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Abstract

Recently, researchers have proposed several privacy-
preserving public auditing schemes to remotely check the
integrity of outsourced data based on homomorphic au-
thenticators, random block sampling and random mask-
ing techniques. However, almost all these schemes require
users to maintain tables related to the block index. These
tables are difficult to maintain, especially when the out-
sourced data is frequently updated. In this paper, we pro-
pose a privacy-preserving public auditing scheme with the
support of dynamics using rank-based authenticated skip
list for the integrity of the data in cloud storage, of which
users do not need to maintain the relevant table. And
we give a formal security proof for data integrity guar-
antee and analysis for privacy-preserving property of the
audit protocol. The performance analysis demonstrates
that our scheme is highly efficient.

Keywords: Audit Protocol; Cloud Storage; Privacy-
preserving; Public Auditing; Rank-based Authenticated
Skip List

1 Introduction

Cloud computing has many advantages; this has led to an
increasing number of individuals and companies choos-
ing to store their data and conduct their business us-
ing cloud-based services [22]. Unlike traditional systems,
users lose their physical control over their data. Although
the cloud infrastructure is significantly more reliable than
personal computing devices, data security/privacy is still
one of the core considerations for users when adopt-
ing cloud services because of the internal and external
threats associated with cloud services [1, 35, 38]. There-
fore, researchers have proposed various security models
and schemes to overcome the issue of data integrity au-
diting [3, 12–15,18,20,27,29–31,33,34,36,37].

The public auditable schemes allow external parties,
in addition to the user, to audit the integrity of out-
sourced data; however, this could potentially leak the
user’s data to auditors. Hence, researchers have proposed
privacy-preserving public auditing schemes to avoid au-
ditors learning user’s data in the auditing phase. The
construction of the signatures in some of these schemes in-
volve the block index information i, such as H (name ‖ i)
or H (Bi ‖ Vi ‖ Ri) [30, 36, 37]. Users need to maintain
a table in the local storage for each file, such as map-
version Table [5] or index-hash table [36,37]. The table is
also sent to the third-party auditor (TPA) before the data
is audited. If the table is corrupted, effective audits or dy-
namic operations cannot be conducted on the outsourced
data. In addition, if a large file is stored in cloud stor-
age server (CSS) and undergoes frequent insert and delete
operations, the block index will continue to increase and
become very large. This is because the block index cannot
be reused. Consequently, it becomes increasingly difficult
for users to maintain the table. To address the problem,
the index i is removed, and H (mi) is used in construct-
ing the signature for block mi to prevent replay attack
on the same hash values. To support privacy-preserving
TPA auditing, (H (mi))

α/β is used in the signature con-
struction and assigned to the data item value for the leaf
node of the skip list [9].

In this paper, a secure public auditing algorithm is
proposed with the support of dynamics using a rank-based
authenticated skip list [9] for the outsourced data. The
contributions of this paper can be summarized as follows:

1) A privacy-preserving public auditing scheme which
fully supports dynamics by employing rank-based au-
thenticated skip list is proposed. (H (mi))

α/β is used
as the data item of the bottom node of the skip list
to realize privacy-preserving.

2) Based on the cryptography reduction theory [16, 21]
and CPoR’s model [27] a formal security proof
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is given for the integrity guarantee of outsourced
data and privacy-preserving property of the auditing
phase for the scheme.

The remainder of the paper is organized as follows. Sec-
tion 2 contains the related work. Section 3 introduces
the system model and our design goals. In Section 4, we
elaborate our proposed scheme. Section 5 analyzes the
security and performance of our scheme. The conclusion
is given in Section 6.

2 Related Work

Ateniese et al. proposed the provable data possession
(PDP) model, which can be used for remotely checking
data integrity [2, 3]. This model can generate probabilis-
tic proofs of possession by randomly sampling data blocks
from the server, in which the tags of the sampled blocks
can be aggregated into a single value using homomor-
phic verifiable tags(HVTs). It is believed to be the first
scheme to provide blockless verification and public verifi-
ability at the same time. Erway et al. proposed dynamic
PDP (DPDP), which applies the structure of rank-based
authenticated skip list to ensures the integrity of the tags
using the skip list structure and the integrity of the blocks
by their tags. This scheme effectively supports provable
secure updates to the remotely stored data [9]. Juels
and Kaliski presented the proof of retrievability (PoR)
model. This model ensures both the possession and the
retrievability of outsourced data by using spot-checking
and error-correcting codes. However, the number of au-
dit challenges a user can perform is predetermined and
public auditability is not supported in [15].

Shacham et al. designed a compact version of PoR
(CPoR) [27] and proved the security of their scheme
against arbitrary adversaries in the Juel-Kaliski model.
The construction of the publicly verifiable CPoR scheme
is based on Boneh-Lynn-Shacham (BLS) signatures [8].
Wang et al. proposed a public auditing scheme that sup-
ports dynamic data operations in [31]. The authentication
information of the scheme is managed using the Merkle
hash tree (MHT) [23], in which the leaf nodes are the
values of H (mi)(mi is the i-th block of the file). To pre-
vent TPA extracting data content from the collected in-
formation, they designed a privacy-preserving public au-
diting scheme using a random mask technique to blind
the response information in the follow-up work [30]. But
its description for the dynamics is ambiguous. Zhu et
al. proposed another privacy-preserving public auditing
scheme which supported dynamic data updates employing
an index-hash table [36]. However, in these two privacy-
preserving schemes, block index related information is in-
volved in the signature construction. Users are required
to maintain a relevant table. To guarantee the integrity
of the multiple replicas in cloud, Curtmola et al. pro-
posed the replication-based remote data auditing scheme,
called Multiple-Replica PDP (MR-PDP), which extends
the (single-copy) PDP scheme for overcoming the collu-

sion attack in a multi-server environment. However, MR-
PDP only supports private verification [7].

Barsoum et al. proposed two multi-copy DPDP pub-
lic auditing schemes, supporting data dynamics based on
the MHT and map-version table, respectively. Different
copies are generated through encrypting the concatena-
tion of the copy number and file blocks [5]. In the latter,
the map-version table must be stored in the local stor-
age of the user and is managed by the user during the
various update operations performed on the file. In [34],
Yang et al. propose a public auditing scheme for shared
cloud data in which a group manager is introduced to help
members generate authenticators to protect the identity
privacy. This method uses two lists to record the mem-
bers who performed the most-recent modification on each
block to achieve the identity traceability. This scheme
also achieves data privacy during authenticator genera-
tion by employing a blind signature technique. To over-
come the issue of resource-constrained users dealing with
heavy burdens, Shen et al. proposed a cloud storage au-
diting scheme for group users by introducing a third party
medium (TPM) to perform time-consuming operations on
behalf of users [29]. Utilizing proxy re-signatures and
homomorphic linear authenticators, Li et al. propose a
privacy-preserving cloud data audit scheme that can sup-
port key-updating and authenticator-evolving [18].

Researchers have proposed a number of cloud storage
auditing schemes in the recent past. All these schemes pri-
marily focus on several different aspects of cloud storage
auditing. However, almost none of these schemes address
the issue that users need to maintain a block index related
table in the local storage for the privacy-preserving public
auditing schemes. Users should be “stateless” and must
not be required to store and update the table between
different dynamic operations, since such table is difficult
to maintain.

3 Problem Statements

3.1 System Model

The auditing system for cloud storage involves cloud
users, CSS and TPA as shown in Figure 1. The cloud
user is the data owner, who has large amount of data to be
stored in the CSS. The users can access and dynamically
update their data in the CSS by interacting with the CSS.
The CSS, which is managed by the cloud service provider
(CSP), has significant storage space and massive amount
of computational resources. The users’ data is stored in
the cloud storage and is managed and maintained by the
CSP. The TPA has expertise and capabilities that users
do not have and can audit the users’ outsourced data in
the CSS on behalf of users at the users’ request.

To ensure the integrity and correctness of the users’
outsourced data, users need to make periodic checks. To
save computation resources and network bandwidth, users
can delegate the TPA to perform the periodic data in-
tegrity verification. However, users do not want informa-
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Figure 1: The cloud storage architecture includes the
CSS, the cloud users and the TPA

tion from their data to be learned by the TPA during the
auditing process.

In this model, it is assumed that the cloud server does
not have the incentive to reveal their hosted data to any
external entity. It is also assumed that the TPA has no
incentive to collude with either the CSP or the user dur-
ing the auditing process. However, it is interested in the
users’ data.

3.2 Design Goals

In the aforementioned model, a scheme is proposed in
which the design goals can be summarized as follows [19]:

1) Public auditability: To allow any authorized TPA to
verify the integrity of the cloud data without retriev-
ing a copy of the whole data;

2) Storage correctness: To ensure that there no CSP
exists that can pass the audit of the TPA without
storing cloud users’ data intact;

3) Privacy preserving: To ensure that it is infeasible for
the TPA to recover the user’s data from the informa-
tion collected during the auditing phase;

4) High performance: The TPA can perform data audit-
ing with minimum communication and computation
overhead;

5) Dynamic data: To allow the data owners to modify,
insert and delete data blocks in the cloud storage
when they want to update their data at any time;

6) Batch auditing: The TPA can audit the data of dif-
ferent users at the same time.

4 The Proposed Construction

4.1 Preliminaries

Relevant functions. A pseudo-random function (PRF) f
and a pseudo-random permutation (PRP) π are used with

Figure 2: Example of a rank-based skip list

the following parameters [3]:

fk : {0, 1}log2n ×K → {0, 1}l;
πk : {0, 1}log2n ×K → {0, 1}log2n.

Bilinear maps. Suppose a group G is a Gap Diffie-
Hellman (GDH) group with prime order p. GT is another
multiplicative cyclic group with prime order p. Then, the
bilinear map is a map e : G ×G → GT with the following
properties [8]:

1) Bilinearity – ∀u, v ∈ G , a, b ∈ Zp , e(ua , vb) = e(u, v)ab ;

2) Non-degeneracy – e(g , g) 6= 1 , where g is a generator
of G;

3) Computability – e should be efficiently computable.

The following scheme description uses the symmetric bi-
linear map for the purpose of simplicity. The asymmetric
bilinear map is in the form of e : G1 ×G2 → GT .

Rank-Based Skip List [9,11,24]. The main information
related to i-th node v on level 0 (bottom-level) includes:
the level of i-th node l(v), the rank of i-th node r(v),
the data item of i-th node T (mi) and the label of i-th
node f (v); that on non-bottom level includes: the level of
the node l(v), the rank of the node r(v), the label of the
node f (v); In addition to these, each node contains some
information related to the structure of the skip list, such
as, right and down pointers.

The rank value of a node indicates the number of the
reachable bottom nodes (or leaf nodes) departing from the
node. The rank of a Null node equals 0. The location of
each bottom node can be calculated from the rank values
of the relevant nodes.

The label value of a node on bottom-level is

f (v) = h2 (l(v) ‖ r(v) ‖ T (mi) ‖ f (right(v)))

and that on non-bottom level is

f (v) = h2 (l(v) ‖ r(v) ‖ f (down(v)) ‖ f (right(v)))

where the symbol “||” denotes concatenation, f (down(v))
and f (right(v)) are the label of the down and right node
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of v, respectively. The label value of a Null node is 0. The
function h2 (·) is a collision-resistant cryptographic hash
function. Users hold the label f (s) of the top leftmost
node (or start node) of the skip list. The f (s) is called the
basis (or root). It is equivalent to the user’s verification
metadata.

To obtain the proof information of some block i, the
skip list needs traversing from the start node vk to the
node v1 associated with block i through the rank of the
nodes. The reverse path v1 , · · · , vk is called verification
path of the block i, as shown in Figure 2. The infor-
mation of the nodes x0 , y0 − y3 and v1 − v2 is used as
auxiliary authentication information (AAI) for calculat-
ing each rank and label value from v1 to vk on the verifi-
cation path.

The proof of a block is composed of a sequence of
tuples made of the relevant information of each node
on the verification path. That is, the proof for block i
with data T (mi) is a sequence Πi = (A(v1 ), · · · ,A(vk ))
where A(vj ) = (l(vj ), q(vj ), d(vj ), g(vj )), 1 ≤ j ≤ k , from
which we can get the AAI. The l(vj ) is the level of
the node and Boolean d(vj ) indicates whether vj−1
is to the right or below vj . The value of g(vj ) is
used to calculate the label of the corresponding node
along the verification path. For the non-bottom level
nodes, if d(vj ) = rgt , then g(vj ) = f (dwn(vj )), else if
d(vj ) = dwn, then g(vj ) = f (rgt(vj )). For bottom-level
nodes vj (j > 1 ) on the verification path, the value of
g(vj ) is the data item of the node. The value of g(v1 )
is the label of the right node of v1 . For nodes at
the bottom-level, q(v1 ) is the sum of the rank of the
right node of v1 and 1, this 1 means that the node
v1 itself is also a reachable node on the bottom-level.
The value of q(vj ) of each node on the left side of the
node v1 at bottom-level is 1. For non-bottom level
nodes, if the node vj−1 is the right (or down) node of
vj , then q(vj ) = r(dwn(vj )) (or q(vj ) = r(rgt(vj ))).

4.2 The Privacy-preserving Scheme

The notions proposed in [3, 15, 27, 28, 30, 31, 36] were fol-
lowed in this study. The proposed scheme is based on
CPoR’s model [27] and the relevant method in [25].

The scheme consists of two algorithms
KeyGen(1 k ),St(sk ,F ) and an interactive audit pro-
tocol Audit(CSP ,TPA).

Let S = (p,G ,GT , e) be a bilinear map group sys-
tem with randomly selected generators g , h ∈R G , where
G ,GT are two groups of large prime order p. H (·) is a
secure map-to-point hash function: {0 , 1}∗ → G , which
maps strings uniformly to G. Another hash function
h1 (·) : GT → Zp maps the group element of GT uniformly
to Zp .

KeyGen(1k) : This randomized algorithm generates the
public and secret parameters. The cloud user chooses
a random signing key pair (spk,ssk) and two random
α, β ∈R Zp . The secret parameter is sk= (α, β, ssk)

and the public parameter is pk=(g,h,X,Y) , where
X = hα,Y = hβ ∈ G .

St(sk, F ) : The data file F is split into n × s sectors
F = {mij}n×s ,mi = {mij}1≤j≤s ,mij ∈ Zp . The
cloud user chooses s random τ1 , · · · , τs ∈ Zp

as the secret of the file and computes
uj = gτj ∈ G , 1 ≤ j ≤ s and authenticator
σi ← (H(mi))

α · (
∏

s
j=1u

mij

j )β = ((H(mi))
α/β

·g
∑ s

j=1τj ·mij )β
(1)

for each block i. The cloud user constructs
a rank-based authenticated skip list of which
the data item of the i-th bottom node is
(H (mi))

α/β , 1 ≤ i ≤ n. Let Φ = (σ1 , · · · , σn) and
t0 be “fn ‖ n ‖ u1 ‖ · · · ‖ us ‖ Mc”, fn is chosen by
the user uniformly at random from Zp as the iden-
tifier of file F , Mc is the root of the skip list. The
cloud user computes t = t0 ‖ SSigssk (t0 ) as the file
tag for F under the private key ssk. The user then
sends {F ,Φ, t} and the skip list to the cloud server
and deletes {F ,Φ} and the skip list from his local
storage. Then the user holds t as the metadata.

Audit(CSP, TPA) : This is a 3–move protocol between
TPA and CSP as the following:

• Commitment(CSP → TPA): The CSP chooses
s random λj ∈R Zp , (1 ≤ j ≤ s), then computes

Tj = u
λj

j , (1 ≤ j ≤ s) and sends its commitment,
{Tj}j∈[1 ,s], to TPA.

• Challenge(TPA→ CSP): The authorized TPA first
retrieves the file tag t. The TPA checks the valid-
ity of t via spk, and quits by outputting reject if the
verification fails. Otherwise, the TPA recovers the
values in t0 . Then TPA generates a set of challenge
information Chal = {c, k1 , k2} [3], in which c is the
number of the data blocks to be audited and k1 , k2
are randomly chosen keys for the pseudo-random per-
mutation πk and pseudo-random function fk , respec-
tively. The πk and fk are used to generate c in-
dices sj (1 ≤ j ≤ c, 1 ≤ sj ≤ n) and c relevant coef-
ficients vi(i ∈ {sj |1 ≤ j ≤ c}, vi ∈R Zp) of the chal-
lenged data blocks. Let I denotes the set of c random
indices sj . Let Q be the set {(i , vi)}i∈I of the index
and coefficient pairs. Then TPA sends Chal to the
prover CSP.

• Response(TPA← CSP): Upon receiving the chal-
lenge Chal, CSP chooses a random r ∈R Zp and cal-
culates

ψ = e(gr , h), γ = h1 (ψ), sj = πk1 (j ),

and

vi = fk2 (j ),

where

1 ≤ j ≤ c, i ∈ {sj |1 ≤ sj ≤ n}, vi ∈ Zp .
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Then the CSP computes
σ ←

∏
(i,vi)∈Q σ

γ·vi
i · gr

µj ← λ−1
j · (γ ·

∑
(i,vi)∈Q vi ·mij + 1)

(2)

and sends the response θ = (σ, {µj}j∈[1 ,s], ψ), the
set {Πi}i∈I of the proof for every block i and
{(H (mi))

α/β)}i∈I to the TPA.

Verification: TPA calculates the root Rt from

{(H (mi))
α/β ,Πi}i∈I and checks Rt

?
= Mc . If it is not

true, TPA outputs reject, otherwise TPA can check

e(σ, h)
?
= ψ · e(

∏
(i,vi)∈Q

((H(mi))
α/β)vi·γ

·
∏

s
j=1T

µj

j · u
−1
j , Y )

(3)

If it holds, TPA outputs accept, otherwise reject.

4.3 Support for Dynamic Data Operation

Merkle hash tree can perfectly work for the static case and
also do well when the elements are inserted in a random
order for the dynamic case. When it undergoes a sequence
of inserting operations in a certain order, the structure of
the binary tree may degenerate and the performance may
become poor. In this case, the binary tree will need rebal-
ancing continuously with the operations [4,17]. While the
skip lists are balanced probabilistically, in dealing with a
variety of dynamic operations, the performance of the skip
list is relatively stable [26]. So, we choose the rank-based
authenticated skip list [9] as the authenticated search data
structure of the dynamic case [10]. Through this struc-
ture, various dynamic operations can be efficiently per-
formed, the order of data blocks in the file can be guaran-
teed not to be changed, the integrity of (H (mi))

α/β can
be ensured and then the integrity of the signatures and
the data blocks can be ensured.

Now we describe the dynamic data operations. Our
scheme can fully handle block-level dynamic operations
including modification (′M ′), insertion (′I ′) and dele-
tion (′D ′) for the outsourced data. Each operation af-
fects only nodes along a verification path in the skip
list. We assume that the file F, the signatures of data
blocks Φ and the corresponding skip list with the ele-
ments (H (mi))

ρ(1 ≤ i ≤ n, ρ = α/β) have been stored in
the cloud server. The user keeps the root as verification
metadata, which is the label of the start node of the skip
list.

Data modification: We assume that the user wants to
modify the i-th data block mi to m

′

i . Firstly, the user
sends a query “Prepareupdate = (i)” to the server to
get the message which includes H (mi) and the proof
Πi of block i. After receiving these information,
the user computes (H (mi))

ρ and generates root S.

Then the user checks Mc
?
= S . If it is not true,

output reject, otherwise the user computes the new

block signature σi ← ((H (m
′

i ))
α/β ·

∏s
j=1 u

m
′
ij

j )β .
Then, he constructs an update request message
“Update = (′M ′, i ,m

′

i , σ
′

i ,H (m
′

i )
ρ)” and sends it to

the server. Upon receiving the request, the server
runs PerformUpdate(F ,Φ,Update). Through the
procedure the server completes the following tasks:

1) Replaces mi and σi with m
′

i and σ
′

i , respec-
tively;

2) Replaces (H (mi))
ρ with (H (m

′

i ))
ρ of the leaf

node i, then updates the labels of the affected
nodes and generates the new root M

′

c .

Finally the server returns M
′

c to the user. Then the
user generates the new root S

′
using Πi , (H (m

′

i ))
ρ

and compares it with M
′

c to check whether the server
has performed the modification operation as required
or not. If it is not true, output reject, otherwise out-
put accept. Then, the user replaces Mc with M

′

c as
the new root metadata and deletes Update and m

′

i

from its local storage.

Data insertion: Data insertion means inserting a new
block after some specified position in the file F.
Suppose the user wants to insert a block m

′

i+1 af-
ter the i–th block mi . Firstly, the user sends a
query “Prepareupdate = (i)” to the server, then the
server returns H (mi) and the proof Πi of block
i. Next, the user computes (H (mi))

ρ and gener-
ates root S using {Πi ,H (mi)

ρ}. Then the user

checks Mc
?
= S . If it is not true, output re-

ject, otherwise the user computes the new block

signature σ
′

i+1 = ((H (m
′

i+1 ))α/β
∏s

j=1 u
m
′
i+1,j

j )β and
determines the height of the tower of the
skip list associated with the new block. Fi-
nally he constructs an update request message
“Update = (′I ′, l , i ,m

′

i+1 , σ
′
,H (m

′

i+1 )ρ)” and sends
it to the server, where ‘l’ denotes the height of the
tower related to the new node. Upon receiving the re-
quest, the server runs PerformUpdate(F ,Φ,Update).
The server completes the following tasks:

1) The server stores data block m
′

i+1 and its sig-

nature σ
′

i+1 ;

2) The server adds a leaf node after the position i
of which the data item is (H (m

′

i+1 ))ρ according
to the height l, then updates the labels, levels
and ranks of the affected nodes and generates
the new root M

′

c based on the updated skip list.

The server sends to the user M
′

c in re-
sponse. Then the user generates the new root
S
′

using {Πi , (H (m
′

i+1 ))ρ} and compares it with

M
′

c to check whether the server has performed
the insertion operation as required or not. If it is
not true, output reject, otherwise output accept.
Then, the user replaces Mc with M

′

c as the new root
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metadata and deletes Update and m
′

i+1 from its local
storage.

Data deletion: Data deletion refers to deleting a specified
data block from the file. The corresponding element
in the skip list will be deleted at the same time. Data
deletion is the opposite operation of data insertion.
However, the parameters specified by the user don’t
include the tower height. The details of the operation
procedure are similar to that of data modification
and insertion, so we omit them here.

4.4 Support for Batch Auditing

When the TPA simultaneously copes with different au-
diting delegations from different D users on different D
files respectively, we can extend our scheme to implement
batch auditing tasks. If the i in the Q is within the range
of the number of blocks of the file, the auditing for the file
can be added into the batch auditing. The batch audit-
ing scheme can reduce the number of relatively expensive
pairing operations from 2D to D+1.

The k th user randomly chooses parame-
ters uk ,j ∈R G , 1 ≤ k ≤ D , 1 ≤ j ≤ s. His/her
secret key and corresponding public key
are denoted as skk = (αk , βk , sskk ) and
pkk = (Xk ,Yk , spkk ). The user’s outsourced file
is Fk = {mk ,i,j}, (1 ≤ k ≤ D , 1 ≤ i ≤ n, 1 ≤ j ≤ s),
the file name is fnk and the tag of the file is
tk = tk ,0 ‖ SSigsskk (tk ,0 ). The signature of the block i is
σk ,i = ((H (mk ,i))

αk/βk ·
∏s

j=1 u
mk,i,j

k ,j )βk . The root of the
corresponding skip list is Mk ,c .

The CSP chooses λk ,j ∈R Zp , then computes

Tk ,j = u
λk,j

k ,j as the commitments for each user. The
TPA chooses the challenge Chal = {c, k1 , k2} and
sends Chal to CSP. After receiving Chal, the CSP
gets Q = {(i , vi)}i∈I , chooses randomly rk ∈R Zp and
calculates ψk = e(grk , h), γk = h1 (ψk ) and

σk ←
∏

(i,vi)∈Q σ
γk·vi
k,i · grk

µk,j ← λ−1
k,j · (γk ·

∑
(i,vi)∈Q vi ·mk,i,j + 1)

(4)

The CSP sends θk = ({σk}1≤k≤D , {µk ,j}1≤k≤D,1≤j≤s
, {ψk}1≤k≤D), the set {Πk ,i}1≤k≤D,i∈I of the proof for
block mk ,i and {(H (mk ,i))

αk/βk }1≤k≤D,i∈I to the TPA.
After receiving the response from the

CSP, the TPA calculates the root Rk ,t from

{(H (mk ,i))
αk/βk ,Πk ,i}1≤k≤D,i∈I and checks Rk ,t

?
= Mk ,c

for every file. If it is not true, TPA outputs reject,
otherwise TPA can check

e(
∏D

k=1
σk, h)

?
=

∏D

k=1
(ψk·

e(
∏

(i,vi)∈Q
((H(mk,i))

αk/βk)vi·γk ·
∏

s
j=1T

µk,j

k,j · u
−1
k,j , Yk))

(5)

If it holds, TPA outputs accept, otherwise reject.

5 Evaluation

5.1 Security Evaluation

Completeness property: For each random challenge Q
and its corresponding correct responses, the com-
pleteness of the protocol can be elaborated as follows:

e(σ, h)
?
=

ψ · e(
∏

(i,vi)∈Q
((H(mi))

α/β)vi·γ ·
∏s

j=1
T
µj

j · u
−1
j , Y )

The right side

= e(
∏

(i,vi)∈Q
(H(mi))

(α/β)·vi·γ

·
∏s

j=1
u
γ·

∑
(i,vi)∈Q

vi·mij+1

j · u−1
j , Y ) · ψ

= e(
∏

(i,vi)∈Q
(H(mi))

(α/β)·vi·γ

·
∏s

j=1
u
γ·

∑
(i,vi)∈Q

vi·mij

j , Y ) · ψ

= e(
∏

(i,vi)∈Q
(H(mi))

(α/β)·vi·γ

·
∏

(i,vi)∈Q
(
∏s

j=1
u
mij

j )vi·γ , Y ) · ψ

= e(
∏

(i,vi)∈Q
((H(mi))

α/β ·
∏s

j=1
u
mij

j )vi·γ·β · gr, h)

= The left side of the equation

So the equation means that the protocol is valid for
the correct responses.

Soundness property: The soundness property means
that a false response will not be accepted as the cor-
rect. In this context, it means that the CSS cannot
generate a valid response to the TPA’s challenge if
the outsourced data is not stored well.

Theorem 1. If the CSS passes the verification of the
Audit protocol, it must indeed store the specified data
intact.

Following from the proof of CPoR [ [27], Theo-
rem 4.2], we give a proof of Theorem 1 in the random
oracle model.

Proof. To prevent the TPA from extracting the value
of σi from

∏
(i,vi )∈Q σvi ·γ

i , we blind it with gr at
each instance. To prove that the cloud server can-
not falsify σ, {µj}1≤j≤s , we assume that the response
information contains gr instead of ψ and also con-
tains λj , (1 ≤ j ≤ s), corresponding to the commit-
ment.

There are a challenger and an adversary , and the
latter is a malicious CSP. The challenger constructs a
simulator S that will simulate the entire environment
of the scheme for the adversary A. For any file F on
which it previously made St query, the adversary A
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can perform the Audit protocol with the challenger.
In these executions of the protocol, the simulator S
plays the part of the verifier and the adversary A
plays the part of the prover: S (pk , sk , t) 
 A.

For some file F, if the adversary A can successfully
forge the aggregate signature σ

′
with a non-negligible

probability resulting in σ
′ 6=

∏
(i,vi )∈Q σvi ·γ

i · gr and
successfully pass the verification, the simulator can
make use of the adversary to solve the Computational
Diffie-Hellman problem.

The simulator is given as input values
h,X = hα,Y = hβ , and its goal is to output
hα·β .

Let H : {0 , 1}∗ → G be a hash function which will
be modeled as a random oracle. The simulator pro-
grams the random oracle H. When answering queries

from the adversary, it chooses a random ϕ
R←− Zp and

respond with hϕ ∈ G . When answering the queries
of the form H (mi), the simulator programs it in a
special way described below.

For each j , 1 ≤ j ≤ s, the simulator chooses random

values ηj , θj
R←− Zp and sets uj ← X ηj · hθj .

For each i , 1 ≤ i ≤ n, the simulator chooses a ran-

dom value ri
R←− Zp , and programs the random oracle

at i as
H (mi) = hri/Y

∑s
j=1 ηj ·mij .

Now the simulator computes:

σi = (H(mi))
α · (

∏s

j=1
u
mij

j )β

= (hri/(Y
∑s

j=1 ηj ·mij ))α · (
∏s

j=1
(Xηj · hθj )mij )β

= (hri/(Y
∑s

j=1 ηj ·mij ))α

·(X
∑s

j=1 ηj ·mij · h
∑s

j=1 θj ·mij )β

= hα·ri · hβ·
∑s

j=1 θj ·mij

= Xri · Y
∑s

j=1 θj ·mij (6)

The challenger keeps a list of its responses to St
queries made by the adversary. Now the challenger
observes each instance of the Audit protocol with
the adversary A. If in any of these instances the
adversary is successful (i.e., the verification equa-
tion holds), but the adversary’s aggregate signature
σ
′ 6=

∏
(i,vi )∈Q σvi ·γ

i · gr , the challenger declares fail-
ure and aborts.

Suppose Q = {(i , vi)}i∈I is the query that causes the
challenger to abort, and the adversary’s response to
that query is µ

′

1 , · · · , µ
′

s together with σ
′
. Let the

expected response be µ1 , · · · , µs and σ. By the cor-
rectness of the scheme, the expected response satis-
fies the verification equation, i.e., that

e(σ, h)/ψ

=e(
∏

(i,vi)∈Q
((H(mi))

α/β)vi·γ ·
∏

s
j=1T

µj

j · u
−1
j , Y )

(7)

Because the challenger aborts, we know that σ 6= σ
′

and that σ
′

passes the verication equation, i.e. that

e(σ
′
, h)/ψ

=e(
∏

(i,vi)∈Q
((H(mi))

α/β)vi·γ ·
∏

s
j=1T

µ
′
j

j · u
−1
j , Y )

(8)

Observe that if µ
′

j = µj for each j, we can get σ
′

= σ,
which contradicts our assumption above. Therefore,

if we define ∆µj
def
= µ

′

j − µj for 1 ≤ j ≤ s, it must be
the case that at least one of {∆µj} is nonzero. Let
σ∗ =

∏
(i,vi )∈Q σvi

i and µ∗j =
∑

(i,vi )∈Q vi ·mij . So,

dividing the Equation (8) by the Equation (7) , we
obtain

e((σ∗
′
)γ/(σ∗)γ , h)

=e(
∏s

j=1
u
γ·∆µ∗j
j , Y )

=e(
∏s

j=1
(Xηj · hθj )γ·∆µ

∗
j , Y )

=e(
∏s

j=1
Xγ·ηj ·∆µ∗j , Y ) · e(

∏s

j=1
hγ·θj ·∆µ

∗
j , Y )

=e(X(
∑s

j=1 ηj ·∆µ
∗
j )·γ , Y ) · e(h(

∑s
j=1 θj ·∆µ

∗
j )·γ , Y )

(9)

e((σ∗
′
)γ · ((σ∗)γ)−1 · Y −γ·(

∑s
j=1 θj ·∆µ

∗
j ), h)

=e((Xγ·(
∑s

j=1 ηj ·∆µ
∗
j ))β , h)

(10)

So, if
∑s

j=1 ηj ·∆µ∗j 6= 0 , we see that we have found
the solution to the computational Diffie-Hellman
problem:

hα·β = ((σ∗
′
)γ ·(σ∗γ)−1·Y −γ·(

∑s
j=1 θj ·∆µ

∗
j ))1/(γ·

∑s
j=1 ηj ·∆µ

∗
j )

Except the case that
∑s

j=1 ηj ·∆µ∗j is equal to zero.
However, we have already realized that not all of
{∆µ∗j } can be zero, and the values of {ηj} are in-
formation that is theoretically hidden from the ad-
versary, so

∑s
j=1 ηj ·∆µj = 0 is only with the prob-

ability 1/p, which is negligible.

As demonstrated before, we know σ
′

= σ. Equating
the verifications gives us

e(σ, h) = e(σ
′
, h),

from which using µ and µ
′

we get that

e(
∏s

j=1
u
γ·µj

∗

j ), Y ) = e(
∏s

j=1
u
γ·µ∗j

′

j , Y )

s∏
j=1

u
γ·∆µj

∗

j = 1

∏s

j=1
(Xηj · hθj )γ·∆µj

∗
= 1

X
∑s

j=1 γ·ηj ·∆µj
∗
· h

∑s
j=1 γ·θj ·∆µj

∗
= 1

X
∑s

j=1 γ·ηj ·∆µj
∗

= h−
∑s

j=1 γ·θj ·∆µj
∗
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So we find the solution to the discrete logarithm
problem,

α = −(
∑s

j=1
γ · θj ·∆µ∗j )/(

∑s

j=1
γ · ηj ·∆µ∗j ),

except the case that
∑s

j=1 ηj ·∆µ∗j is equal to zero.
While not all of {∆µ∗j } can be zero, and the val-
ues of {ηj} are information that is theoretically hid-
den from the adversary, so

∑s
j=1 ηj ·∆µ∗j = 0 is only

with probability 1/p, which is negligible. This com-
pletes the proof of the Theorem 1.

Privacy-Preserving Property: The privacy-preserving
property means that TPA cannot extract users’ data
from the information gleaned during the auditing
phase.

Theorem 2. The TPA cannot extract users’ data
from the CSP’s response θ and {(H (mi))

α/β}i∈I .

Proof. The mi , α and β are all hidden from the
TPA, so H (mi) cannot be determined from
(H (mi))

α/β . Although e(H (mi), X ) is equal
to e((H (mi))

α/β , Y ), H (mi) cannot be calculated
from it either. Because the isomorphism fQ : G →
GT by fQ(P ) = e(P,Q) is believed to be one-way
function [6], when given fQ(P), it is infeasible to find
its inverse. In addition, X can be removed from the
pk in a concrete implementation. Therefore, it is hard
to recover mi from (H (mi))

α/β . Similarly, it is hard
to extract σi from σ.

Every λj is randomly chosen by CSP, the λ−1j is
the inverse element of it. Both of them are hid-
den from TPA. The

∑
i,vi∈Q vimij is blinded with

λ−1j , so µj is uniformly distributed in Zp for every
response. Although TPA can obtain enough linear
combinations of the data block mi and its coefficient
vi , he must firstly obtain λ−1j if he wants to get µ∗j .

The λj can be calculated from Tj = u
λj

j , (1 ≤ j ≤ s).
But this means to solve the discrete logarithm prob-
lem (DLP). Due to the hardness assumption of DLP,
TPA cannot get λj . So it is hard to obtain users’
data from µj , (1 ≤ j ≤ s). This completes the proof
of the Theorem 2.

5.2 Performance Analysis

In order to elaborate the computation overhead of each
entity, we specify some notations for the basic computa-
tional operations in the Table 1 [32].

We compared the two typical privacy-preserving data
auditing schemes with that of ours in Table 2 for the com-
putational cost of the user, CSP, and TPA, respectively.
Here, n, s, and c are the number of data blocks, number
of sectors and number of sampled data blocks, respec-
tively. For the storage and communication overhead of
our scheme, we present the following complexity analysis:

Table 1: Notations of relevant operations

Notation Meaning
MultxG x multiplications in group G
MultxZp

x multiplications in group Zp

Hashx
Zp

x hash values into group Zp

Hashx
G x hash values into group G

Hashx
Dg

x times hash function h2 (·), generating

message digest
Addx

Zp
x additions in group Zp

Expx
G x exponentiations g t , for g ∈ G , t ∈ Zp

Expx
GT

x exponentiations g t , for g ∈ GT , t ∈ Zp

Pairx
GT

x pairings e(u, v),
where u, v ∈ G , e(u, v) ∈ GT

PRP xS x pseudo–random permutations
in S = {0, 1}log2 n

PRF x
Zp

x pseudo–random functions in Zp

1) The user storage complexity is O(1) and the server
storage complexity is O(n).

2) The communication complexity of the challenge
phase is O(1) and that of the response phase is
O(log n).

We compared the complexities of the storage and com-
munication of the audit protocol of our scheme with that
of two other privacy-preserving schemes in Table 3. The
communication complexity in the phase of auditing is
O(log n) in our scheme; however, we could save the main-
tenance of a table with O(n) complexity of storage space
on the user side.

Figure 3: Comparison of computing time for CSP under
different s and c

Based on the Pairing-Based Cryptography (PBC) li-
brary version 0.5.14, we implement our experiment using
C language on an Ubuntu Linux system with an Intel Core
i7-4790 CPU running at 3.60GHz with 8GB of RAM and
a 7,200 RPM Seagate 1 TB drive. The elliptic curve we
choose in the experiment is an MNT curve, with base field
size of 159 bits and the embedding degree 6. The length
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Table 2: Comparison of computation overhead of different privacy-preserving schemes

The Computation overhead
Scheme User Server Verifier

[30] Exp
n·(s+2)
G + Mult

(n·s)
G +

HashnG

PairsGT
+ ExpsGT

+ ExpcG +

Multc−1
G + Mult

(c+1)·s
Zp

+

Addc·sZp
+Hash1

Zp

Pair2
GT

+ Exps+c+2
G +

Multc+s−1
G + MultsGT

+
HashcG +Hash1

Zp

[37] Exp2n+2+s
G + MultnG +

Mult
n·(s+1)
Zp

+ Add
n·(s−1)
Zp

+
HashnG

Pair1
GT

+ Expc+s+2
G +

Multc+s−2
G + Mult

(c+1)·s
Zp

+
Addc·sZp

Pair3
GT

+ Expc+sG +

Multc+s−2
G + Mult2GT

+
HashcG

Our scheme Exp3·n+2
G + MultnG +

Multn·sZp
+Add

n·(s−1)
Zp

+HashnG

Pair1
GT

+ Expc+s+2
G +

MultcG +Multc+2
Zp

+AddcZp
+

Hash1
Zp

+ PRP cS + PRF cZp

Pair2
GT

+ Expc+s+2
G +

Multc+sG + Hash
c·(logn−1)
Dg +

PRP cS + PRF cZp

Figure 4: Comparison of computing time for TPA under
different s and c

of p is 160 bits. Our test data is a randomly generated
100-MB file. All experimental results represent the mean
of 30 trials.

Table 4 presents the experiment result of performance
comparison between our scheme and that of [30] under
different s and c. It shows that our scheme outperforms
the other scheme except for the computing time of CSP
in the case of s = 1 . However, as the value of s increases,
the CSP computing time of [30] will increase significantly
because it needs to calculate s pairings during the audit-
ing process. The communication overhead that the CSP
sends to the TPA also increases significantly because the
length of an element in group GT is 120 bytes. Figure 3
and Figure 4 show computing time for CSP and TPA of
our scheme under different s and c. With increase in s and
c, the image curves change relatively smoothly and the
distance between the curves is relatively uniform. This
shows that our scheme is stable and there are no special
expensive calculations related to s and c.

Table 3: Storage complexity and communication com-
plexity of different privacy-preserving schemes

Scheme
User storage
complexity

Communication
complexity

of Audit protocol
[30] O(n) O(1 )
[37] O(n) O(1 )

Our scheme O(1 ) O(log n)

6 Conclusions

In this paper, we proposed a privacy-preserving public
auditing scheme with supporting dynamics. The scheme
uses the rank-based authenticated skip list as the au-
thenticated search data structure. The formal proof
demonstrates that our scheme is secure and has privacy-
preserving property in the auditing phase, and perfor-
mance analysis shows that our scheme is highly efficient.
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