile RFID was proposed [1]. The
widespread application of ECC urges people to become

more dissatisfied with its operating speed at the present
stage. Therefore, increasing the efficiency of ECC and re-
ducing the computational cost become the problems that
the elliptic curve cryptography needs to solve urgently. In
elliptic curve operation, scalar multiplication is the most
time-consuming and complicated operation. By studying
the scalar multiplication algorithm and improving the op-
eration efficiency of scalar multiplication to improve the
speed of the elliptic curve cryptosystem, it is a widely
resolved solution.

Elliptic curve scalar multiplication (ECSM) algorithm
includes domain multiplication, domain addition, inver-
sion, etc., where the expensive computation is inversion [6,
19]. In order to improve the computational efficiency of
ECSM, on the basis of the traditional binary algorithm,
people proposed algorithms such as w-NAF [9, 16], Eu-
clidean addition [3], Fibonaccisequence [11], k-chain [18],
symmetric ternary [21] and so on, which can reduce the
number of point addition or point doubling during the op-
eration by simplifying and shortening the expansion form
of k; and in different coordinate systems, the point on the
elliptic curve has different forms, and the formulas for the
calculation of point addition and point doubling are also
different, literature [20] describes the computation costing
of point doubling and point addition in different coordi-
nate systems. It is known that Jacobian coordinate [13] do
not include inversion in the calculation, so that the com-
putational cost can be greatly reduced;Eisentrager [10],
Ciet [2], Joye [7] and others use mathematical ideas to
improve point addition and point doubling operation by
converting the inversion to multiplication and square or
converting the multiplication to square.

In the study of ECSM, it is proposed that the balanced
ternary algorithm should be applied to ECSM. Refer-
ences [14,21], give the exact algorithm and efficiency anal-
ysis of balanced ternary scalar multiplication (BTSM).
But these algorithms do not defend SPA. In 2015, liter-
ature [12] proposed a HBTSM algorithm that can with-
stand SPA. However, the computational efficiency of this
algorithm is not much superior to the previous BTSM.
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Based on this, this paper proposes an improved algo-
rithm which can resist SPA and has higher efficiency than
BTSM.

The remainder of the paper is structured as follows:
Section 2 brief introduction about elliptic curves. Sec-
tion 3 presents our improved algorithm. Section 4 pro-
vides efficiency analysis and comparison with other algo-
rithms. Section 5 describes the prospect of future research
and summary.

2 Basis Knowledge

2.1 Elliptic Curve

The Weierstrass equation for elliptic curve E(G,) over a
finite field is defined as:

(1)

where ai,a2,a3,a4,a6 € Gp. The point that satisfies
Equation (1) and the infinite point O together form an
Abelian group, and the operation on the Abelian group
is addition operation. Generally, we study the case where
the domain characteristic is not equal to 2 or 3. Accord-
ing to compatibility transformation [13], Equation (1) is
transformed into:

y2 + a1y +asy = x> + a2x2 + aqx + ag,

y* =2 +ax +b.

(2)

According to Chord and tangent method, the elliptic
curve point addition (ECADD) law or point doubling
(ECDBL) law for point P + @ = (z3,¥3), where point
P = (z1,11), Q@ = (z2,y2), can be described as follows:

N @)/ (@ —m) P#Q
(321 +a)/2y P=Q

The scalar multiplication &P on the elliptic curve deter-
mines the operation speed of the elliptic curve cryptosys-
tem, where k is an arbitrary integer and P is a point on
the curve.Based on the expansion of the integer k, it can
be decomposed into a series of point addition and point
doubling operations. The most traditional algorithm for
scalar multiplication is the binary scalar multiplication
algorithm.

(3)

Algorithm 1 Left-to-right binary scalar multiplica-
tion(BSM)

1: Input: k= (kn_lkn_g s klko)z, Pe E(Gp)
2: Output:kP
3: Q<+ 0
4: for n-1t0 0,7 — —
5: Q + 2Q;
6
7
8

if k; = 1, then
: Q<+ Q+ P
: Return @

From Algorithm 1, we can see the operation is cal-
culated point doubling in per cycle and calculated point
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addition only when k; = 0. So, the average cost of Al-
gorithm 1 is nD + (n/2)A, where A represents the point
addition operation, and D said the point doubling opera-
tion.

2.2 Balanced Ternary Scalar Multiplica-
tion

Balanced ternary, also known as symmetric ternary, it is
a base of 3 and -1,0,1 for the basic digital ternary count-
ing system. Any positive integer can be expressed as an
unique balanced ternary form [14], so it is used in the
scalar multiplication algorithm, not only can reduce the
length of the sequence, when the bit value is 71”7, exe-
cuting point addition operation, or the bit value is ”-17,
point subtraction is run. But in the scalar multiplication
operation, point addition and point subtraction are called
the point addition. Compared to ordinary ternary, it is
more conveniently.

Algorithm 2 Balanced ternary expansion algorithm
Input: integer k
Output:k = (kmflkmfg s klko)g, k; € {O, 1, —1}
140
while £ > 0 do
if (k mod 3==2) then
k= [k/3];
else if (kK mod 3==1) then
k; < 1;
10: k= |k/3];
11:  else k; <+ 0;
12: k=k/3;
13: 11+ 1;
14: Return k£ = (k‘m,1k’m,2 s klko)g

Algorithm 3 Balanced ternary scalar multiplication al-
gorithm(BTSM)
1: Input: k= (kmflkmfg s k1k0)3,P
: OQutput:kP
Q<+ 0
. for m-1t0 0,7 — —
Q@ < 3Q;

2
3
4
5
6: if k; =1, then
7
8
9

Q—Q+P;
else if k; = —1, then
: Q—Q—-P;
10: Return @

As can be seen from Algorithm 3, each cycle must be
calculated once point doubling,and only when k; is non-
zero integer, execute point addition. Therefore, the av-
erage operation cost of Algorithm 3 is mT + (2m/3)A,
where T means point tripling operation.
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3 Balanced Ternary Scalar Mul-
tiplication Advanced Counter-
measure

3.1 Balanced Ternary Segmentation

Based on balanced ternary scalar multiplication, we pro-
pose a scalar multiplication method of extracting common
string by comparing the same bit in two strings. The spe-
cific operation is described following:

1) Expand the scalar K to a balanced ternary form K =
(km—1km—2 -+ k1ko)s;

2) Divided K into two segments from right to left, the
high segment is K7, the low segment is Ks,s0, K =
K[| K>;

3) Compare two strings by bit,extract the same sub-
string as Ky,different values in the same bit are re-
served for K7, K);

4) Therefore, the scalar K can be expressed as K =
K[| Ky = 302 (Ko + K1) + (Ko + K5).

Theorem 1. The divided strings K1 and Ko can be ob-
tained by adding the common substring Ky to the remain-
ing strings K1, K} respectively [14].

3.2 Scalar Multiplication Algo-

rithm Against SPA

ECSM is vulnerable to simple power attacks.An attacker
can analyze the key by statisticing the power consumption
trace of scalar multiplication algorithm, thereby obtain
the key information. In this paper, combining the Mont-
gomery algorithm [17] and balanced ternary segmented al-
gorithm to proposed a scalar multiplication Algorithm 4
which can not only improve the computation efficiency
but also resist the SPA.

It can be seen from the above algorithm that the ad-
vanced scalar multiplication algorithm has the compu-
tational cost of (11/18)mA + mT, where A is a point
addition operation and T is a point tripling operation.
It reduces m/18 times the point addition calculation
than BTSM algorithm. Example calculate scalar mul-
tiplication, when scalar k = 7456 = (101110011)3,k; =
(01011)3, ko = (10011)3, the process of calculating kP =
7456 P is illustrated in Example 1.

To further enhance the ability of Algorithm 4 to re-
sist SPA attacks,an arbitrary point R € E(G)) can be
inserted. When kik4 € {11,711}, we add one more point
tripling calculation, that is, R = 3R. Therefore, in each
cycle of Algorithm 5, after the point addition operation,
we need to calculate a point tripling. Compared with
Algorithm 4, the improved algorithm adds an average of
m/9 times point tripling operation to improve the abil-
ity of resisting SPA. At the expense of computing costs
to improve the ability to resist SPA is a commonly used
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Algorithm 4 Balanced ternary segmented scalar multi-
plication algorithm

1: Input: K = K1||Ky = (k-1 k1ko)3,
Ky = (B{M/D7U g g9,
Koy = (kQL(m/Q)—U ki KD), P

2: Output:KP

3: Q[00] = Q[0] = Q1] =Q[2] =0
4: for i =0to [m/2] —1 do
5 if(kiki == 00) then

6 Q[00] = Q[00] + P

7 P =3P

8 else if(kiki == 11) then
9 Q[0 = Q[0] + P;

10: P =3P;

11:  else if(ki ki == 11) then
2 Q)= Q] - P

13: P =3P;

14:  else if(k{ k4 == 01) then
15; Q2] = Q2] + P;

16: P =3P;

17: else if(ki ki == 01) then
18 QR21=0Q2] - P;

19: P =3P;

20:  else if(kiki == 10) then
2 QU] = Q]+ P

22: P =3P;

23:  else if(kiki == 11) then
2. Q] = Q1] + P;

5 QP = Q- P

26: P =3P;

27:  else if(kiki == 10) then
% QU= Q] - P

29: P =3P;

30:  else if(kiki == 11) then
s QU] = QM- P

2 QR = QP+ P

33: P =3P;

34: Q[1] = Q[0] + Q[1];

35: Q[2] = Q[0] + Q[2];

36: for i =0 to [m/2—1] do
37 Q1] =3Q[1];

s8: Q1] = Q1] + Q[2];

39: Return Q[1]

strategy in the anti-SPA attack of elliptic curve cryptosys-
tem.

4 Result Analysis

4.1 Efficiency Analysis

The important calculation is point addition and point
tripling in BTSM algorithm. In different coordinate sys-
tems, the point addition and point tripling operations
include the times of domain multiplication, the domain
square and inversion are different. Thence, choosing a
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Example 1. k = 7456 = (1011T0011)3
i =0,kVk] =11, then
Q0] = Q0]+ P =P,
P+ 3P;
i=1,ktki =11, then
Q[0] = Q0] + P = 4P,
P+ 9P;
i =2,k?k3 = 00, then
Q[00] = Q[00] + P =9P,
P« 27P;
i =3,k3k3 = 10, then
QU] = Q1] + P = 27P,
P+ 81P;
i =4, ktks = 01, then
QR2l=Q2]-P=P,
P + 243P;
QI = QU] + Q[1] = 31P;
Q[2) = Q0] + Q2] = —T7P;
Q1] = 35Q[1] = 7533P;
Q1] = Q[1] 4+ Q[2] = 7533P — TTP = T456P.
return Q[1] = 7456 P

appropriate coordinate system can optimize the efficiency
of algorithm operation.

We choose the Jacobian coordinate [22], by applying
the idea of transforming multiplication to squre, author
reduces the point tripling computation from 10M + 6S
to 6M +10S,let P = (X1,Y1,721),Q = (X2,Y>, Z5), then
3P = (Xg, Yg, Zg)7 P + Q = (X47Y4, Z4)I

X3 = 16Y2(2D — 20) + 4X,B?
Y3 = 8Y;[(2C — 2D)(4D — 2C) — B3|
Z3 = (Z,+ B)> - Z? - B?

(4)

Where A = 3X? +aZ{, B =6[(X1 +Y?) — X2 - Y] -

A% C=(A+ B)?>— A* - B?% 2D = 16Y}%.
And

Xy=1—-F-2G

= U(G - X,) - FU;

Zy=VZ1Z5

where A = Z2 B = Z2,.C = Z1;A,D = ZyB,U; =
Y1D, Uy =Yo,C,U =Uy — Uy, Vi = X4 B, Vo = X0 A,V =
Vo —Vi,E =V2 F =VE,G = ViE,I = U2 So, the
point addition computation is 12M + 45.

Table 1 shows the amount of computation in different
coordinate systems.

As can be seen from Table 1, point addition and point
tripling calculation does not include inversion calculation
in the Jacobian coordinate. Through theoretical analysis,
When the scalar bit is 160bits, the computation of dif-
ferent scalar multiplication algorithms in different coordi-
nates can be described in Table 2. It is usually assumed
that I =8M,S =0.6M.

As we known, the BSM algorithm and BTSM algo-
rithm can not resist the SPA attack. When scalar is

Yy (5)

Algorithm 5 Balanced ternary segmented scalar multi-
plication advanced algorithm

1: Input: K = K1||Ky = (k-1 k1ko)3,
Ky = (B{M/D7U g g9,
Koy = (kQL(m/Q)—U ki KY),P,R

2: Output:KP

3: Q[00] = Q[0] = Q1] =Q[2] =0
4: for i =0to [m/2] —1 do
5. if(kiki == 00) then

6 Q[00] = Q[00] + P

7 P =3P

8 else if(kiki == 11) then
9 Q[0 = Q[0] + P;

10: P =3P

11:  else if(ki ki == 11) then
2 Q)= Q] - P

13: P =3P

14:  else if(k{ k4 == 01) then
15; Q2] = Q2] + P;

16: P =3P

17: else if(ki ki == 01) then
18 QR21=0Q2] - P;

19: P =3P

20:  else if(kiki == 10) then
2 QU] = Q]+ P

22: P =3P

23:  else if(kiki == 11) then
2. Q] = Q1] + P

25: R=3R

26: Q2] = Q2] - P;

27: P =3P

28:  else if(kiki == 10) then
29: Q] = Q1] - P;

30: P =3P

31:  else if(kiki == 11) then
2 QU= Q] - P

33: R=3R

3 Q2] = Q2]+ P;

35: P =3P

36: Q[1] = Q[0] + Q[1];

37: Q2] = Q[0] + Q[2];

38: fori =0to |[m/2—1] do
39:  Q[1] = 3Q[1];

40: Q[1] = Q[1] + Q[2;

41: Return Q[1]

160bits, Algorithm 4 can improve the computational effi-
ciency than the traditional binary algorithm increased by
8.7%, 3% higher than the BTSM algorithm under affine
coordinate; In Jacobin coordinate system, the computa-
tional efficiency of Algorithm 4 is 7% higher than BSM
algorithm, and 4% higher than BTSM algorithm. And
Algorithm 5 is 16.2% higher than the anti-SPA algorithm
under Jacobin coordinate.

When the key length increases, the efficiency is more
obviously. Assuming the scalar is 256 bits, given affine
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Table 1: Computation in different coordinate systems

Coordinates Point Addition | Point doubling | Point Tripling
Affine coordinate 1I4+2M~+1S 1I+2M+2S 1I4+45+7M
Jacobian coordinate 12M+4S 2M+8S 6M+10S

Table 2: 160 bits scalar multiplication computation

Algorithms Affine coordinate | Jacobian coordinate
BSM 2640M 2240M
Montgomery ladder 3488M 3392M
BTSM 2471M 2182M
STF Anti-SPA 2828M 2666M
Algorithm 4 2412M 2100M
Algorithm 5 2606M 2235M

coordinate system and Jacobian coordinate system, the
comparison of the operation of different SPA resistant al-
gorithms shows in Table 3.

According to the comparison of Table 3, when the
scalar is 256bits, the efficiency of Algorithm 4 is improved
by 30.7% compared with the Montgomery ladder algo-
rithm, due to the reduction of the operation on common
strings, the efficiency is improved by 15% compared with
the STF anti-SPA algorithm, and compared with HSTF
algorithm, the efficiency increased by 15.1% in affine co-
ordinate. Algorithm 5 is also about 16.6% more efficient
than HSTF algorithm, and improved by 34% compared
with Montgomery ladder algorithm in Jacobian coordi-
nate.

4.2 SPA Analysis

Simple Power Analysis(SPA) restores key information by
judging the instruction executed of the encryption device
at a certain time and the operands used according to the
power consumption trace measured to a single password
operation. In the elliptic curve cryptosystem, the scalar
multiplication algorithm has different time and energy
consumption in the point addition and the point multipli-
cation or point tripling operation and is relatively vulner-
able to SPA attack. Algorithm 4 combines the Mont-
gomery ladder algorithm, making each cycle contains
point addition and point tripling operation. In the Ja-
cobian coordinate system [22], the operation cost of point
addition operation is almost the same as point tripling,
and the attacker can not clearly determine whether the
point addition operation or the point tripling operation.
In the analysis of the possible values of kikj, the loop al-
gorithm can be divided into two parts, one is that when
kiki € {00,11,11,01,10,01,10}, a double point and a
point tripling operation are performed, in which two point
addition operations and one point tripling operation are
performed when kiki € {11,11}. Each case is an equal
probability event. Therefore, the adversary can not de-

termine the bit value at this time through the power con-
sumption path.

5 Conclusion

In this paper, by using the idea of extract common strings,
combined with Montgomery algorithm, an efficient and
resistant to SPA scalar multiplication algorithm is pro-
posed. Owing to the inversion calculation occupies a
high computational cost in balanced ternary, we choose
to perform the calculation at Jacobian coordinates to re-
duce the time consumption. Compared with the previous
scalar multiplication algorithm, the efficiency has great
improvement. With the scalar k increasing, the efficiency
improves even more. In the later research, we need to
improve the point tripling formula, find a more suitable
coordinate system, and point addition and point tripling
formula.
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