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Abstract

A new fast and secure elliptic curve scalar multiplica-
tion algorithm is presented. The method is to utilize the
front and back ratio coefficient of Pell Lucas sequences.
The outcome is a new addition chain: Pell Lucas Type
Chain(PLTC), and combines the mixed coordinates which
shortens the previous ones. The energy curve of PLTC
algorithm is unified, and can resist simple power attacks.
Based on theoretical assumption and simulation experi-
ments, it can be obtained that the new scalar multiplica-
tion by the PLTC method is 22.7 % faster than the golden
ratio addition chain.

Keywords: Golden Ratio Addition Chain; Pell Lucas Type
Chain; Scalar Multiplication; Simple Power Attacks

1 Introduction

Elliptic curve cryptography was proposed independently
by Koblitz [15] and Miller [18] in 1985. Compared with
RSA public key cryptography and EIGamal [14] public
cryptography, elliptic curve cryptography provides higher
security strength. For example, a 160-bit elliptic curve
public key could provide comparable security to a 1024-
bit RSA public key.

Hence, the elliptic curve cryptography suits the envi-
ronment when the storage is limited [5,23]. The dominant
operation in elliptic curve cryptography cryptographic
schemes is the scalar multiplication, which is represented
as kP=P+P+. . . +P, where P is a point given by the el-
liptic curve E and k is an integer, which plays the role
of secret key [3]. Scalar multiplication of any one point
on elliptic curves seems to be a simple addition, and yet,
in the underlying field, it involves so many of multiplica-
tions. It is of great significance to find out a new method
to make the chain shorter. The elliptic curve has different
computational efficiency under different coordinate sys-
tem. Select a suitable coordinate is critical for the scalar
multiplication optimization.

There are three main operations in the underlying

of the scalar multiplication: inverse, multiplication and
square. The inverse is most time-consuming. Except for
affine coordinate [21], coordinates which don’t need in-
verse operation. To increase the efficiency of operation,
the project coordinate [21] is often used. At the same
time the Jacobian coordinate and the five element Jaco-
bian coordinates are also used, which both proposed by
Chudnovsky. It is difficult to improve the efficiency of
operation by using only one coordinate [7]. But Cohen
proposed that converting between the coordinates is easy,
that is the characteristic of mixed coordinates [10,19].

The core of the security chip is Cryptography algo-
rithm. In the processing of information, there is a risk
of information leakage, such as power, electromagnetic
radiation, and running time. Attacker can collect and
analyze the leak information then launch offensive at-
tacks. In 1996, Kocher proposed the Side Channel At-
tacks (SCA) [20], it is divided into two categories: Simple
Power Analysis(SPA) [6] and Differential Power Analysis
(DPA) [4]. The simple power analysis is used to analyze
the energy consumed by a single password operation. Be-
cause different operations have different energy consump-
tion. For different energy consumption, an attacker can
infer the order [10]. There are usually two ways to resist
SPA attack. The first way is just using one kind algo-
rithm, such as Golden Ratio Addition Chain(GRAC) [12]
and the Montgomery Power Ladder [13]. The other way
is to use the regular rules in algorithm, such as Double-
and-add algorithm [17].

The paper presents a new 2P+Q algorithm using the
best Mixed coordinate, which based on properties of
the pell-lucas sequence and get the PLTC. The issue is
mainly addressed in five parts. Part 1 gives an intro-
duction to elliptic curve cryptography and the deriva-
tion of the pell-lucas sequence from the Lucas sequence.
Part 2 introduced the new addition chain—-Pell Lucas
Type Chain(PLTC). The application of PLTC in ellip-
tic curve cryptosystems is introduced in Part 3. Part 4
makes a comparison between the PLTC and the previous
algorithms under the same coordinate, at the same time,
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analyze the resist of SPA attack.

2 Background

This part explain Elliptic Curve Cryptography and Pell
Lucas sequence.

2.1 Elliptic Curve Cryptography

The elliptic curve E over the field K is defined by Weier-
strass equation.

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6. (1)

Where a1, a2, a3, a4, a6 ∈ K and ∆ 6= 0, the ∆ is discrimi-
nant of E. When the characteristic of the field K is greater
than 3, the equation can be simplified to:

E : y2 = x3 + ax+ b. (2)

Where a, b ∈ K and, ∆ = 4a3 + 27b2 6= 0.
There are two infinite points on this curve:

P = (x1, y1),

Q = (x2, y2),

P +Q = (x3, y3).

• Point Addition (P 6= Q)

x3 = λ2 − x1 − x2,
y3 = λ(x1 − x3)− y1,

λ =
y2 − y1
x2 − x1

. (3)

• Point Doubling (P = Q)

x3 = λ2 − 2x1,

y3 = λ(x1 − x3)− y1,

λ =
3x21 + a

2y1
(4)

The computation of 2P+Q often in two methods, com-
pute 2P using the double point Equation (4), add Q using
Equation (3).

Equations (3) and (4) consist of multiplication, inverse
and square of large integer. The three methods are repre-
sented as M, I, S. Comparing with these three operations,
the calculation of integer addition and large integer mul-
tiplication can be ignored. S/M is equal to 0.8. The
I /M ratio is generally about 10 [10, 11]. The data show
that the inverse operation is the most time-consuming.
Under the affine coordinates, each cost time of 2P+Q is
1I +9M +2S,Ciet. But in [10], the realization of point ad-
dition and double point operation in other coordinates
does not need to compute the inverse operation. In this
paper, discussion of the complexity of algorithm is based
on the Mixed coordinate, the literature [1,9,10] state the
operation method under the Mixed coordinate [22].

2.2 Pell Lucas Sequence

The Lucas sequence is an important result of the study by
Lucas in the 19th century, now it has become an impor-
tant integer sequence in the Theory of Numbers. There
are some inseparable links between the Lucas sequence
and the Fibonacci sequence.

Definition 1. The Fibonacci sequence is defined as Fn =
Fn−1 + Fn−2(n ≥ 2), and F0 = 0, F1 = 1.

Definition 2. The Lucas sequence [2] is defined as
Ln+1 = Ln + Ln−1(n = 1, 2, · · · ) and L0 = 2, L1 = 1.
The general equation is

Ln = αn + αn(n ≥ 0)

α =

√
5 + 1

2

β =
1−
√

5

2

It can be seen that the Fibonacci sequence and Lucas
sequence are different in beginning, but the relationship
between the number is same.While the Lucas sequence is
consists of two linear, so there is another way to define
the Lucas sequence. Take the two integers P,Q to satisfy
the equation: ∆ = P 2 − 4Q > 0.

So we can get the equation: x2−Px+Q = 0, the roots
of equation are a, b, based on this, the Lucas sequence can
also be defined as

Un(P,Q) = (an − bn)/(a− b),
Vn(P,Q) = (an + bn). (5)

Where n ≥ 0, so we can get

U0(P,Q) = 0

U1(P,Q) = 1

V0(P,Q) = 2

V1(P,Q) = P.

If take (P,Q) = (1,−1) into Un suquence, we can get
the Fibonacci sequence:

{0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377 . . .}.

If take (P,Q) = (1,−1) into Vn sequence,we can get
the Lucas sequence:

{2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843 . . .}.

When (P,Q) = (2,−1), the equation Vn(2,−1) is Pell-
Lucas sequence, which can be represented as follows:

{2, 2, 6, 14, 34, 82, 198, 418, 1154, 2786, 6726, . . .}.

At the same time, Un(2,−1) is Pell sequence:

{0, 1, 2, 5, 12, 29, 70, 169, 408, 985, 2378, 5741, . . .}.

The general term of Pell-Lucas and Pell sequence is
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(Pell-Lucas)

Vn = (an + bn)(a = 1−
√

2, b = 1 +
√

2),

lim
n→∞

Vn
Vn+1

= lim
n→∞

an − bn

an+1 − bn+1
≈ 0.414.

(6)

(Pell)

Un =
an − bn

a− b
(a = 1−

√
2, b = 1 +

√
2),

lim
n→∞

Un

Un+1
= lim

n→∞

(an − bn)(a− b)
(an+1 − bn+1)(a− b)

≈ 0.414.

(7)

It can be seen that both of Pell-Lucas or Pell sequence
satisfy the following properties:

Li+1 = Li−1 − 2Li(i = 1, . . . , n), (8)

Li = Li+1 × 0.414(i = 1, . . . , n). (9)

3 Pell Lucas Type Chain

Equations (8) and (9) can account for the Pell-Lucas and
Pell sequence, and both of the sequence satisfy Equa-
tions (8) and (9). But it’s easy to see that if one sequence
is corresponds to formula Li+1 = Li−1−2Li(i = 1, . . . , n),
it is only going to fit the formula Li = Li+1 × 0.414(i =
1, . . . , n) at the beginning. As the extended of sequence,
the ratios of front and back are deviates from 0.414. The
GRAC using GAP to determine the sequence of the gold
addition chain. But select the number of GAP is a new
major research problem. So we define a new sequence:
Pell Lucas Type Chain(PLTC).

Definition 3. The Pell Lucas Type Chain is a sequence
satisfy the formula Li+2 = Li−2Li+1(i = 1, 2, . . . , n) and
Ln+1 > Ln > 0.

The PLTC can be applied to the scalar multiplication
of Elliptic curve and can greatly shorten the length of the
double-and-add chain.

PLTC is not a Standard Pell-Lucas sequence. PLTC
is just a chain roughly satisfies the properties of the Pell-
Lucas sequence. Applying this to the elliptic curve can
get Algorithm 1.

For the facilitation of the calculation,three sets e{},
s{} and y{}must be used in Algorithm 1. The calculation
begins with the integer number k. The first step is to
obtain an integer number close to k×0.414. Then we can
apply ui+1 = ui−1 − ui × 2(ui > 1, i = 1, . . . , l),base on
this, there will be two situations.

A: 0 < ui+1 < ui → ei = 1,

B: ui+1 ≥ uiorui+1 ≤ 0→ ei = 0.

u′i+1 = ui+1 → u′i+1 = si → ui+1 = 1
2ui,

if Mod(ui+1, 2) = 1→ {ei+1 = 1, y = 1};
if Mod(ui+1, 2) = 0→ {ei+1 = 1, y = 0}.

At the last step, the number is too small, so we have
two cases for the end of the reference. One is end of e=1,

Algorithm 1 Pell Lucas-Type Addition Chain

1: Input: A positive integer k
2: Output: e = {e1, e2, . . . , ei}

y = {y1, y2, . . . , yj}, s = {s1, s2, . . . , sj}
3: u0 ← k
4: e{}
5: u1 ← u0 × 0.414
6: u2 ← u0 − 2u1
7: e← e ∪ {1}
8: s{}
9: y{}

10: while ui > 1 do
11: ui+1 ← ui × 0.414
12: e← e ∪ {1}
13: u′i+2 ← ui − 2× ui−1
14: if 0 < u′i+2 < ui+1 then
15: e← e ∪ {1}
16: ui+2 ← u′i+2

17: end if
18: if u′i+2 ≥ ui+1oru

′
i+2 ≤ 0 then

19: e← e ∪ {0}
20: s← s ∪ {u′i+2}
21: ui+2 ← ui+1

2
22: if ui+1mod2 = 1 then
23: e← e ∪ {1}
24: y ← y ∪ {1}
25: end if
26: if ui+1mod2 = 0 then
27: e← e ∪ {1}
28: y ← y ∪ {0}
29: end if
30: end if
31: end while

another one is end of e=0. Each time we will get an s or
a y. We call these two end of methods are the S type end
mode and Y type end mode. Each situation is shown in
case Example 1 and Example 2.

From Example 1, we can get the three sets. But if it
use this data to restore the k, three sets must be reversed
and get the sets like :

e = {1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1},
s = {−1,−8, 2614},
y = {0, 1, 1}.

Using the same method of Example 1, from Example 2,
we can get the three sets:

e = {0, 1, 1, 0, 1, 1},
s = {0, 11},
y = {0}.
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Example 1.k=131456, three sets:e{}, y{}, s{}
(Y type end mode)

u0 = k = 131456
e = 1 u1 = u0 × 0.414 = 54423
e = 1 u2 = u0 − 2u1 = 22610
e = 1 u3 = u1 − 2u2 = 9203
e = 1 u4 = u2 − 2u3 = 4204
e = 0 u5 = u3 − 2u4 = 795
u′6 = u4 − 2u5 = 2614, since2614 > u5,
set e = 0, s = s ∪ {u′6 = 2614}
since u6 = u5

2 , and u6mod2 = 1,
set e = 1, y = y ∪ {1}
e = 1 u6 = u5

2 = 397 · · · 1
e = 1 u7 = u6 × 0.414 = 164
e = 1 u8 = u6 − 2u7 = 69
e = 1 u9 = u7 − 2u8 = 26
e = 0 u10 = u8 − 2u9 = 17
u′11 = u9 − 2u10 = −8, since− 8 < 0,
set e = 0, s = s ∪ {u′11 = −8}
since u11 = u10

2 , and u11mod2 = 1,
set e = 1, y = y ∪ {1}
e = 1 u11 = u10

2 = 8 · · · 1
e = 1 u12 = u11 × 0.414 = 3
e = 1 u13 = u11 − 2u12 = 2
u′14 = u12 − 2u13 = −1, since− 1 < 0
set e = 0, s = s ∪ {u′14 = −1}
since u14 = u13

2 , and u14mod2 = 0,
set e = 1, y = y ∪ {0}
e = 1 u14 = u13

2 = 1 · · · 0
since u13 − 2u14 = 0, and 0 < 1
END

Example 2.k=175, three sets:e{}, y{}, s{}
(S type end mode)

u0 = k = 175
e = 1 u1 = u0 × 0.414 = 72
e = 1 u2 = u0 − 2u1 = 31
e = 0 u3 = u1 − 2u2 = 10
u′4 = u2 − 2u3 = 11, since11 > u3,
set e = 0, s = s ∪ {u′4 = 11}
since u4 = u3

2 , and u3mod2 = 0,
set e = 1, y = y ∪ {0}
e = 1 u4 = u3

2 = 5 · · · 0
e = 1 u5 = u4 × 0.414 = 2
e = 0 u6 = u4 − 2u5 = 1
u′7 = u5 − 2u6 = 0 < 1
set e = 0, s = s ∪ {u′7 = 0}
END

4 Application of PLTC to Elliptic
Curve Cryptosystem

In Algorithm 2, there are two assignment required for
each operation, T and T0 are intermediate values in the

algorithm, the cost time of assignment operation can be
ignored. the last value is not remembered when the as-
signment end at each time, so it has no effect on memory
space.

Algorithm 2 PLTC using to elliptic curve

1: Input: e = {e1, e2, . . . , en},y = {y1, y2, . . . , yi}, s =
{s1, s2, . . . , sj}

2: Output:kP
Main loop

3: i = 1
4: j = 1
5: n = 1
6: if en = 0 then
7: T ← P
8: P ← 2P + siP
9: T0 ← T

10: i+ +
11: n+ +
12: end if
13: if en = 1 and en+1 = 0 then
14: T ← P
15: P ← 2P + yjP
16: T0 ← T
17: j + +
18: n+ +
19: end if
20: if en = 1 and en+1 6= 0 then
21: T ← P
22: P ← 2P + T0P
23: T0 ← T
24: n+ +
25: end if
26: Q← P

Hence, the output is kP=Q. In Algorithm 2 operation,
no mater the bit is 1 or 0, each scalar multiplication has
one addition and one doubling. The two sets s and y
does not affect the rate of calculation. Because all of
their operations are contained in the operation of set e.
Set s and set y are the fixed sequences of PLTC. These
can be demonstrated in Example 3 and Example 4.

5 Discussion

5.1 Scalar Multiplication Analysis

Randomly selected 10000 of the large integers from 160
bits. Count the same chain length, According to the
statistics, up to the most were 116, 117 and 118 bits.
Choose the four times statistical results can obtain the
Table 1. Count the length of chains from 111 to 120 and
show in graph like Figure 1.

We can see from the Table 1 and Figure 1, 117 bit is
always the most. The distribution of chain length is in
accordance with the gaussian distribution. So the length
of PLTC-160 can be seen as 117.
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Example 3. e={1,0,1,1,0,1,1,1,1,0,1,1,1,1}
s={-1,-8,2614}
y={0,1,1}

e1 = 1, T = P, P = 2P + y1P, T0 = T
(P = 2P )
e2 = 0, T = P, P = 2P + s1P = 3P, T0 = T
(P = 3P )
e3 = 1, T = P, P = 2P + T0P = 8P, T0 = T
(P = 8P )
e4 = 1, T = P, P = 2P + y2P = 17P, T0 = T
(P = 17P )
e5 = 0, T = P, P = 2P + s2P = 26P, T0 = T
(P = 26P )
e6 = 1, T = P, P = 2P + T0P = 69P, T0 = T
(P = 69P )
e7 = 1, T = P, P = 2P + T0P = 164P, T0 = T
(P = 164P )
e8 = 1, T = P, P = 2P + T0P = 397P, T0 = T
(P = 397P )
e9 = 1, T = P, P = 2P + y3P = 795P, T0 = T
(P = 795P )
e10 = 0, T = P, P = 2P + s3P = 4202P, T0 = T
(P = 4204P )
e11 = 1, T = P, P = 2P + T0P = 9203P, T0 = T
(P = 9203P )
e12 = 1, T = P, P = 2P + T0P = 22610P, T0 = T
(P = 22610P )
e13 = 1, T = P, P = 2P + T0P = 54423P, T0 = T
(P = 54423P )
e14 = 1, T = P, P = 2P + T0P = 131456P, T0 = T
(P = 131456P )
Q=131456P

Example 4. e={0,1,1,0,1,1}
s={0,11}
y={0}

e1 = 0, T = P, P = 2P + s1P, T0 = T
(P = 2P )
e2 = 1, T = P, P = 2P + T0P = 5P, T0 = T
(P = 5P )
e3 = 1, T = P, P = 2P + y1P = 10P, T0 = T
(P = 10P )
e4 = 0, T = P, P = 2P + s2P = 31P, T0 = T
(P = 31P )
e5 = 1, T = P, P = 2P + T0P = 26P, T0 = T
(P = 72P )
e6 = 1, T = P, P = 2P + T0P = 175P, T0 = T
(P = 175P )
Q=175P

We have five different kinds of coordinate systems (A,
P , J , Jc, Jm) [10] that we often used. Here we compare
the different cost of doubling and addition between dif-
ferent coordinate system. Both computation time of the
operation [17] shown in Table 2 and Table 3.

Table 1: 116, 117, 118bit of PTLC

116bit 117bit 118bit
The first time 3198 3483 1586

The second time 1844 5391 1018
The third time 758 3963 3283
The forth time 1228 4049 3037

Figure 1: The number of 160-length change

Analyzing of the Table 2 and Table 3, we can obtained
that the point addition operation under the J coordinates
is the most time-saving operation, at the same time, the
point doubling operation under the Jc coordinate is the
most time-saving way. The resulting mixed coordinates
are shown in Table 4.

In Algorithm 2, the calculation has one addition and
one doubling each time. The length of addition is 1

2 l,
and the length of doubling is 1

2 l(l = 117). So we get the
following formula.

][m] = l(7[M] + 7[S]).

The cost time of PLTC can be calculated as 1474[m].
To effectively illustrate the advantages of PLTC algo-
rithm. we choose to compare the number with other al-
gorithms in the same coordinate and get Table 5.

From Table 5, we can see that under the same coordi-
nate, PLTC is 22.7% faster than the GRAC, 7.9%, 17.2%
and 29.9% faster than the 4-NAF, NAF and Double-and-
add. At the same time, the reduction of chain length is
considerable, and the results are shown in Table 6.

From Table 6, we can see the length of PLTC is
shorter than other kind of algorithms. Even under
the same length number with DFAC-160, PLTC-160 is
26.9%shorter than DFAC-160. Compared with other al-
gorithms, PLTC is more suitable for the environments
such as security chips and smart cards, which are more
demanding about memory space.
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Table 2: Doubling cost on different coordinates

doubling
operation costs

2A=J 2[M] + 4[S]
2A = Jm 3[M] + 4[S]
2Jm = J 3[M] + 4[S]
2A = Jc 3[M] + 5[S]

2Jm 4[M] + 4[S]
2Jm = Jc 4[M] + 5[S]

2J 4[M] + 6[S]
2Jc 5[M] + 6[S]
2P 7[M] + 5[S]

Table 3: Addition cost on different coordinates

addition
operation costs
P + P 12[M] + 2[S]
Jm + Jm 13[M] + 6[S]
J +A 8[M] + 3[S]

Jm +A = Jm 9[M] + 5[S]
Jm +A = J 8[M] + 3[S]
Jc + J = J 11[M] + 3[S]
Jc + Jc = Jm 11[M] + 4[S]
Jc + Jc = J 10[M] + 2[S]
Jc + Jc 11[M] + 3[S]

Jc +A = Jm 8[M] + 4[S]
Jc +A = Jc 8[M] + 3[S]
J +A = Jm 9[M] + 5[S]
A+A = Jm 5[M] + 4[S]
A+A = Jc 5[M] + 3[S]
J + J 12[M] + 4[S]

Jc + J = Jm 12[M] + 5[S]
Jm + Jc = Jm 12[M] + 5[S]

Table 4: Mixed coordinate

Addition Doubling
Operation A + A = Jc 2A=J

Cost 5[M ]+3[S ] 2[M ]+4[S ]

Table 5: Mixed coordinate

Algorithm Coordinate ][m]
Double-and-Add [17] Mixed 2104

NAF [16,17] Mixed 1780
4-NAF [17] Mixed 1600

GRAC-258 [12] Mixed 1907
PLTC-117 Mixed 1474

Table 6: The chain length for algorithms

Algorithm Chain Length
Fibonacci-add-add 358
Signed Fib-add-add 322

Window Fib-add-add 292
EAC-320 320

GRAC-258 258
DFAC-160 160
PLTC-160 117

Figure 2: The power waveform of e=0

5.2 Resist SPA Analysis

The key obtained by PLTC algorithm is composed of ”0”
and ”1”, The power consumption waveforms obtained in
both cases are shown in Figure 2 and Figure 3. Because
the key is longer, randomly select 8 bits (1001 0001) used
for PLTC coding. The power consumption waveform of
a scalar multiplication in Figure 4, which collected from
the power consumption analysis platform.

We can see from the three figures, that each bit has
same waveform, no matter it’s ”0” or ”1”, both contains
one addition and one doubling, the waveform of power
is same when attacker see from outside.integrated into
Figure 4, it is very hard to distinguish the energy curve,
can’t know the exactly number of the channel, even select
a part of information. so it can resist against SPA.

6 Conclusion

This is the first study to combine Pell Lucas Type se-
quence with elliptic curve cryptography. With the ad-
vantages of the pell-Lucas sequence, we can improve the

Figure 3: The power waveform of e=1
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Figure 4: The power waveform of (1001 0001)

ratio between the numbers of the chain and the efficiency
significantly.

For further study, we need to address the problem, al-
though S has very little impact on the calculation and can
be ignored. It accounts for about 25 %of the total chain.
Therefore it will increase the burden of coding, decoding
and transmission and add operations for the analysis of
the password. the numbers in TABLE S can be bigger
when the main chain gets longer. If we could reduce the
storage space of, PLTC could be applied to elliptic curve
cryptosystems more efficiently where memory is involved,
such as smart card.
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