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Abstract

Data storage in the cloud is a very popular storage
method because of the cost savings resulting from the
user not needing hardware, software or space. However,
data storage in the cloud has unique requirements be-
cause the current technical and environment. On March
2018, Thangavel and Varalakshmi proposed an “Improved
Secure RSA cryptosystem (ISRSAC) for Data Confiden-
tiality in Cloud”. They modified the RSA algorithm into
another one called MRSAC. In this paper, the author will
examine the flaw from that scheme.
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1 Introduction

Thangavel et al. [4] proposed the ESRKGS scheme in
2005, which stemmed from their RSA modification. The
φ(n) of RSA [2] used two prime numbers, and Thangavel
used four primes to generate its φ(n). Lüy et al. [1] dis-
cussed the vulnerability of Thangavel’s scheme, and also
gave an example. Thangavel and Varalakshmi [3] modi-
fied the ESRKGS algorithm to ISRSAC scheme. Unfor-
tunately, there is a flaw in ISRSAC scheme, we would
describe this situation on next section.

2 ISRASC Algorithm

RSA cryptosystem consists of three phases: Prime key
generation, encryption and decryption. The problem is
that RSA is not secure against a brute force attack. The
security of RSA cryptosystem depends on the large prime

number because it is difficult to break. Hence a modi-
fied version of RSA for secure key generation is used to
generate the public and private keys. The resulting algo-
rithm is known as ISRSAC. To start the algorithm, we
randomly choose two large primes p and q where where
p 6= q, p > 3, q > 3, and find

n = p · q · (p− 1) · (q − 1)

m = p · q.

An integer r is randomly selected where p > 2r > q, which
generates α(n)

α(n) =
(p− 1)(q − 1)(p− 2r)(q − 2r)

2r

The public key e is satisfying 1 < e < α(n) where
gcd(e, α(n)) = 1

e · d ≡ 1 (mod α(n)).

The public key pair is (e, n), and private key pair is (d,m).

Encryption: Suppose the M is plaintext or digitize mes-
sage. We get ciphertext C by

C ≡Me (mod n).

Decryption: We recovery message by

M ≡ Cd (mod m).

3 Our Comment

3.1 The Parameter 2r Problem

As known 2r where

p > 2r < q.
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There are four types as follow:

Type 1: p = 4n+ 1 and q = 4m+ 1 forms.

Type 2: p = 4n+ 3 and q = 4m+ 1 forms.

Type 3: p = 4n+ 1 and q = 4m+ 3 forms.

Type 4: p = 4n+ 3 and q = 4m+ 3 forms.

Proof.

The Type 1. Since

4m+ 1 < 2r < 4n+ 1,

we get

4m+ 1 < 2r ⇒ m <
2r − 1

4

4n+ 1 > 2r ⇒ n >
2r − 1

4

The Type 2. Since

4m+ 1 < 2r < 4n+ 3,

we get

4m+ 1 < 2r ⇒ m <
2r − 1

4

4n+ 3 > 2r ⇒ n >
2r − 3

4

The Type 3. Since

4m+ 3 < 2r < 4n+ 1,

we get

4m+ 3 < 2r ⇒ m <
2r − 3

4

4n+ 1 > 2r ⇒ n >
2r − 1

4

The Type 4. Since

4m+ 3 < 2r < 4n+ 3,

we get

4m+ 3 < 2r ⇒ m <
2r − 3

4

4n+ 3 > 2r ⇒ n >
2r − 3

4

By Type 1 and Type 2, we get

m <
2r − 1

4
(1)

By Type 3 and Type 4, we get

m <
2r − 3

4
(2)

Suppose Equation (1) ∩ Equation (2), we know

m <
2r − 3

4

By Type 1 and Type 3, we get

n >
2r − 1

4
(3)

By Type 2 and Type 4, we get

n >
2r − 3

4
(4)

Suppose Equation (3) ∩ Equation (4), we obtain

n >
2r − 1

4

When n > 2r−1
4 and m < 2r−3

4 where r ∈ Z+, we get

q < 2r < p.

3.2 The Core Algorithm

As known

α(n) =
(p− 1)(q − 1)(p− 2r)(q − 2r)

2r
.

p, q are both primes. If r > 2, r ∈ Z+, α(n) is not an
integer.

Proposition 1. From α(n) above, p, q are both primes.
p or q can be written three forms as follows:

Case 1. p = 4n+ 3 and q = 4n+ 3 forms.

Case 2. p = 4n+ 1 and q = 4n+ 3 forms.

Case 3. p = 4n+ 1 and q = 4n+ 1 forms.

We first consider Case 1.

(p− 1)(q − 1) = (4n+ 2)(4m+ 2)

= 4[4mn+ 2(m+ n) + 1].

(p− 2r)(q − 2r) = pq − 2rp− 2rq + 22r.

α(n) = 4[4mn+ 2(m+ n) + 1](
p · q
2r
− p− q + 2r)

=
pq4[4mn+ 2(m+ n) + 1]

2r−2

−4(p+ q − 2r)[4mn+ 2(m+ n) + 1]

since p, q and [4mn+2(m+n)+1] are odd, therefore
the product of p · q · (4mn+2(m+n)+1) is also odd.
This equation is not divisible by 2r−2 where 2r−2 is
even. And

(p+ q)− 2r(4mn+ 2(m+ n) + 1)

is an integer. Thus, while r greater than 2, r ∈ Z+,
the α(n) is not an integer (a solution).
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We then discuss Case 2, namely p = 4n + 1 and q =
4m+ 3. Since

(p− 1)(q − 1) = 16mn+ 8n = 8n(2m+ 1),

then

(p− 2r)(q − 2r) = pq − 2rp− 2rq + 22r.

We get

α(n) = 8n(2m+ 1)(
pq

2r
− p− q + 2r)

=
pqn(2m+ 1)

2r−3
− 8n(2m+ 1)(p+ q − 2r)

1) If n is odd since p, q, n and (2m + 1) are odd,
the product of p · q · n(2m+ 1) is also odd. We
obtain

8n(2m+ 1)(p+ 1)(p+ q − 2r)

is not divisible by 2r−3 if r > 3. Therefore, α(n)
is not possible an integer.

2) If n is even where n = a · 2i, i ∈ Z+, a is odd.
We get

α(n) =
p · q · a(2m+ 1)

2r−i−3
−8n(2m+1)(p+q−2r).

Since p, q, a and (2m+ 1) are odd, the product
of p ·q ·a ·(2m+1) is also odd and is not divisible
by 2r−i−3 when r > i+ 3, i ∈ Z+.

By above Items 1) and 2), we know the α(n) is not
an integer when r > i+ 3, i ∈ Z+

0 .

We keep discussing Case 3, namely p = 4n + 1 and q =
4m+ 1.

(p− 1)(q − 1) = 16mn

(p− 2r)(q − 2r) = pq − 2rp− 2rq + 22r

α(n) = 16mn(
p · q
2r

)− p− q + 2r

=
p · q ·m · n

2r−4

−16mn(p+ q − 2r).

1) If m,n are odd, and p, q are odd, the product of
m · n · p · q is odd and is not divisible by 2r−4.

2) We start with m · n is even this is true under
following condition m is odd and n is even, or
m is even and n is odd.

Suppose
m · n = b · 2j ,

where b is odd, j ∈ Z+. We get

α(n) =
b · p · q
2r−j−4

− 16mn(p+ q − 2r),

since b, p, q are odd, the product of b · p · q is odd.
Therefore it will not be divisible by 2r−j−4 when r >
4 + j, j ∈ Z+. From above Items 1) and 2), when
r > 4 + j, j ∈ Z+

0 , the α(n) is not an integer.

Summary of Cases 1, 2 and 3.

1) p = 4n + 3, q = 4m + 3, α(n) is not an integer when
r > 2, r ∈ Z+.

2) p = 4n + 1, q = 4m + 3, α(n) is not an integer when
r > 3 + j, j ∈ Z+

0 .

3) p = 4n + 1, q = 4m + 1, α(n) is not an integer when
r > 4 + j, j ∈ Z+

0 .

4 Conclusion

Thangavel and Varalakshmi proposed ISRSAC scheme
by RSA modification algorithm. From our comment,

α(n) = (p−1)(q−1)(p−2r)(q−2r)
2r where p and q are primes,

and r > 3, r ∈ Z+, then the α(n) is not a integer. On
their scheme, it is not possible to generate the public key
e randomly. On other hand, it is also impossible sat-
isfied e · d ≡ 1 (mod α(n)) where 1 < e < α(n) and
gcd(e, α(n)) = 1. Therefore, the ISRSAC algorithm has
a certain theoretical defect.
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