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Abstract

With the emerging of new types of network forms, ser-
vices and cloud computation, the situation has trans-
formed from one party to many parties at least one of
both communication ends, that is “one-to-many,” “many-
to-one,” and “many-to-many” situations. Most of the ex-
isting fully homomorphic encryption schemes only allow
one party to encrypt the plaintext and another party to
decrypt the ciphertext without the decryption keys. This
form of cryptography loses efficiency under the demands
of “one-to-many,” “many-to-one,” and “many-to-many”
scenarios. In this paper, we combine the fully homomor-
phic encryption with proxy re-encryption to propose the
fully homomorphic proxy re-encryption scheme which can
be applied to “many-to-one” scenario, that is the fully ho-
momorphic proxy re-encryption scheme allows one party
to compute arbitrary functions over encrypted data for
many parties without the decryption keys. Finally, IND-
CPA, KP-CPA and master secret security proof of our
proposal are given.

Keywords: FHPRE; Key Privacy; Many-to-One; STP-
Binary-LWE

1 Introduction

Proxy Re-Encryption (PRE), which is an extension of
public key encryption, was introduced by Bleumer et
al. at Eurocrypt 1998 [4]. A PRE scheme allows proxy
(semi trusted) to transform a ciphertext for Alice (del-

egator) into a ciphertext for Bob (delegatee) without
knowing the message. The interesting property makes
PRE more applicable in many scenarios, such as en-
crypted email forwarding [4], vehicular ad hoc network,
outsourced filtering of encrypted spam , the distributed
file system [3, 9]. Fully-homomorphic encryption (FHE)
marks another milestone in the history of modern cryp-
tography. A FHE scheme allows one party to compute
arbitrary functions over encrypted data for another party
without the decryption key. FHE has many applications
in cloud computation, such as private queries to a search
engine, searching on encrypted data [8, 10,14].

The existing FHE schemes are mostly in the form of
“one-to-one” deployment situations. With the emerging
of new types of network forms, services and cloud compu-
tation, the situation has transformed from one party to
many parties at least one of both communication ends,
that is “one-to-many,” “many-to-one,” and “many-to-
many” situations. It’s interesting to combine the concept
of FHE and PRE to construct a fully homomorphic proxy
re-encryption (FHPRE), which allows one party to com-
pute arbitrary functions over encrypted data for many
parties without the decryption keys, satisfying the many-
to-one situation. The application of FHPRE in the cloud
computation can see [13,21,24].

Xagawa [22] constructed the first bidirectional PRE
scheme based on lattices, which is CPA secure. Aono et
al. [1] proposed a unidirectional key-private PRE (KP-
PRE) scheme based on lattices, which is CPA secure.
A unidirectional scheme permits user Alice to delegate
to user Bob, without permitting Alice to decrypt user
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Bob’s ciphertexts. A unidirectional proxy re-encryption
is said to be key privacy if any adversary cannot dis-
tinguish a real re-encryption key from a random re-
encryption key even if the adversary is allowed to access
to the re-encryption key oracle and the re-encryption or-
acle which re-encrypts input ciphertexts by using the real
re-encryption key [2, 18]. Ateniese et al. [3] introduced
master secret security as another security requirement for
unidirectional PRE based on lattices. Master secret secu-
rity demands that it is hard for the coalition of the proxy
and Bob to compute Alice’s secret key.

Singh et al. [20] showed [1,22] is not secure under mas-
ter secret security model and constructed a unidirectional
multi-use PRE which is secure under master secret secu-
rity model. Nishimak et al. [18] proposed two unidirec-
tional KP-PRE schemes from LWE assumptions, which
are CPA secure. Jiang et al. [11] constructed a multi-
use unidirectional PRE scheme based on lattices, which
is CPA secure and master secret secure. Kirshanova et
al. [12] proposed a unidirectional proxy re-encryption
scheme based on LWE problem and showed it is CCA-1
secure in the selective model. Zhang et al. [23] proposed
Unidirectional IBPRE scheme from lattice for cloud com-
putation, which is CPA secure.

Recently, FHE from learning with errors (LWE) as-
sumption has attracted many attentions due to their
average-case to worst-case equivalence and their conjec-
tured resistance to quantum attacks [19]. The efficiency
of FHE is one of the most concerned problems. A number
of techniques are proposed and used to improve the effi-
ciency of FHE, such as re-linearization technique, dimen-
sion modulus reduction technique [5], modulus switching
technique [6]. In 2012, Brakerski [7] constructed a scale-
invariant fully homomorphic encryption scheme, whose
noise only grows linearly with every multiplication (before
refreshing). Ma et al. [15] proved that STP-binary-LWE is
hard when LWE is hard, and modified the scale-invariant
fully homomorphic encryption scheme [7] based on STP-
Binary-LWE so that it is more efficient. Furthermore,
Ma et al. [15] can encrypt several messages at a time and
achieve a balance between security and efficiency in the
hierarchical encryption systems.

Unfortunately, all of the above FHE schemes are not
applicable to the many-to-one situation. Zhong et al. [24]
constructed a “many-to-one” homomorphic encryption
scheme based on approximate GCD problem, which is
not lattice-based scheme. The essence of the scheme [24]
is a PRE scheme, and needs the trusted third party to
distribute the key. Ma et al. [16,17] constructed a homo-
morphic proxy re-encryption scheme based on LWE which
can only encrypt one message at a time.

In this paper, we construct a unidirectional FHPRE
scheme from lattices which can be used in the “many-to-
one” situation and only needs semi trusted third party.
The FHPRE can encrypt two messages at a time. At last,
we prove that our FHPRE is indistinguishable against
chosen-plaintext attacks, and key privacy secure.

The rest of this paper is organized as follows. Section

2 is preliminaries. Section 3 describes the constructed
FHPRE scheme and proves the security of FHPRE. At
last, the conclusion will be given in Section 4.

2 Preliminaries

2.1 Notation

All scalars, column vectors and matrices will be denoted
in the form of plain (e.g. x), bold lowercase (e.g. ~x)
and uppercase (e.g. X), respectively. For a real number
x (x ≥ 0), dxe, bxc, bxe denoted rounding up or down,
rounding to the nearest integer. We denote η = dlog qe,
[x]q = x mod q, Zq = (− q2 ,

q
2 ]∩Z, [k] = {1, 2, · · · , k}. The

li norm of a vector ~v is denoted by ||~v||i. k-dimensional
identity matrix is denoted by Ik. Inner product, tensor
product and semitensor product are denoted by < ~v, ~u >
, P ⊗Q,Pr×kl nQl×t = (P (Q⊗ Ik))r×kt, respectively.

[X|Y ] ∈ Zm×(n+l)
q is the concatenation of the columns

of X ∈ Zm×nq , Y ∈ Zm×lq . [X;Y ] ∈ Z(n+l)×m
q is the con-

catenation of the rows of X ∈ Zn×mq , Y ∈ Zl×mq . We set

BD
(
~xT
)

=
(
~uT1 | · · · |~uTη

)
∈ {0, 1}nη;

P2 (~x) =
(
1, 2, · · · , 2η−1

)T ⊗ ~x
=

(
1~x; 2~x; · · · ; 2η−1~x

)T ∈ Znηq ,

where ~x ∈ Znq , ~xT =
η∑
k=1

2k−1~uTk . When A is a matrix,

let P2(A), BD(A) be the matrix formed by applying the
operation to each column of A.

Concerning a probability distribution D, we record it
as ~x← D, which means that ~x is sampled according to D.
So for a set S, we record it as y ← S, which means that
y is sampled uniformly from S. Two random variables X
and Y are said to be statistically (and computationally)
indistinguishable, denoted by X≈sY (X≈cY ).

2.2 STP − Binary − LWEn,q,χk and Key
Switching

Ma et al. [15] proved that STP-binary-LWE is hard and
showed the Key Switching functions by semitensor prod-
uct.

Theorem 1. ( [15]) For an integer q = q(n) ≥ 2
and a distribution χ on Zq, an integer dimension n =

n
′
log(logn

′
) ∈ Z+, where n

′
is the dimension of LWE

problem. The STP−Binary−LWEn,q,χk problem, which
is to distinguish the following two distributions: In the
first distribution, one samples (~a; b1, · · · , bk) uniformly
from Zn+k

q . In the second distribution, one first draws

~s ← Zn/k2 and then samples (~a, b1, · · · , bk) ∈ Zn+k
q by in-

dependently sampling ~a← Znq , ei ← χ, i ∈ [k], and setting

(b1, · · · , bk) = ~aT n ~s+ (e1, · · · , ek), is hard.

In the following, we can without loss of generality let
that k = 2. We show the Key Switching functions which
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can switch ciphertexts under S into ciphertexts under
(1;~t). Let q be an integer and χ be a distribution over Z.

• SwitchKeyGenq(S,~t): Input S ∈ Zns×2, ~t ∈ Z
nt
2 ,

As:t ← Zn̂s×nt
q and X ← χn̂s×2, where n̂s = ns ·

dlogqe. Output Ps:t = [Bs:t|| − As:t] ∈ Zn̂s×(nt+2)
q ,

where Bs:t := [As:t n ~t+Xs:t + PowersOf2q(S)]q ∈
Zn̂s×2
q .

• SwitchKeyq(Ps:t, ~cs): Input Ps:t and ciphertext
~cs under S. Output ciphertext ~ct := [PTs:t ·
BitDecompq(~cs)]q under (1;~t).

Lemma 1. ( [15]) (correctness). Let S ∈ Zns×2,~t ∈
Znt/2 and ~cs ∈ Zns

q be any vectors. Let Ps:t ←
SwitchKeyGenq(S,~t) and set ~ct ← SwitchKeyq(Ps:t, ~cs).
Then

~cs
T n S = ~ct n (1;~t)−BitDecompq(~cs)TXs:t(modq).

Lemma 2. ( [15]) (security). Let S ∈ Zns×2 be
any vector, ~t ← Znt/2, Ps:t ← SwitchKeyGen(S, ~t),
then P is computationally indistinguishable from uniform

overZn̂s×(nt+2)
q , assuming STP-Binary-DLWEn,q,χk .

2.3 Syntax of FHPRE and Security
Model

The FHPRE compromises FHE and PRE, the Syntax of
FHPRE is as follows.

Definition 1. (Unidirectional FHPRE Scheme)
A single-hop unidirectional FHPRE scheme consists of

the following 7 algorithms:

1) Setup(1k, 1L)→ pp: Given the security parameter k,
the upper bound on the maximal multiplicative depth
L ∈ N that the scheme can homomorphically evalu-
ate, output the public parameters pp.

2) Gen(pp, i, L) →
(
eki, dki, evki

)
: Given pp, L and a

user identity i, output an encryption/decryption key
pair

(
eki, dki

)
, eval keys evki = {evki

(l−1):l
}l∈[L], and

decryption keys dkil at level l of the circuit, l ∈ [L].

3) Enc(pp, eki, µ)→ ct: Given pp, eki and a message µ
, output a ciphertext cti0 at level 0 of the circuit.

4) Eval(pp, evki
(l−1):l

, ci
l−1,1

, ci
l−1,2

) → ci
l

: Given

pp, evki
(l−1):l

, and ciphertexts ci
l−1,1

, ci
l−1,2

at level l−1

of the circuit, output a ciphertext ci
l

at level l of the
circuit, l ∈ [L].

5) Dec
(
pp, dki, ctiL

)
→ µ: Given dki and ctiL at level L

of the circuit, output a plaintext µ or an error symbol
⊥.

6) Rekey
(
pp, dkil , ekj

)
→ rki→jl→0 : Given a decryption

key dkil of user i at level l of the circuit and ekj

of user j, output a re-encryption key rki→jl→0, l =
0, 1, · · · , L.

7) ReEnc
(
pp, rki→jl→0, ct

i
l

)
→ ctj0 : Given the re-

encryption key rki→jl→0 and ctil for the user i at level l

of the circuit, output a ciphertext ctj0 for the user j
at level 0 of the circuit.

Correctness: Three requirements are needed:

Dec
(
pp, dki

l
, ctil
)

= µ;

Dec
(
pp, dki, ctiL

)
= µ;

Dec
(
pp, dkj

l
, ReEnc

(
pp, rki→jl→0, ct

i
l

))
= µ,

where l ∈ [L]. Now we define the security model of an
FHPRE scheme.

Definition 2. (IND-CPA security) Let UniFH-
PRE=(Setup, Gen, Enc, Eval, Dec, ReKey, ReEnc)
be a single-hop, unidirectional PRE Scheme, k a security
parameter. Suppose that there exists a PPT algorithm
RandEnc which takes pp as input and outputs a random
ciphertext at output side. Let H = H(k) and C = C(k)
be polynomials of k, which stands for the number of
honest users and corrupted users, respectively. Consider
the following game, denoted by ExptIND−CPAA,UniFHPRE (k),
between challenger and adversary.

Initialization: Given security parameter k and coin b ∈
{0, 1}, run pp ← Setup(1k, 1L). Initialize CU ←
{H + 1, · · · , H + C}, which denote the set of cor-
rupted users. For i = 0, · · · , H + C, generate
key pairs

(
eki, dki, evki

)
← Gen

(
pp, 1i, 1L

)
. Run

the adversary on input pp, key pairs of corrupted
users

(
eki, dki, evki)

}
i=H+1,··· ,H+C , and public keys

of honest users
(
eki, evki)

}
i=0,··· ,H .

Learning Phase: For ∀l ∈ [L]∪{0}, the adversary could
issue queries to the following oracles in any order and
many times:

Oracle REKEY receives two indices i, j ∈
{0, 1, · · · , H + C}. If i = j then it returns ⊥;
if (i = 0) ∩ (j ∈ CU) then the oracle returns ⊥;
otherwise, returns rki→jl→0 ← Rekey

(
pp, dkil , ekj

)
.

Oracle REENC receives two indices i, j ∈
{0, 1, · · · , H+C} and ciphertext ctil. If i = j then re-
turns ⊥; if (i = 0)∩ (j ∈ CU) then the oracle returns
⊥; otherwise, it queries (i, j) to REKEY, obtains

rki→jl→0, and returns ctj0 ← ReEnc
(
pp, rki→jl→0, ct

i
l

)
.

Oracle CHALLENGE, which can be queried only
once, receives µ. If (b = 0), it returns ct ←
RandEnc(pp). If (b = 1), it returns ct ←
Enc(pp, ek0, µ).

Eventually. The adversary halts after it and outputs
its decision b′ ∈ {0, 1}.

Finalization: Output 1 if b′ = b. Otherwise, output 0.
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We define the advantage of the adversary as

AdvInd−CPAA,UniFHPRE (k)

=

∣∣∣∣∣∣ Pr
[
ExptInd−CPAA,UniFHPRE (k)→ 1 |b = 1

]
−Pr

[
ExptInd−CPAA,UniFHPRE (k)→ 1 |b = 0

] ∣∣∣∣∣∣
We say that UniFHPRE is IND-CPA secure if

AdvInd−CPAA,UnFHiPRE (·) is negligible for every PPT adversary.

Definition 3. (KP-CPA security) Let UniFH-
PRE=(Setup, Gen, Enc, Eval, Dec, ReKey, ReEnc)
be a single-hop, unidirectional FHPRE Scheme, k a
security parameter. Suppose that there exists a PPT
algorithm RandRekey which takes pp as input and
outputs a random re-encryption key rk. Let H = H(k)
and C = C(k) be polynomials of k, which stands for
the number of honest users and corrupted users, re-
spectively. Consider the following game, denoted by
ExptKP−CPAA,UniFHPRE (k), between challenger and adversary.

Initialization: Given security parameter k and coin b ∈
{0, 1}, run pp ← Setup

(
1k, 1L

)
. Initialize T ← φ

which is a table containing the re-encryption keys and
shared among oracles. For i = −1, 0, · · · , H+C, gen-
erate key pairs

(
eki, dki, evki

)
← Gen

(
pp, 1i, 1L

)
.

Run adversary with pp, the public keys and eval keys
of honest users {(eki, evki)}i=0,··· ,H , the key pairs of
corrupted users {(eki, dki, evki)}i=H+1,··· ,H+C .

Learning Phase: For ∀l ∈ L, adversary could issue
queries to the following oracles in any order and
many times except for the constraint in oracle CHAL-
LENGE.

Oracle REKEY receives two indices i, j ∈
{−1, 0, · · · , H + C}. If i = j then it returns
⊥; if (i, j) = (0,−1), then it returns ⊥; if
there already exists the re-encryption key from
user i at level l of the circuit to user j, i.e.(
i, l, j, rki→jl→0

)
∈ T , then it returns rki→jl→0, otherwise,

it generates rki→jl→0 ← Rekey
(
pp, dkil , ekj

)
, updates

T ← T ∪
{(
i, l, j, rki→jl→0

)}
, and returns rki→jl→0.

Oracle REENC receives two indices i, j ∈
{−1, 0, · · · , H + C} and a ciphertext ctil. if
i = j then it returns ⊥; if there exists no
re-encryption key rki→jl→0 in the table T, it gen-

erates rki→jl→0 ← Rekey
(
pp, dkil , ek

j
)
, and updates

T ← T ∪
{(
i, j, rki→jl→0

)}
, it finally returns

ctj0 ← ReEnc
(
pp, rki→jl→0, ct

i
l

)
.

Oracle CHALLENGE can be queried only once.
On the query, the oracle searches the table T for(
0, l,−1, rk0→−1

l→0

)
, if such key does not exist, it gen-

erates rk0→−1
l→0 ← ReKey

(
pp, dk0

l , ek
−1
)

and updates

T ← T∪
{(

0, l,−1, rk0→−1
l→0

)}
. If b = 0 then it returns

a random re-encryption key rk ← FakeReKey (pp),
which is not contained in T. If b = 1, then it returns
the real re-encryption key rk0→−1

l→0 contained in T.

Eventually. Adversary halts after it outputs its deci-
sion b′ ∈ {0, 1}.

Finalization: Output 1 if b′ = b. Otherwise, output 0.

The advantage of Adversary is

AdvKP−CPAA,UniFHPRE (k)

=

∣∣∣∣∣∣ Pr
[
ExptKP−CPAA,UniFHPRE (k)→ 1 |b = 1

]
−Pr

[
ExptKP−CPAA,UniFHPRE (k)→ 1 |b = 0

] ∣∣∣∣∣∣
We say that UniFHPRE is KP-CPA secure if

AdvKP−CPAA,UniFHPRE (·) is negligible for every polynomial-time
adversary.

3 Unidirectional FHPRE Scheme

In this section, we constructed a single-hop unidirectional
FHPRE scheme based on [15] and proved the scheme is
IND-CPA and KP-CPA security.

3.1 Our Construction

A single-hop unidirectional FHPRE scheme consists of the
following 7 algorithms.

1) Setup(1k, 1L): Sample A ← ZN×nq , where N
∆
=

(n + 2) · (logq + O(1)), n = n′log(logn′) ∈ Z+, n
′

is the dimension of LWE problem. Output pp =(
1k, 1n, q, χ, L,A

)
.

2) Gen(pp, i): Sample sil, t
i
l ← Zn/22 , l = 0, 1, · · · , L, and

compute Bi0 = [An ~si0 +Xi
0]q, where Xi

0 ← χN×2.

Let P i0 = [Bi0 ‖ −A] ∈ ZN×(n+2)
q . For ∀l ∈ [L], define

S̃i
l−1

= (α||β) ∈ Z(n+2)2dlogqe2×2
2 ,

where

α = BD((1;~si
l−1

)⊗ (1; 0))⊗BD((1;~si
l−1

)⊗ (1; 0)),

β = BD((1;~si
l−1

)⊗ (0; 1))⊗BD((1;~si
l−1

)⊗ (0; 1)),

and compute P i(l−1):l ← SwitchKeyGen(S̃i
l−1
, ~si

l−1
).

Output (
eki, dki

)
=

(
P i0, ~s

i
L

)
dkil = ~sil, l ∈ [L]

evki = {evki
(l−1):l

}l∈[L]

= {P i
(l−1):l

}l∈[L].

3) Enc(pp, eki = P i0, (m1,m2)): Compute

~ci0 =
[
P i0

T · ~r +
⌊q

2

⌋
~m
]
q
∈ Z(n+2)

q ,

where ~r ← {0, 1}N , ~m = (m1,m2, 0 · · · , 0)
T ∈

Z(n+2)
2 . Output cti0 = ~ci0.
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4) Eval(•): Suppose the homomorphic addition and
multiplication over GF(2) be enable to evaluate
depth L arithmetic circuits in a gate-by-gate man-
ner. For any i ∈ [L], a gate at level i of the circuit is
that the operand ciphertexts can be decrypted using
~si−1, and the output of the homomorphic operation
can be decrypted using ~si.

• Add(pp, evki
(l−1):l

, ci
l−1,1

, ci
l−1,2

): Input cipher-

texts ci
l−1,1

= ~cil−1,1, ci
l−1,2

= ~cil−1,2 under secret

key ~sil−1, and compute

~cil−1,add = P2(~cil−1,1+~cil−1,2)⊗P2(1, 1, 0, · · · , 0),

~cil,add ← Switchkey(P i(l−1):l,~c
i
l−1,add) ∈ Zn+2

q .

Output ci
add,l

= ~cil,add.

• Mult(pp, evki
(l−1):l

, ci
l−1,1

, ci
l−1,2

): Input cipher-

texts ci
l−1,1

= ~cil−1,1, c
i
l−1,2

= ~cil−1,2 under secret

key ~sil−1, and compute

~̃c
i

l−1,mult = b2
q

(P2(~c1)⊗ P2(~c2))e,

~cil,mult ← SwitchKey(P i(l−1):l, ~̃c
i

l−1,mult) ∈ Zn+2
q .

Output ci
mult,l

= ~cil,mult.

5) Dec
(
pp, dki = ~tiL, ct

i
L = ~ciL

)
: Input ciphertext ctiL

under secret key dki(= ~siL) and ~siL. Output

(m1,m2) =

[⌊
2 ·

[
cTL n (1;~sL)

]
q

q

⌉]
2

6) Rekey
(
pp, dkil−1 = ~sil−1, ekj = P j0

)
: Compute

M i→j
l→0 ∈ Z(n+2)dlog qe×(n+2)

q

← Ri→jl→0P
j
0 + P2

((
1;~sil

)
⊗ I2||0

)
N j

0 ∈ ZN×(n+2)
q ← Rj0P

j
0 ,

where 0 ∈ {0}(n+2)×n, Ri→jl→0 ∈ Z
(n+2)dlog qe×N
2 , Rj0 ∈

ZN×N2 . Output rki→jl→0 = (M i→j
l→0 , N

j
0 ).

7) ReEnc
(
pp, rki→jl→0 = (M i→j

l→0 , N
j
0 ), ctil = ~cil

)
: Output

ctj0 = ~cj0 = SwitchKeyq

(
M i→j
l→0 ,~c

i
l

)
+N j

0

T
~rj0,

where ~rj0 ∈ ZN2 .

We show the correctness of the FHPRE scheme below.

Lemma 3. ( [15]) Let ~s ∈ Zn/22 , ~c ∈ Zn+2
q be such that

~cT n (1, ~s) =
⌊
q
2

⌋
· (m1,m2) +X(modq), where m1,m2 ∈

{0, 1} and ||X||∞ ≤
⌊
q
2

⌋
/2. Then Dec(~c) = (m1,m2).

proposition 1. Let q, n, |χ| ≤ B,L be parameters for
FHPRE, and let ciphertexts ci

l
= ~cil and secret key ~sil be

such that

~cil
T n

(
1;~sil

)
=
⌊q

2

⌋
(m1,m2) +Xi

l (modq),

where m1,m2 ∈ {0, 1} and ||Xi
l ||∞ ≤ E <

⌊
q
2

⌋
/2. Define

~cj0 ← ReEnc
(
pp, rki→jl→0,~c

i
l

)
. Then

~cj0
T n

(
1;~sj0

)
=
⌊q

2

⌋
(m1,m2) +X(modq),

where ||X||∞ ≤ E +N(n+ 2) dlog qeB2 +N2B.

Proof. Suppose ~cil
T n

(
1;~sil

)
=
⌊
q
2

⌋
(m1,m2) +Xi

l (modq),

where |Xi
l ||∞ ≤ E <

⌊
q
2

⌋
/2. To decrypt the re-encrypted

ciphertext ctj0 = ~cj0 = SwitchKey
(
M i→j
l→0 ,~c

i
l

)
+ N j

0

T
~rj0

with
(

1;~sj0

)
, where ~rj0 ∈ ZN2 , M i→j

l→0 = Ri→jl→0Q
j
0 +

P2
((

1; sil
)
⊗ I2||0

)
, Ri→jl→0 ∈ Z(n+2)dlog qe×N

2 , N j
0 = Rj0Q

j
0,

Rj0 ∈ ZN×N2 , one computes

~cj0
T n

(
1;~sj0

)
= SwitchKey

(
M i→j
l→0 ,~c

i
l

)T
n
(

1;~sj0

)
+N j

0
T~rj0 n

(
1;~sj0

)
(modq)

= BD
(
~cil
)T
Ri→jl→0Q

j
0 n

(
1;~sj0

)
+BD

(
~cil
)T
P2
((

1;~sil
)
⊗ I2||0

)
n
(

1;~sj0

)
+~rj0

TRj0Q
j
0 n

(
1;~sj0

)
(modq)

=
⌊q

2

⌋
(m1,m2) +Xi

l +BD
(
~cil
)T
Ri→jl→0Y

j
0

+~rj0
TRj0Y

j
0 (modq).

Let X = Xi
l +BD

(
~cil
)T
Ri→jl→0Y

j
0 + ~rj0

T
Rj0Y

j
0 , we have∥∥∥Xi

l +BD
(
~cil
)T
Ri→jl→0Y

j
0 + ~rj0

T
Rj0Y

j
0

∥∥∥
∞

≤
∥∥Xi

l

∥∥
∞ +

∥∥∥BD(~cil)TRi→jl→0Y
j
0

∥∥∥
∞

+
∥∥∥~rj0TRj0Y j0 ∥∥∥∞

< E +N(n+ 2) dlog qeB2 +N2B.

Lemma 4. ( [15]) Let q, n, |χ| ≤ B,L be parameters for
FHPRE, and let (pk, evk, dk) ← Gen (1L, 1n). Let ~c1,~c2
be such that

~cT1 n (1, ~si−1) =
⌊q

2

⌋
(m1,m2) +X1(mod q),

~cT2 n (1, ~si−1) =
⌊q

2

⌋
(m
′

1,m
′

2) +X2(mod q),

with ||X1||∞, ||X2||∞ ≤ E ≤
⌊
q
2

⌋
/2. Define

~cadd ← HE.Addevk(~c1,~c2),
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~cmult ← HE.Multevk(~c1,~c2).

Then

~cTaddn(1, ~si) =
⌊q

2

⌋
[(m1+m

′

1,m2+m
′

2)]2+Xadd( mod q),

~cTmult n (1, ~si) =
⌊q

2

⌋
(m1m

′

1,m2m
′

2) +Xmult(mod q),

where ||Xadd||∞, ||Xmult||∞ ≤ O(n) ·max{E,nlog3q ·B}.

Theorem 2. ( [15]) The scheme HE with parameters
n, q, |χ| ≤ B,L for which q/B ≥ (O(n))L+O(1), is L-
homomorphic.

3.2 Security

We show the security of the FHPRE scheme in this section
which includes IND-CPA and KP-CPA security.

proposition 2. Under the STP −Binary − LWEn,q,χk

assumption, the FHPRE scheme is IND-CPA secure.

Proof. We consider the following games for b ∈ {0, 1}.

Gameb0: This is the real game ExptInd−CPA,IA,UniFHPRE (k) with

b. Suppose the target public key is ek0 = P 0
0 ,

where P 0
0 = [B0

0 ‖ −A], B0
0 = [An ~s0

0 +X0
0 ]q,

X0
0 ← χN×2. The other public keys of honest users

are
{
eki
}
i=1,··· ,H =

{
P i0
}
i=1,··· ,H , where P i0 = [Bi0 ‖

−A], Bi0 = [An ~si0 +X0]q, X
i
0 ← χN×2. The chal-

lenger computes the re-encryption key from user 0
at level l to user i ∈ [H] at level 0 of the circuit as
M0→i
l→0 ← R0→i

l→0P
i
0 +P2

((
1;~s0

l

)
⊗ I2||0

)
, N i

0 ← Ri0P
i
0,

where 0 ∈ {0}(n+2)×n, R0→i
l→0 ∈ Z(n+2)dlog qe×N

2 , Ri0 ∈
ZN×N2 . The challenger computes the target cipher-
text on query (m1,m2) as follows:

• If (b = 0), it returns ct← Zn+2
q .

• If (b = 1), it returns ct←
[
P 0

0
T · ~r +

⌊
q
2

⌋
~m
]
q
∈

Z(n+2)
q , where ~r ← {0, 1}N , ~m =

(m1,m2, 0 · · · , 0)
T ∈ Z(n+2)

2 .

The adversary finally outputs its guess b′ ∈ {0, 1}.

Gameb1: We replace P i0, P i
(l−1):l

with P i0
+ ← ZN×2

q ,

P i(l−1):l

+ ← Z(n+2)2dlogqe3×(n+2)
q for i ∈ [H]. The

challenger computes a re-encryption key from user 0
at level l to user i (i ∈ [H]) at level 0 of the circuit

by using s0
l and P i0

+
as Gameb0. The others are the

same as in Gameb0.

Since in the two games, the challenger does not re-

quire the secret ~si0, there is P i0≈cP i0
+

under the
STP − Binary − LWEn,q,χk assumption. It follows

from lemma 2, we have P 0
(l−1):l

≈cP 0
(l−1):l

+
. Further-

more, Gameb0≈cGameb1.

Gameb2: We replace M0→i
l→0 , N i

0 with M0→i
l→0

+ ←
Z(n+2)dlog qe×(n+2)
q , N i+

0 ← ZN×(n+2)
q . The others

are the same as in Gameb1.

It follows from the leftover hash lemma, we

have M0→i
l→0≈sM0→i

l→0
+

and N i
0≈sN i+

0 . Furthermore,

Gameb1≈sGameb2.

Gameb3: We replace ctj0 ← ReEnc
(
pp, rki→jl→0, ct

i
l

)
with

ctj+0 ← Zn+2
q . The others are the same as in Gameb2.

It follows from the leftover hash lemma, we have
ctj+0 ≈sct

j
0. Furthermore,

Gameb2≈sGameb3

.

Finally, we have that Game0
3≈sGame1

3 from the leftover
hash lemma. Combining the above indistinguishability,
we have shown that Game0

0≈cGame1
0. This completes the

proof.

Theorem 3. Under the STP −Binary−LWEn,q,χk as-
sumption, the homomorphic PRE scheme is KP-CPA se-
cure.

Proof. We start with the original game with b = 1.

Game0: This is the game ExptKP−CPAA,UniFHPRE (k) with
b = 1. The challenger runs the adversary
with input pp, public keys

{
eki
}
i=0,··· ,H and

eval keys
{
evki

}
i=0,··· ,H for honest users and key

pairs
{
eki, dki

}
i=H+1,··· ,H+C ,

{
evki

}
i=H+1,··· ,H+C

for corrupted users. The challenger generates the
real re-encryption key M0→−1

l→0 ← R0→−1
l→0 P−1

0 +
P2
((

1;~s0
l

)
⊗ I2||0

)
, N−1

0 ← R−1
0 P−1

0 , where 0 ∈
{0}(n+2)×n, R0→−1

l→0 ∈ Z(n+2)dlog qe×N
2 , R−1

0 ∈ ZN×N2 .
On the re-encryption query (0, l, -1, ct = col ),
it re-encrypts the ciphertext with the real re-
encryption key, that is, it returns ct−1

0 = c−1
0 =

SwitchKey
(
M0→−1
l→0 ,~c0l

)
+ N−1

0

T
~r−1

0 , where ~r−1
0 ∈

ZN2 . We summarize the input and the answers to the
adversary as follows:

RealPK: P−1
0 ;

Challenge: M0→−1
l→0 , N−1

0 ;

Table: M0→−1
l→0 , N−1

0 ;

ReEnc: ct−1
0 = ~c−1

0 = SwitchKeyq
(
M0→−1
l→0 ,~c0l

)
+

N−1
0

T
~r−1

0 .

After the learning phase, the adversary outputs its
guess b′ ∈ {0, 1}.

Game1: The challenger replaces P−1
0 with P−1+

0 ←
ZN×(n+2)
q , and the re-encryption keys in challenge

and the table is constructed from P−1+
0 and ~s0

l . The
other parts are the same as Game0. The challenger
re-encrypts a given ciphertext with the re-encryption
key in the table. The challenger answers the queries
from user 0 at level l to user -1 at level 0 as follows:



International Journal of Network Security, Vol.21, No.4, PP.592-600, July 2019 (DOI: 10.6633/IJNS.201907 21(4).08) 598

RealPK: P−1+
0 ;

Challenge: M0→−1
l→0 , N−1

0 ;

Table: M0→−1
l→0 , N−1

0 ;

ReEnc: ct−1
0 = ~c−1

0 = SwitchKeyq
(
M0→−1
l→0 ,~c0l

)
+

N−1
0

T
~r−1

0 .

It is easy to verify that P−1
0 ≈cP

−1+
0 under the

STP − Binary − LWEn,q,χk assumption, since we

do not need to know ~s−1
0 . Furthermore, we have

Game0≈cGame1 by the leftover hash lemma.

Game2: The challenger replaces M0→−1
l→0 , N−1

0 with

M0→−1+
l→0 ← Z(n+2)dlog qe×(n+2)

q , N−1+
0 ← Z

N×(n+2)
q .

The other parts are not changed from the previous
game: the challenger re-encrypts a given ciphertext
with the random re-encryption key in the table. The
challenger answers the queries from user 0 at level l
to user -1 at level 0 as follows:

RealPK: P−1+
0 ;

Challenge: M0→−1+
l→0 , N−1+

0 ;

Table: M0→−1+
l→0 , N−1+

0 ;

ReEnc: ct−1
0 = ~̃c

−1

0 = SwitchKeyq
(
M0→−1+
l→0 ,~c0l

)
+

N−1+
0

T
~r−1

0 .

It follows from the leftover hash lemma, we have
M0→−1
l→0 ≈sM0→−1+

l→0 and N−1
0 ≈sN

−1+
0 . Furthermore,

Game1≈sGame2.

Game3: If the query is (0,l -1, ct = ~c0l ), then it returns
~c−1+

0 ← Zn+2 . The other parts are not changed
from the previous game: The challenger answers the
queries from user 0 to -1 as follows: The challenger
answers the queries from user 0 at level l to user -1
at level 0 as follows:

RealPK: P−1+
0 ;

Challenge: M0→−1+
l→0 , N−1+

0 ;

Table: M0→−1+
l→0 , N−1+

0 ;

ReEnc: ct−1
0 = ~c−1+

0 .

It follows from the leftover hash lemma, we have

~c−1+
0 ≈s~̃c

−1

0 . Furthermore, Game2≈sGame3.

Game4: The challenger additionally generates an-
other random re-encryption key M0→−1++

l→0 ←
Z(n+2)dlog qe×(n+2)
q , N−1++

0 ← ZN×(n+2)
q and uses it

in the re-encryption oracle. The other parts are not
changed from the previous game: As a summary, the
challenger answers the queries from user 0 at level l
to user -1 at level 0 as follows:

RealPK: P−1+
0 ;

Challenge: M0→−1+
l→0 , N−1+

0 ;

Table: M0→−1++
l→0 , N−1++

0 ;

ReEnc:

ct−1
0 = ~c−1++

0

= SwitchKeqy
(
M0→−1++
l→0 ,~c0l

)
+N−1++

0

T
~r−1

0 .

We note that the adversary does not know the al-
ternative fake re-encryption key M0→−1++

l→0 , N−1++
0 ,

directly. Even if the adversary knows the alterna-
tive, it cannot distinguish the two games since the
re-encrypted ciphertext, which is almost uniformly
at random in the ciphertext space from the leftover
hash lemma. Hence, we have Game3≈sGame4.

Game5: We again modify the re-encryption key in the
table and the re-encryption oracle. The chal-
lenger additionally generates a fake re-encryption
key M0→−1∗

l→0 ← R0→−1∗
l→0 P−1+

0 + P2
((

1;~s0
l

)
⊗ I2||0

)
,

N−1∗
0 ← R−1∗

0 P−1+
0 , where 0 ∈ {0}(n+2)×n,

R0→−1∗
l→0 ∈ Z(n+2)dlog qe×N

2 , R−1∗
0 ∈ ZN×N2 In the re-

encryption oracle, the oracle uses the additional fake-
re-encryption key. The other parts are not changed
from the previous game: As a summary, the chal-
lenger answers the queries from user 0 at level l to
user -1 at level 0 as follows:

RealPK: P−1+
0 ;

Challenge: M0→−1+
l→0 , N−1+

0 ;

Table: M0→−1∗
l→0 , N−1∗

0 ;

ReEnc: ct−1
0 = ~c−1∗

0 SwitchKeyq
(
M0→−1∗
l→0 ,~c0l

)
+

N−1∗
0

T
~r−1

0 .

It follows from the leftover hash lemma, we have
M0→−1+
l→0 ≈sM0→−1∗

l→0 , N−1+
0 ≈sN−1∗

0 , ~c−1++
0 ≈s~c−1∗

0 .
Furthermore, Game4≈sGame5.

Game6: This is a final game. We replace the fake public
key P−1+

0 with the real public key P−1
0 . The other

parts are not changed from the previous game: As
a summary, the challenger answers the queries from
user 0 at level l to user -1 at level 0 as follows:

RealPK: P−1
0 ;

Challenge: M0→−1+
l→0 , N−1+

0 ;

Table: M0→−1∗
l→0 , N−1∗

0 ;

ReEnc: ct−1
0 = ~c−1∗

0 SwitchKeyq
(
M0→−1∗
l→0 ,~c0l

)
+

N−1∗
0

T
~r−1

0 .

Since M0→−1+
l→0 , N−1+

0 is distributed uni-
formly at random, this game is equivalent to
ExptKP−CPAA,UniFHPRE (k) with b = 0. It follows from the
STP − Binary − LWEn,q,χk assumption, we have

P−1
0 ≈cP

−1+
0 . Furthermore, Game5≈cGame6.

Above all, we know Game0≈cGame6, that
is ExptKP−CPAA,UniFHPRE (k) with b = 0 and

ExptKP−CPAA,UniFHPRE (k) with b = 1 are computation-
ally indistinguishable under STP −Binary−LWEn,q,χk

assumption. This completes the proof.
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3.3 Comparison

Compared with the homomorphic proxy re-encryption
scheme of Ma et al. [16, 17], our scheme can encrypt two
messages at a time under the same computation complex-
ity , and has the same security of IND-CPA and KP-CPA
under LWE. The comparison results in Table 1.

4 Conclusion

In this paper, we adopt the scheme of Ma et al. to con-
struct a FHPRE scheme which allows one party to com-
pute arbitrary functions over encrypted data for many
parties without the decryption keys. That is, the FH-
PRE scheme satisfies the “many-to-one” situation. We
also prove that our FHPRE scheme is IND-CPA, KP-
CPA and master secret secure. We will be devoted to
improving the computation efficiency in our future work,
so as to make our FHPRE schemes more practical.
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