
International Journal of Network Security, Vol.21, No.3, PP.494-500, May 2019 (DOI: 10.6633/IJNS.201905 21(3).16) 494

Two Number-guessing Problems Plus
Applications in Cryptography

Xingbo Wang
(Corresponding author: Xingbo Wang)

Department of Mechatronic Engineering,Foshan University

Guangdong Engineering Center of Information Security for Intelligent Manufacturing System

xbwang@fosu.edu.cn; dr.xbwang@qq.com

(Received Jan. 22, 2018; Revised and Accepted May 7, 2018; First Online Feb. 13, 2019)

Abstract

The article first puts forward two number-guessing prob-
lems that is to guess if an odd integer or one of its divisors
is a divisor of another odd integer that is contained in an
given odd sequence consisting in consecutive odd integers,
then solves the two problems through an investigation on
the global intrinsic properties of the odd sequence. Sev-
eral criteria are proved to determine if a special term is
contained in an odd sequence. Based on the proved cri-
teria, algorithms are designed to detect if a interval con-
tains a divisor-host that has a common divisor with a
given number and to find out the divisor-host by means
of probabilistic search. The theory and the algorithms are
helpful in cracking a password or some encryption codes.

Keywords: Cryptography; Number Guessing; Password
Cracking; Probabilistic Algorithm

1 Introduction

It is mandatory for a researcher of information security
to guess the key of encrypted information. For exam-
ple, it is necessary to simulate a crack on an encrypted
system by guessing the password to see if the designed
password is sure to be save enough, as J Lopez and H
C Chou introduced in their articles [4] and [2]. In fact,
such guessing games have been a primary approach in
cryptography. In order to increase the probability of a
successful encryption or decryption, kinds of mathemat-
ical methods are applied to the guessing process, as in-
troduced and overviewed in articles [5] to [3]. Among the
historical guessing approaches, the Pollard’s rho method
of factoring integers was a remarkably successful one be-
cause it was essentially a probabilistic algorithm called
Monte Carol’s approach, as analyzed in Bach’s article [1].

A recent study comes across a problem that requires
knowing an odd integer N with a nontrivial divisor that
can divide another odd integer o that is hidden in a very
large odd interval Iodd, which consists in finite consec-

utive odd integers. For example, suppose N is an odd
composite integer; according to theorems proved in [7]
and [8], one of N ’s divisor p can be found uniquely in an
odd integer o lying in a divisor-interval, as the five odd
composite integers and their respective divisor-intervals
list in Table 1.

Due to a vast number of the odd integers contained in
Iodd, a one-by-one sequential check is impossible to per-
form the detection of o, called a divisor-host, even with
the fastest computer in the world. Hence the interval
Iodd is subdivided into finite subintervals to be separately
searched in parallel computation, as introduced in arti-
cle [8]. Since there might be only one divisor-host o con-
tained in one of the subdivided subintervals, solutions for
the following two problems are necessary.

(P1). Is there a way to know which subinterval o lies in?

(P2). Is there a simple and fast way to locate o’s position
if the subinterval in which o lies is known?

The problems P1 and P2 are sure the kind of guessing-
number problems if their background stated above is ig-
nored. Moreover, they can be described in the following
more general questions Q1 and Q2.

(Q1). Is there a way to know if an odd integer o itself or
one of its divisorscan divide one of the odd integers
in an odd interval Iodd?

(Q2). If an odd integer o itself or one of its divisors does
divide one of the odd integers in an odd interval Iodd,
is there a simple and fast way to detect the divisor-
host that is divisible by o or one of o’s divisors?

This article intends to answer the two questions Q1
and Q2 and explores their applications. By analyzing the
intrinsic traits of consecutive odd integers that contain a
special term, the article proves several criteria that can
determine if o or one of o’s divisors is contained in an
odd interval or in an arithmetic progression. Based on
the proved criteria, a fast way is developed to detect the

International Journal of Network Security, Vol.21, No.3, PP.494-500, May 2019 (DOI: 10.6633/IJNS.201905 21(3).16) 495

Table 1: Big integers and their divisor-intervals

Composite integer N N ’s Divisor-interval

N1 = 1123877887715932507 [323935746324954482071652928163131137,323935746324954482071652929223262207]

N2 = 1129367102454866881 [325517904753935056870231790741633615,325517904753935056870231791804350463]

N3 = 35249679931198483 [317500890806149478235110120566155,317500890806149478235110308315135]

N4 = 208127655734009353 [14997178124946870357186221307775309,14997178124946870357186221763985407]

N5 = 331432537700013787 [47764462505095678672504375649205487,47764462505095678672504376224907263]

interval that contains o or one of o’s divisors and a prob-
abilistic approach is proposed to find out the integer that
has a common divisor with o.

2 Symbols and Notations

In this whole article, an odd interval [a, b], also called an
odd sequence, is a set of consecutive odd numbers that
take a as the lower bound and b as the upper bound,
for example, [3, 11] = {3, 5, 7, 9, 11}. Symbol Σ[a, b] is
to express the sum of all terms on the close odd interval
[a, b], for example, Σ[3, 11] = 3 + 5 + 7 + 9 + 11 = 35.
Symbol ΣS

n is the arithmetic average value on odd interval

S that consists in n odd integers, and symbol ΣS
ρn = 1

ρ ×
ΣS
n is called a ρ-enhanced arithmetic average value on S.

Symbol]a, b[is to express a set whose elements are either
smaller than a or bigger than b, and thus x ∈]a, b[is
equivalent to x ≤ a or x ≥ b. Symbol a|b means b is
divisible by a and symbol a - b means b is not divisible
by a. Symbol A⇒ B means conclusion B can be derived
from condition A; A⇔ B means B holds if and only if A
holds; the term ’if and only if’ is also briefly written by
notation iff, which also means ’the necessary and sufficient
condition.

3 Main Results and Proofs

Theorem 1. Suppose N is a composite odd integer with
a divisor p bigger than 1, m and n are positive integers
with 1 ≤ m ≤ n < p; let S = {s1, s2, ..., sn} be a set that
consists in n consecutive odd integers in which sm is the
unique term such that p|sm and N - sm; then there are
at least (n−m)(n−m+ 1) + 1 possible ways to compute
GCD(N, sm) if m ≤ n < 2m − 1, and there are at least
m(m − 1) + 1 possible ways to compute GCD(N, sm) if
n ≥ 2m− 1.

Proof. The given conditions immediately yield
GCD(sm, N) = p. Since S consists in n consecu-
tive odd integers, when n ≥ 2m− 1 it knows that, there
are m − 1 terms on the left side of sm and there are at
least m − 1 terms on its right side. This time, it yields
the following facts.

1) There are 2(m − 1) ways to obtain 2sm by choosing
sm−j or sm+j that fits sm−j + sm+j = 2sm with

j = 1, 2, ...,m− 1;

2) There are 2(m − 2) ways to obtain 4sm by choos-
ing two consecutive terms, sm−j and sm−j−1, or two
terms, sm+j and sm+j+1, that fit sm−j + sm−j−1 +
sm+j+sm+j+1 = 4sm with j = 1, 3, ...,m−2. Consid-
ering that arbitrary symmetrically-distributed four
terms, say sm−l, sm−k,sm+l and sm+k, fit sm−l +
sm−k + sm+l + sm+k = 4sm, one knows there are at
least 2(m− 2) ways to obtain 4sm.

3) Likewise, there are at least 2(m− k) ways to obtain
by choosing k consecutive terms, say sm−j−k, · · · ,
sm−j−1, sm−j or sm+j , sm+j+1, · · · , sm+j+k that fit
sm−j−k + · · · + sm−j−1 + sm−j + sm+j +sm+j+1 +
· · ·+ sm+j+k = 2ksm with j = 1, · · · ,m− k − 1;

4) There is one way to obtain sm, that is, to choose sm
itself.

Consequently, from 1 to k the minimal ways, denoted by
Λk, which can produce multiples of sm are given by

Λk = 2(m− 1) + 2(m− 2) + · · ·+ 2(m− k) + 1

= k(2m− k − 1) + 1.

And when k = m− 1, it yields

Λm−1 = m(m− 1) + 1.

When m ≤ n < 2m− 1, there are m− 1 terms on the
left side of sm while there are merely n−m < m−1 terms
on its right side. Hence Λn−m is the biggest number for
the case and consequently it yields

Λn−m = 2(n−m) + ...+ 2 + 1

= 2(
(n−m+ 1)(n−m)

2
) + 1

= (n−m)(n−m+ 1) + 1

Corollary 1. Suppose p is an odd prime number, m and
n are positive integers with 1 ≤ m < n < p and n =
2m − 1; let S = {s1, s2, ..., sn} be a set consisting in n
consecutive odd integers; then the necessary and sufficient
condition of p|sm is p|ΣS, namely, p|sm ⇔ p|ΣS.

International Journal of Network Security, Vol.21, No.3, PP.494-500, May 2019 (DOI: 10.6633/IJNS.201905 21(3).16) 496

Proof. n = 2m− 1 means sm is the mid-term of S. p|sm
yields sm = ps for some odd integer s > 1 and sm−j +
sm+j = 2sm with j = 1, 2, ...,m− 1. Consequently,

p|sm ⇒ p|ΣS.

Since S consists in n consecutive odd integers, it knows

ΣS = Σ[s1, sm−1] + sm + Σ[sm+1, s2m−1]

= (2m− 1)sm.
(1)

Note that the condition that 1 ≤ m < n < p and
n = 2m− 1 yields p > 2m− 1; hence p - 2m− 1 because
of p’s primality and as a result,

p|ΣS ⇒ p|sm.

Corollary 2. Suppose p is an odd prime number, m
and n are positive integers with 1 ≤ m < n < p and
n = 2m − 1; Let S = {s1, s2, ..., sn} be an arithmetic in-
teger sequence that consists in n consecutive terms; then
the necessary and sufficient condition of p|sm is p|ΣS,
namely, p|sm ⇔ p|ΣS.

Proof. (Omitted)

Theorem 2. Let S be an odd sequence that consists in n
consecutive odd integers and s be an odd integer; then S
contains s iff ns−n(n−1) ≤ ΣS ≤ ns+n(n−1), whereas
S does not contain s iff ΣS ∈]ns−n(n+1), ns+n(n+1)[.

Proof. The necessity. When containing s, S is given by

S = {s− 2k, ..., s− 2, s, s+ 2, ..., s+ 2l︸ ︷︷ ︸
n terms

}

with l, k ≥ 0 and l + k + 1 = n; consequently it yields

ΣS = ns+ (l − k)n.

Since k+l+1 = n⇒ k+l = n−1⇒
{
l = n− 1− k
k = n− 1− l ,

it yields

ΣS =

{
ns+ n(n− 1)− 2nk
ns− n(n− 1) + 2nl

(2)

Considering the following two particular cases given by

S = {s, s+ 2, ..., s+ 2(n− 1)︸ ︷︷ ︸
n terms

} ⇒ ΣS = ns+ n(n− 1)

and

S = {s− 2(n− 1), ..., s− 2, s︸ ︷︷ ︸
n terms

} ⇒ ΣS = ns− n(n− 1),

it yields

ns− n(n− 1) ≤ ΣS ≤ ns+ n(n− 1).

When not containing s, S fits one of the following two
cases

1) S = {s+ 2k, s+ 2k + 2, ..., s+ 2k + 2(n− 1)︸ ︷︷ ︸
n terms

} with

k ≥ 1 leads to

ΣS = ns+ n(n− 1) + 2kn (3)

2) S = {s− 2l − 2(n− 1), ..., s− 2l − 2, s− 2l︸ ︷︷ ︸
n terms

} with

l ≥ 1 leads to

ΣS = ns− n(n− 1)− 2ln. (4)

Note that, Case (1) turns to be S =
{s+ 2, s+ 4, ..., s+ 2n︸ ︷︷ ︸

n terms

} ⇒ ΣS = ns+n(n+1) when k = 1

and case (2) turns to be S = {s− 2n, ..., s− 4, s− 2︸ ︷︷ ︸
n terms

} ⇒

ΣS = ns − n(n + 1) when l = 1; it immediately knows
ΣS ∈]ns− n(n+ 1), ns+ n(n+ 1).

Hence the necessity is true. Next is the proof for
the sufficiency. Without loss of generality, let S =
{s1, s2, ..., sn}; then sn = s1 + 2(n − 1) and ΣS = ns1 +
n(n−1). The condition ns−n(n−1) ≤ ΣS ≤ ns+n(n−1)
yields

ΣS

n
− (n− 1) ≤ s ≤ ΣS

n
+ (n− 1).

Namely,
s1 ≤ s ≤ s1 + 2(n− 1).

Hence it is sure that S contains s.
Now consider ΣS ∈]ns−n(n+1), ns+n(n+1)[, namely,

ΣS ≤ ns − n(n + 1) or ΣS ≥ ns + n(n + 1). If ΣS ≤
ns− n(n+ 1), it holds

ΣS

n
+ (n+ 1) ≤ s.

Substituting ΣS by ns1 + n(n− 1) yields, namely

sn = s1 + 2(n− 1) < s

which says S does not contains s when ΣS ≤ ns−n(n+1).
Similarly, ΣS ≥ ns+n(n+1) yields s < sn−2(n−1) =

s1, which indicates S does not contains s.
Hence the sufficiency is also true.

Theorem 2 can be alternatively stated as the following
Theorem 3 and Theorem 4.

Theorem 3. Let S be an odd sequence that consists in n
consecutive odd integers and s be an odd integer; then S
contains s iff|ΣSn − s| ≤ n − 1, and S does not contain s

iff |ΣSn − s| ≥ n+ 1.

Theorem 4. Let S be an odd sequence that consists in n
consecutive odd integers and s be an odd integer; then S
contains s iff |ΣSns − 1| ≤ n−1

s , and S does not contain s

iff |ΣSns − 1| ≥ n+1
s .

These theorems directly derive out the following corol-
laries.

International Journal of Network Security, Vol.21, No.3, PP.494-500, May 2019 (DOI: 10.6633/IJNS.201905 21(3).16) 497

Corollary 3. Let S be an arithmetic integer sequence that
consists in n terms with common difference d; suppose s is
an integer number; if S contains s, then ns− 1

2n(n−1)d ≤
ΣS ≤ ns + 1

2n(n − 1)d; if S does not contains s, then
ΣS ∈]ns− 1

2n(n+ 1)d, ns+ 1
2n(n+ 1)d[.

Proof of Corollary 3. (Omitted)

Corollary 4. Let S1 = {s1, s2, ..., sn} and S2 = {sn +
2, sn + 4, ..., sn + 2n} be two adjacent odd sequences each
of which consists in n terms; then ΣS2 = ΣS1 + 2n2.

Proof. sn = s1 +2(n−1)⇒ ΣS1 = ns1 +n(n−1). ΣS2 =
nsn + n(n+ 1) = ns1 + n(n− 1) + 2n2 = ΣS1 + 2n2.

Corollary 5. Suppose S is an odd sequence that consists
in n consecutive odd integers and s = pq is an integer
with p and q being odd integers and 1 < n ≤ p ≤ q; then
S contains s iff |ΣSnp − q| ≤

n−1
p , and S does not contain

s iff |ΣSnp − q| ≥
n+1
p . This indicates ΣS

np is more closer to
q if S contains s = pq.

Proof. (Omitted)

Corollary 6. Suppose S is an odd sequence that consists
in n consecutive odd integers and p is an odd integer that
fits 1 < n ≤ p; if there exists an odd integer q that satisfies
|q − ΣS

np | ≤
n−1
p then S contain s = pq.

Proof. |q − ΣS
np | ≤

n−1
p ⇒ −n−1

p ≤ q − ΣS
np ≤

n−1
p ⇒

ΣS
np −

n−1
p ≤ q ≤ ΣS

np + n−1
p ⇒ ΣS − n(n − 1) ≤ ns ≤

ΣS + n(n − 1). Since p and q are odd integers, s = pq
is an odd integer. By Theorem 2, it knows S contain
s = pq.

Corollary 5 and Corollary 6 result in the following The-
orem 5.

Theorem 5. Suppose S is an odd sequence that consists
in n consecutive odd integers and p is an odd integer that
fit 1 < n ≤ p; then there exists an odd integer q such that
S contains s = pq iff there exists an odd integer q that
satisfies |q − ΣS

np | ≤
n−1
p .

Obviously, the computation of q is mandatory to take
into consideration, as proposed by the following proposi-
tion.

Proposition 1. Arbitrary integers p, q and n with 1 <
n ≤ p and q ≥ 1, the inequality |q − α

np | ≤
n−1
p yields

with arbitrary real number α. Consequently, suppose S is
an odd sequence consisting in n consecutive odd integers
and p is an odd integer that fit 1 < n ≤ p ; if there
exists an odd integer q such that S contains s = pq then⌊

ΣS
np

⌋
− 1 ≤ q ≤

⌊
ΣS
np

⌋
+ 1.

Proof. α
np −

n−1
p ≤ q ≤ α

np + n−1
p ⇒

⌊
α
np −

n−1
p

⌋
≤ q ≤⌊

α
np + n−1

p

⌋
⇒
⌊
α
np

⌋
−
⌊
n−1
p

⌋
−1 ≤ q ≤

⌊
α
np

⌋
+
⌊
n−1
p

⌋
+1.

Since 1 < n ≤ p leads to
⌊
n−1
p

⌋
= 0, it knows

⌊
α

np

⌋
− 1 ≤ q ≤

⌊
α

np

⌋
+ 1

4 Algorithms & Applications

By now, the questions Q1 and Q2 raised in the introduc-
tory part has been answered. For example, Theorem 2
shows how to know if an odd interval contains a special
odd integer, Theorem 5 shows how to know if a divisor
of an odd integer is a divisor of a term in an odd in-
terval. Moreover, Theorem 1 indicates that, there is big
probability to seek a unique term in a large odd interval,
This provides a new applicable chance in factorization of
odd composite integers by probabilistic approaches. Ac-
cordingly, this section presents a fast way to detect the
divisor-interval that contains the divisor-host and intro-
duces a probabilistic approach to search the divisor-host.
Examples to solve the problems Q1 and Q2 are also given
in this section.

4.1 Fast Detection of Divisor-interval

Let Iodd be a very large odd interval that contains the divi-
sor host Nhost; as is stated, a one-by-one check is difficult
to locate Nhost. Instead, a subdivision-based approach
can reach an appreciated effect. The approach first sub-
divides Iodd into a proper number of subintervals, then
calculates the arithmetic average value ΣS

n , s-enhanced

arithmetic average value ΣS
ns or p-enhanced arithmetic av-

erage value ΣS
np on each subinterval. Since n− 1,n−1

s and
p−1
p are definitely known for a given n, s or p, it is easy

to judge which subinterval contains Nhost. Assuming Lsi
is set to be the biggest number of odd integers contained
in each subinterval, the following algorithm can find the
subinterval containing Nhost. The process is described as
a divisor-interval detecting algorithm (Algorithm 1).

Algorithm 1 Divisor-interval Detecting Algorithm

1: Begin
2: Input: Large odd interval Iodd, Lsi, s (or p);
3: Step 1. Calculate N , the number of odd integers in
Iodd;

4: Step 2. Subdivide Iodd into m+1 subintervals, among
which m ones are of equal length Lsi and one is of
length R by N = mLsi +R.

5: Step 3. Compare on each subinterval ΣS
Lsi
−s with n−1

or ΣS
sLsi
− 1 with Lsi−1

s for objective s, (or compute q

with Algorithm 2 and then compare ΣS
pLsi

− q with
Lsi−1
p for objective p), where ΣS is the sum on the

respective subinterval.
6: Step 4. Choose the host-interval by Theorem 5* (or

Corollary 5 for p).
7: End

International Journal of Network Security, Vol.21, No.3, PP.494-500, May 2019 (DOI: 10.6633/IJNS.201905 21(3).16) 498

Remark 1. If the calculated objective is a divisor p, it
is mandatory to calculate q first. This can be done as the
following subroutine (Algorithm 2) shows.

Algorithm 2 Subroutine: q’s Calculation

1: Begin
2: Input: p, Lsi, ΣS;
3: Step 1. Calculate ε = Lsi−1

p ;

4: Step 2. Calculate q−1
i =

⌊
ΣS
pLsi

⌋
− 1, q0

i =
⌊

ΣS
pLsi

⌋
and

q+1
i =

⌊
ΣS
pLsi

⌋
+ 1 on each subinterval;

5: Step 3. Choose q to be an odd one from q−1
i , q0

i and
q+1
i that satisfies |q − ΣS

np | ≤ ε
6: End

4.2 Probabilistic Approach To Find Out
Divisor-host

Now that a divisor-interval is obtained with Algorithm 1,
one can search the divisor-host by the brutal search, which
searches the objective number one by one in the divisor-
interval. It is known that, the efficiency of the brutal
search depends on the length of the divisor-interval and
sometimes a probabilistic search is faster than the bru-
tal search. Therefore here introduces a probabilistic ap-
proach. According to Theorem 3, the probability to find
the GCD will increase a lot by adding two or more odd
integers in the divisor-interval. Thus, the probabilistic
approach of searching the divisor-host can be deigned as
Algorithm 3 shows.

Algorithm 3 Probabilistic Algorithm

1: Begin
2: Input: odd composite integer N and N ’s divisor-

interval Iodd
3: Begin loop
4: Step 1. Select an integer a ∈ Iodd randomly;

Select another integer b ∈ Iodd randomly;
5: Step 2. d1=FindGCD(N , a);d2=FindGCD(N , b);

d3=FindGCD(N , a+ b);
6: Step 3. If d1 > 1 then stop loop and return d1;

If d2 > 1 then stop loop and return d2;
If d3 > 1 then stop loop and return d3;

7: End loop
8: End

Remark 2. Algorithm 3 can also be a algorithm to fac-
torize an odd integer. It can be applied only on the divisor-
interval. Otherwise, it will fail absolutely.

Applying Algorithm 3, big odd integers list in Ta-
ble 1 are very quickly factorized by N1 = 299155897 ×
3756830131, N2 = 25869889 × 43655660929, N3 =
59138501× 596052983, N4 = 430470917× 483488309 and
N5 = 114098219× 2904800273.

4.3 Comments & Examples

One can see that, the purpose of the algorithm 1 is to
subdivide a big interval to find out the host-interval. The
time complexity of the algorithm is O(N

Lsi
) with N being

the number of terms in Iobj and Lsi that is set up in ad-
vance and according to the computational capability of
the computer performing the computation. Algorithm 2
is an auxiliary process of Algorithm 1 and its time com-
plexity is O(1). Algorithm 3 can be applied following
Algorithm 1. It needs to point out that, Algorithm 3 here
is merely a framework of the probabilistic approach. It
needs improving in the way that picks the numbers ran-
domly. The related work will be shown in a future paper.

In order for readers to understand the theory and the
algorithms 1 and 2, here presents 2 examples which are
also examples of the problems Q1 and Q2 with their so-
lutions.

Example 1. Let S1, S2 and S3 be three sets each of which
consists in 5 odd consecutive integers; suppose the sum of
all the odd integers in each set is given by 4045, 4095 and
4145 respectively, judge which of S1, S2 and S3 contains
the number 825.

Solution. The number 825 is the objective and each
of S1, S2 and S3 is a possible host-interval. n = 5
yields n−1 = 4. The arithmetic average values of S1,
S2 and S3 are respectively 4045

5 = 809, 4095
5 = 819

and 4145
5 = 829. Since |809 − 825| = 16, |819 −

825| = 6 and |829 − 825| = 4, it knows S3 contains
the objective 825 by Theorem 5*.

Example 2. Let S={1133, 1135, 1137, 1139, 1141,
1143, 1145, 1147, 1149, 1151, 1153, 1155, 1157,
1159, 1161, 1163, 1165, 1167, 1169, 1171}; detect
if 31 can be divisible one of the terms in S.

Solution. The objective is p = 31 and Iobj = S. N = 20
is the number of terms in S. Subdivide S into 4
sub-sequences, (and thus Lsi = 5), by

S1 = {1133, 1135, 1137, 1139, 1141},

S2 = {1143, 1145, 1147, 1149, 1151},

S3 = {1153, 1155, 1157, 1159, 1161},

S4 = {1163, 1165, 1167, 1169, 1171}.

Let ε = Lsi−1
p = 5−1

31 ≈ 0.129 and E = Lsi+1
p = 5+1

31 ≈
0.1935; by Corollary 4, it needs to determine a q and check
| ΣSi

5×31 − q| ≤ ε for i = 1, 2, 3, 4. Note that,

ΣS1 = 5685⇒ ΣS1

5× 31
≈ 36.6774

ΣS2 = 5735⇒ ΣS2

5× 31
= 37.0000

ΣS3 = 5785⇒ ΣS3

5× 31
≈ 37.3226

International Journal of Network Security, Vol.21, No.3, PP.494-500, May 2019 (DOI: 10.6633/IJNS.201905 21(3).16) 499

ΣS4 = 5835⇒ ΣS4

5× 31
≈ 37.6452

By Proposition 1, q is 37.0000; then by Corollary 4, it
knows that S2 contains a term that is divisible by 31. In
fact, 1147=31×37.

As a comparison, subdividing S into 5 sub-sequences,
which leads to Lsi = 4, results in

S1 = {1133, 1135, 1137, 1139},

S2 = {1141, 1143, 1145, 1147},

S3 = {1149, 1151, 1153, 1155},

S4 = {1157, 1159, 1161, 1163},

S5 = {1165, 1167, 1169, 1171},

Referring to Corollary 4, let ε = Lsi−1
p = 4−1

31 ≈ 0.0968

and E = Lsi+1
p = 5+1

31 ≈ 0.1613; then

ΣS1 = 4544⇒ ΣS1

4× 31
≈ 36.6452

ΣS2 = 4576⇒ ΣS2

4× 31
≈ 36.9032

ΣS3 = 4608⇒ ΣS3

4× 31
≈ 37.1613

ΣS4 = 4640⇒ ΣS4

4× 31
≈ 37.4194

ΣS5 = 4672⇒ ΣS5

4× 31
≈ 37.6774

Obviously, by Proposition 1, q = 36 + 1 = 37 is a
reasonable choice and this time S2 contains s = 31 × 37
because | ΣS2

4×31 − q| ≈ 0.09677 ≤ ε while | ΣS3

4×31 − q| ≈
0.1613 ≈ E and | ΣS1

4×31 − q| ≈ 0.3548 > E.

5 Conclusions and Future Work

Finding a hidden objective in a set is meaningful in both
mathematics and engineering. The set of consecutive odd
integers, as a special set in cryptography, hides many
problems inside. It is worthy of a subtitle study of the
set. This paper solves the problem to detect if a num-
ber itself or one of its divisors is a divisor of another
number that hidden in a set. It is helpful in cracking
a password or some encryption codes. The probabilistic
approach raised in this paper is sure a new idea to fac-
torize odd integers because its way of finding GCD by
adding randomly-picked items is quite different from the
present Pollard’s rho method that finds GCD by subtract-
ing randomly-picked items. However, as stated before,
the algorithm presented in this paper needs a further in-
vestigation. This is part of our future work. Hope it is
concerned by more colleagues and valuable results come
into being.

Acknowledgments

The research work is supported by the State Key
Laboratory of Mathematical Engineering and Advanced
Computing under Open Project Program No.2017A01,
Department of Guangdong Science and Technology
under projects 2015A030401105 and 2015A010104011,
Foshan Bureau of Science and Technology under
projects 2016AG100311, Projects 2014SFKC30 and
2014QTLXXM42 from Guangdong Education Depart-
ment. The author sincerely presents thanks to them all.

References

[1] E. Bach, ”Toward a theory of Pollard’s Rho
method”, Information and Computation, vol. 90, pp.
139-155, 1991.

[2] H. C. Chou, H. C. Lee, H. J. Yu, et al., ”Pass-
word cracking based on learned patterns from dis-
closed passwords”, International Journal of Innova-
tive Computing Information & Control, vol. 9, no. 2,
pp. 821-839, 2013.

[3] S. Houshmand, S. Aggarwal, R. Flood, ”Next gen
PCFG password cracking”, IEEE Transactions on
Information Forensics & Security, vol. 10, no. 8, pp.
1776-1791, 2017.

[4] J. Lopez, L. F. Cranor, N. Christin, et al., ”Guess
again (and again and again): Measuring pass-
word strength by simulating password-cracking al-
gorithms”, Security & Privacy, vol. 12, no. 02, pp.
523-537, 2012.

[5] S. Marechal, ”Advances in password cracking”, Jour-
nal in Computer Virology, no. 4, pp. 73-81, 2008.
DOI10.1007/s11416-007-0064-y

[6] V. Vijayan, J. P. Joy, M. S. Suchithra, ”A review on
password cracking strategies”, International Journal
of Computer and Communication Technology, vol. 3,
no. 3, pp. 8-15, 2014.

[7] X. Wang, ”Genetic traits of odd numbers with ap-
plications in factorization of integers”,Global Journal
of Pure and Applied Mathematics, vol. 13, no. 1, pp.
318-333, 2017.

[8] X. Wang, ”Strategy for algorithm design in factoring
RSA numbers”, IOSR Journal of Computer Engi-
neering, vol. 19, no. 3(ver.2), pp. 1-7, 2017.

[9] C. M. Weir, ”Using probabilistic techniques to aid
in password cracking attacks”, PhD Dissertations,
2010. (http://purl.flvc.org/fsu/fd/FSU_migr_
etd-1213)

[10] F. Yu, Y. Huang, ”An overview of study of passowrd
cracking”, in International Conference on Computer
Science and Mechanical Automation, pp. 25-29, 2015.

Biography

Dr. & Prof. Xingbo WANG was born in Hubei, China.
He got his Master and Doctor degrees at National Univer-
sity of Defense Technology of China and had been a staff

International Journal of Network Security, Vol.21, No.3, PP.494-500, May 2019 (DOI: 10.6633/IJNS.201905 21(3).16) 500

in charge of researching and developing CAD/CAM/NC
technologies in the university. Since 2010, he has been
a professor in Foshan University with research interests
in computer application and information security. He
is now the chief of Guangdong engineering center of in-
formation security for intelligent manufacturing system.

Prof. WANG was in charge of more than 40 projects
including projects from the National Science Foundation
Committee, published 8 books and over 90 papers related
with mathematics, computer science and mechatronic en-
gineering, and invented 30 more patents in the related
fields.

