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Abstract

Cloud computing, a new kind of resource sharing service
system, can provide virtual resource services such as in-
frastructure and platform for users who access it through
the Internet. Its service quality is related to resource man-
agement and scheduling. In this study, CloudSim3.0 sim-
ulation platform was used as a simulation platform for
cloud computing resource scheduling to test the perfor-
mance of radial base function (RBF) neural network based
on particle swarm optimization (PSO) and RBF neural
network based on Improved Particle Swarm Optimization
(IPSO) in cloud resource scheduling and configuration.
The results showed that the CPU and memory utilization
rate and processing time of the two algorithms increased
with the increase of processing tasks. It was found that
compared to PSO-RBF, IPSO-RBF had higher CPU and
memory utilization rate and shorter processing time and
converged faster and found the best position of particles
after only 30 iterations with small fluctuation amplitude.
In addition, IPSO-RBF had better performance in bal-
ancing the load of different kinds of physical resources
compared to PSO-RBF.
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1 Introduction

With the development of society, the role of computer in
various fields of society is becoming more and more exten-
sive. At the same time, the demand for computing power
in industries that need to use computer power is also in-
creasing day by day [6]. Single improvement of computer
hardware performance to obtain more computing power
not only has limited computing power improvement, but
also has low cost performance for a single user compared
with the cost of hardware improvement [9].

The emergence of cloud computing solves the problem
of limited performance improvement of a single computer.
Relying on the Internet, cloud computing uploaded and
distributed the tasks that users needed to process to the
”master station” composed of a large number of servers,
and applied the physical resources in the ”master station”
to process the tasks of users [1, 3]. Its ”master station”
is called the resource pool [15], also known as ”cloud”.
Cloud computing combines virtualization, parallel com-
puting, distributed computing and other concepts, and
has the following characteristics [5].

Cloud computing has a larger computing scale than a
single user; Cloud computing can complete the interac-
tion of information through the Internet and terminals,
and the resources it uses are not physical objects [10,13].
Resource pools in cloud computing are Shared. Relevant
researches are as follows. Chen et al. [4] proposed an
Improved Ant Colony System (IACS) method and con-
ducted extensive experiments based on workflows of dif-
ferent scales and different cloud resources. Experimental
results showed that IACS was able to find a better solu-
tion with lower cost than basic particle swarm optimiza-
tion (PSO) and dynamic target genetic algorithm under
different scheduling scales and deadlines. Abdullahi Mo-
hammed et al. [11] proposed a symbiotic organisms search
optimization algorithm (SOS) based on simulated anneal-
ing (SA) to improve the convergence speed and quality of
SOS solutions.

CloudSim simulation results showed that SASOS was
superior to SOS in terms of convergence speed, response
time, unbalance and MAK. Zhang et al. [18] proposed an
improved Centrino Hardware Control (CHC) algorithm,
which inherited the advantages of standard genetic algo-
rithm (SGA) and CHC algorithm. The experimental re-
sults showed that the improved CHC algorithm had better
efficiency and convergence, and the average time and com-
pletion time of task scheduling were relatively shorter. In
this paper, CloudSim3.0 simulation platform was adopted
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as the simulation platform for cloud computing resource
scheduling to test the scheduling configuration perfor-
mance of RBF neural network based on PSO and RBF
neural network based on improved particle swarm opti-
mization (IPSO).

2 Cloud Computing Resource
Scheduling

The resource scheduling model in cloud computing con-
sists of three layers: service request, virtual resource pool
and physical resource pool. Cloud computing resource
scheduling was generally divided into two steps. First,
the task in the service request was allocated to the vir-
tual machine in the virtual resource pool, and then the
allocated virtual machine was deployed to the physical
machine in the physical resource pool, as showed in Fig-
ure 1.

Figure 1: Cloud computing resource scheduling

Its mathematical model [2] was: If the task in the ser-
vice request was divided into n mutually independent sub-
tasks, the set of sub-tasks was M = {m1,m2, · · · ,mn},
where the i-th sub-task was mi, and a sub-task could
only run in one virtual node. If there were b virtual nodes
(b < n), the set of virtual nodes was V = {v1, v2, · · · , vb},
where vj is the j-th virtual node. Then the distribution
could be expressed by the matrix A:

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
· · · · · · · · · · · ·
ab1 ab2 · · · abn

 (1)

Any element in the matrix represents the relationship
between the sub-task and the virtual section. When the
i-th task run on the JTH node, it was 1, otherwise it was
0. For the convenience of later calculation, it was assumed
that a node could only run one task at a time, and a task
could only run on one node at the same time. Hence the
time spent in completing task M was:

time = max(

n∑
i=1

ajitji, (1 ≤ i ≤ n, 1 ≤ j ≤ b). (2)

A good resource scheduling algorithm should have the
least time to complete the task, i.e.,

Cost = min(time). (3)

Equations (1), (2) and (3) were the mathematical model
of cloud computing resource scheduling.

Figure 2: Basic structure of RBF network

3 Radial Basis Function (RBF)
Neural Network

Radial basis function neural network [?, 19] has a simple
structure. It converges quickly and could simulate any
nonlinear function. Its structure is shown in Figure 2.
RBF neural network belongs to feed-forward neural net-
work, and its basic structure was divided into three layers,
including input layer, hidden layer and output layer. The
activation function of hidden layer is radial basis function,
so each node of hidden layer has a data center ci.

Each data node in the input layer was denoted as
x = (x1, x2, · · · , xi, · · · , xn)T . The output data in the
output layer was denoted as y = (y1, y2, · · · , yi, · · · , yn)T .
The mapping between the hidden layer and the output
layer was a linear mapping, and the weight matrix of
the mapping between the nodes of the two layers was de-
noted as w = (w11, w12, · · · , wij , · · · , whm)T . The map-
ping from an input layer to a hidden layer in RBF network
is a nonlinear mapping, and its mapping formula [7] was:

hi = exp(
||x− ci||2

2b2i
), 1 ≤ i ≤ h, (4)

where hi refers to the output of the i-th node in the hidden
layer, || · || is the euclidean distance, and bi refers to the
width of the radial basis function of the node of the i-th
hidden layer. The mapping formula between the hidden
layer and the output layer was:

yj =

h∑
i=1

wijhi, 1 ≤ j ≤ m, (5)

where yj is the output data of the j-th node in the out-
put layer and wij is the mapping weight between the i-th
hidden layer node and the j-th output layer node.
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4 RBF Network Based on PSO

PSO [17] is also known as ”flock foraging algorithm” be-
cause it is derived from the research on the foraging and
migration behavior of birds. Its principle is to obtain the
global optimal solution by tracing the current optimal so-
lution. PSO is one of the evolutionary algorithms. Similar
to other evolutionary algorithms, PSO uses population to
find the solution set in space, and iterates randomly on
population initialization and end conditions to get the
optimal solution. In the process of operation, the direc-
tion of the optimal solution was determined by the fitness
value, and the fitness value was used to judge whether the
solution was good or not. The global optimal solution
was found by comparing the self-optimal solution with
the currently explored optimal solution.In particle swarm
optimization, individual updates were influenced by his-
torical particles rather than random ones. The number
of particles in the particle swarm optimization algorithm
was n. In m-dimensional space, Pi was used as the vector

position of the i-th particle, i.e.,
−→
Pi = (pi1, pi2, · · · , piM ),

Si as the velocity of the particle
−→
Vi = (vi1, vi2, · · · , viM ).

Let the current optimal position of the i-th particle
be pbesti, the optimal position of the particle swarm was
gbesti. Then the formula [16] for the velocity change of
the particle was:

Vi+1 = µVi + a1x1(pbesti − Pi) + a2x2(gbesti − Pi), (6)

where µ refers to the value of the particle affected by iner-
tia, a1 and a2 are the learning factor, x1 and x2 are a ran-
dom number, they were evenly distributed between 0 and
1, a1x1(pbesti−Pi) is cognitive term, and a2x2(gbesti−Pi)
refers to social term.

The expression of the position change of the particle
was:

Pi+1 = Pi + Vi. (7)

By repeatedly updating the calculation based on Equa-
tions (6) and (7), and analyzing the fitness of particles, the
optimal solution with the largest fitness could be found.
This study adopted PSO algorithm to optimize RBF net-
work. First, the mapping parameters in the RBF network
were converted into the dimensional vectors of each parti-
cle in the PSO. In other words, mapping parameters such
as data center ci, width coefficient bi, and weight wij in
RBF network were taken as dimensions in corresponding
particles. Then, the fitness function in PSO was taken
as the mean square error in RBF network, and the opti-
mal weight with the minimum mean square error could
be obtained after PSO operation.

After the mapping parameters in RBF were converted
into the dimensions of particles in the particle swarm, the
optimal parameters of a set of particles were calculated
according to the calculation flow in Figure 3, and then
the dimensions of the particles were converted into the
mapping parameters in the RBF network to participate
in the scheduling and configuration of cloud resources by
the RBF neural network.

5 RBF Network Based on Im-
proved Particle Swarm Opti-
mization

Up to now, there are various ways to improve the tradi-
tional particle swarm optimization algorithm, but the ul-
timate purpose is to make up for the two shortcomings of
the traditional particle swarm optimization: First, when
the test object is a complex function, with the increase
of the number of iterations, the algorithm is likely to fall
into a local extreme value, which is difficult to obtain the
real optimal solution. The second is the selection of al-
gorithm parameters, among which the inertia factor and
learning factor have the greatest influence on the change
of algorithm capability.

In the traditional PSO algorithm, cognitive coefficient
a1 and social coefficient a2 remain unchanged, they are
learning factors; as a result, when the number of itera-
tions is small, the influence of individual cognition is large;
when the number of iterations is large, the social influence
is large, failing to reflect the aforementioned changes at
the same time, which makes the algorithm obtain the lo-
cal optimal solution and induces the phenomenon of ”pre-
mature” [14]. In order to solve the above problems, the
traditional particle swarm optimization algorithm was im-
proved, and the improved formula [12] was:

Si+1 = µVi + b(
1

n
)x1(pbesti − Pi) + cn2x2(gbesti − Pi). (8)

By comparing Equations (6) and (8), it was found that
the improvement made is to change the cognitive term
coefficient a1 into b( 1

n ), so that the individual cognitive
proportion decreased with the increase of the number of
iterations. The social item coefficient a2 changes to cn2,
so that the social item proportion of the group increases
with the number of iterations. Then, when calculating,
b took a large value, and c took a small value, making
it conform to the fact that individual cognition was the
dominant factor in the initial stage. As the number of iter-
ations increases, the proportion of social terms increases,
and it started to become the dominant factor.

After the improvement, the algorithm was more consis-
tent with the objective law of the optimal solution, and
the practicability was greatly improved. The optimiza-
tion steps of the IPSO for RBF network were not much
different from those of PSO for RBF above. Similarly, the
mapping parameters in RBF were converted into the di-
mensions of particles in the particle swarm. Then, the op-
timal parameters of the particle swarm were calculated ac-
cording to the steps shown in Figure 3, and the difference
was that the formula for updating the particle velocity is
replaced by Equations (6) with (8). Then, the dimensions
of the optimal particle swarm were converted into various
mapping parameters in the RBF network, and participate
in the scheduling and configuration of cloud resources by
the RBF neural network.
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Figure 3: Calculation flow of RBF network mapping parameters based on PSO algorithm

6 Experimental Analysis

6.1 Experimental Environment

In this study, CloudSim3.0 simulation platform [8] was se-
lected as the simulation platform for cloud computing re-
source scheduling to test the scheduling configuration per-
formance of PSO-based RBF neural network and IPSO-
based RBF neural network for cloud resources.The exper-
imental environment in this paper was Windows10 oper-
ating system on hardware with 16G of memory and 1000G
of hard disk storage. On the software, CloudSim3.0 cloud
platform simulation simulator, compilation environment
JDK1.7 and development tool MyEclipse were adopted.

6.2 Experiment Settings

Thirty physical resources were set up in the cloud comput-
ing laboratory center and converted into virtual machine
resources. The configuration of each virtual machine was
2GB memory capacity and 3.0 GHz CPU processing fre-
quency. Virtual physical resources were divided into three
parts: responsible for processing document classes, for im-
age processing, and for dealing with video class, and the
maximum number of iterations was set as 100. The learn-
ing factor was set as 1.33. The number of submitted tasks
was set as 100, including three types: 10 types of docu-
ments, 30 types of pictures, and 60 types of video. Each
algorithm was iterated for 100 times, and the experiment
was repeated for 40 times. The average value of each test
result was obtained.

6.3 Experimental Results

As showed in Figure 4, under the premise that the to-
tal number of cloud resources was constant, the utiliza-
tion rate of CPU and memory of the two algorithms in-
creased accordingly with the increase of the number of
tasks executed; when the number of tasks exceeded a cer-
tain number, the utilization rate was relatively stable; the
CPU utilization of PSO-RBF increased with the number
of tasks before executing 50 tasks, and fluctuated around

0.4 after more than 50 tasks; the CPU utilization rate
of IPSO-RBF increased with the number of tasks before
60 tasks were executed, and fluctuated around 0.6 after
more than 60 tasks. For memory utilization, PSO-RBF
fluctuated around 0.4 after 80 tasks and IPSO-RBF fluc-
tuated around 0.5 after 60 tasks. On the whole, both CPU
utilization and memory utilization rates were higher com-
pared with IPSO-RBF, because PSO-RBF algorithm used
more physical resources, tasks were evenly distributed to
each virtual machine node, and the utilization of CPU
and memory was evenly distributed.

Figure 4: CPU and memory utilization rates of the two
algorithms under different task number

As showed in Figure 5, with the increased of the num-
ber of processing tasks, the time required by the two algo-
rithms for processing tasks also showed an upward trend
of fluctuation. The fluctuation range of PSO-RBF was
larger, and the time required to process the same num-
ber of tasks was greater than those of IPSO-RBF in most
cases. It could be seen from the figure that it took the
most time to process 70 tasks in this experiment, which
took 910 ms. The time required for IPSO-RBF task pro-
cessing fluctuated with the increase of the task, and the
fluctuation range was small. It was found that it took the
most time, 80 ms, to process 100 tasks in this experiment.
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On the whole, IPSO-RBF was more efficient and took less
time to process tasks.

Figure 5: Time consumed by the two algorithms in pro-
cessing different number of tasks

As showed in Figure 6, with the increase of iteration
times, the convergence of the two algorithms became sta-
ble. In the process of convergence, the particle position
of PSO-RBF increased with the number of iterations and
fluctuated greatly. It did not stabilize until 90 iterations.
The particle position of IPSO-RBF increased with the
number of iterations, with a small fluctuation range, and
the position of the optimal solution was found stably af-
ter 30 iterations. IPSO-RBF had a fast convergence speed
and a better effect of finding the optimal solution.

Figure 6: Convergence effect of the two algorithms

As showed in Figure 7, due to the difference in process-
ing capacity between nodes, the number of tasks assigned
on different types of physical resource nodes was differ-
ent. In the PSO-RBF algorithm, the number of tasks
processed on the three types of nodes was similar, and the
number of actual task types was compared. It could be
found that the PSO-RBF algorithm basically distributes
tasks to all nodes on an equal basis without considering
the difference in processing capability of different types
of tasks between different nodes. However, the number

of tasks on different types of nodes allocated by IPSO-
RBF algorithm was obviously different. By comparing
the number of actual types of tasks, it was found that this
algorithm considers whether the type of tasks was consis-
tent with the type of resource nodes in the allocation of
tasks, and balanced the load between different nodes.

Figure 7: Load distribution on nodes of different physical
resource types

7 Conclusion

Firstly, this paper briefly introduced the cloud computing
resource scheduling model and the construction of RBF
neural network. In cloud computing resource scheduling,
tasks were allocated to virtual machine according to re-
quests, and then virtual machine was allocated with phys-
ical resources. Then, the PSO-based RBF neural net-
work algorithm and IPSO-based RBF neural network al-
gorithm were proposed. Finally, simulation experiments
were carried out on the CloudSim3.0 simulation platform
for the two algorithms. The results showed that the CPU
and memory utilization rate and running time of the vir-
tual machine increased with the increase of the number
of tasks. Moreover, IPSO-RBF algorithm had a higher
utilization rate of virtual machine resources and shorter
running time than PSO-RBF algorithm. In terms of the
convergence effect, IPSO-RBF algorithm could achieve
stable convergence faster with only 30 iterations, while
PSO-RBF algorithm needed 90 iterations to achieve sta-
ble convergence. IPSO-RBF could balance the load of dif-
ferent kinds of physical resources better than PSO-RBF.
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