
International Journal of Network Security, Vol.21, No.3, PP.402-408, May 2019 (DOI: 10.6633/IJNS.201905 21(3).06) 402

A Pseudo Random Bit Generator Based on a
Modified Chaotic Map

Chokri Nouar and Zine El Abidine Guennoun
(Corresponding author: Chokri Nouar)

Department of Mathematics, Mohamed V University in Rabat

No. 4, Avenue Ibn Battouta B. P. 1014 RP, Rabat, Morocco

(Email: corresponding chokri.nouar@gmail.com)

(Received Dec. 11, 2017; Revised and Accepted Apr. 8, 2018; First Online Jan. 14, 2019)

Abstract

This paper presents a new pseudo random bit generator
based on a modified Gingerbreadman chaotic system, The
new model has been well studied to avoid fixed and peri-
odic points. We have verified that the system’s Lyapunov
exponent is positive, which means the system is a chaotic
one. The randomness of the bits generated by the pro-
posed generator is successfully tested by the NIST. We
notice that during the execution of the algorithm, the
password changes automatically after a number of itera-
tions.

Keywords: Chaotic Systems; Gingerbreadman Map; Lya-
punov Exponent; NIST; Pseudo-random Bit Generator

1 Introduction

In the mathematical theory, introduced by Devaney
in 1988, the Gingerbreadman map is a simple two-
dimensional chaotic map. Several studies, which were de-
voted to the Gingerbreadman map, show the existence of
fixed and periodic points [4]. This property is undesirable
by cryptography.

The idea of designing a pseudo-random bit generator
by making use of chaotic first order nonlinear differen-
tial equation was proposed by Oishi and Inoue [9] in
1982. After their paper, several pseudo-random bit gen-
erators were suggested. Notice that the algorithms based
on chaos showed a good performance for data encryption
such as images, videos or audio data [8].

The aim of this paper is to propose a new pseudo-
random bit generator based on a chaotic system. We will,
firstly, try to eliminate the fixed and periodic points by
adding a perturbation function. Then we will verify that
the modified Gingerbreadman map is a chaotic system
that includes appropriate features such as high sensitiv-
ity to initial conditions, unpredictability, mixing property
and high complexity. This will allow the system to inte-
grate into various cryptographic applications.

The rest of this paper is structured as follows: the first

section presents how the chaotic system affects the pro-
duced sequences. In the second section, basic definitions
of Lyapunov exponent and The Gingerbreadman map will
be recalled. In the third section, we will test the modi-
fied Gingerbreadman chaotic system. In section four, we
present a detailed description of our generator. Before
concluding, the statistical analysis and validation of the
bits sequences generated by our generator are given in
section five.

2 Chaotic System

A chaotic system is a non-linear deterministic dynamical
system, which exhibits pseudo-random behaviour. The
output values of a chaotic system vary depending on spe-
cific parameters and initial conditions. Different param-
eter values yield different periods of oscillations at the
output of the system.

Chaotic sequences produced by a chaotic system are
pseudo-random ones, their structures are very complex
and difficult to analyse and to predict. These sequences
appear totally random to an external observer, in spite
of their deterministic generation, as they are sensitively
dependent on initial conditions. In other words, chaotic
systems can improve the security of encryption systems.

In mathematics, ”Lyapunov exponent” is a quantity
that measures the speed at which those small differences
are amplified; it actually measures the degree of sensi-
tivity of chaotic systems. Those that have a chaotic be-
haviour are defined as a chaotic map [10].

The two following sections present a brief description
of the Lyapunov exponent and the chaotic map (Ginger-
BreadMan) used in this paper.

2.1 Lyapunov Exponent

In chaotic systems, the distance between two initially
close trajectories tends to increase at an exponential speed
and then stabilizes when the distance reaches a limit
value.

International Journal of Network Security, Vol.21, No.3, PP.402-408, May 2019 (DOI: 10.6633/IJNS.201905 21(3).06) 403

The Lyapunov exponent is an approximate quantity
that measures the exponential divergence of initially close
trajectories, it also estimates the amount of chaos in any
system.

Definition 1. The Lyapunov exponent L computed using
the derivative method is defined by

L = 1/n(ln | f ′(x1) | +ln | f ′(x2) | + · · ·+ ln | f ′(xn) |)

where f ′ represents differentiation with respect to x and
x1, x2...xn are successive iterates. The Lyapunov expo-
nent may be computed for a sample of points near the
attractor to obtain an average Lyapunov exponent. [6]

Theorem 1. If at least one of the average Lyapunov ex-
ponents is positive, then the system is chaotic; if the av-
erage Lyapunov exponent is negative, then the orbit is pe-
riodic. However when the average Lyapunov exponent is
zero, a bifurcation occurs [7].

2.2 The Gingerbreadman Map

In dynamical systems theory, the System (1) is called ”the
Gingerbreadman map.” It was investigated by Devaney in
1984 as a simple module of a chaotic two-dimensional map
presented by the following transformation:{

xn+1 = 1− yn+ | xn |
yn+1 = xn

(1)

The Gingerbreadman map is a piecewise linear appli-
cation, which has been shown to be chaotic in certain
regions and stable in others. Figures 1 and 2 displays the
first iterations of (−0, 2; 0, 2).

Figure 1: 10000 iterates Figure 2: 20000 iterates

Despite its good property, algorithms [3] proved that
the Gingerbreadman map has fixed and periodic points
in the hexagonal as shown in Figure 3.

3 A Proposed Chaotic System

3.1 Description of the Proposed System

In order to avoid these fixed and periodic points, we add
the perturbation function f(yn) = r × sin(yn) to the sec-
ond equation in the Gingerbreadman system, where r is
a non-arbitrarily chosen real parameter. Therefore, the

Figure 3: Periodic and fixed points of Gingerbreadman
map

new model of Gingerbreadman map (NMGM) is given by
the following system

H =

{
xn+1 = 1− yn+ | xn |
yn+1 = xn + r × sin(yn)

(2)

The aforementioned perturbation function is simple and
periodic function to ensure that the dynamical system
remains non-linear and deterministic; that is, it does not
tend to infinity. It should be noted that it is possible to
replace the sin(yn) with cos(yn) as shown in the Figures 4
and 5.

Figure 4: Gingerbread-
man with cos(y) and r =
3.8

Figure 5: Gingerbread-
man with sin(y) and r =
3.8

In the next section, we determine the intervals of the
parameter r for which the system remains chaotic, by
using the Lyapunov exponent.

3.2 Chaotic Tests of the Proposed Sys-
tem

The Lyapunov exponent of the proposed system varies
depending on the parameter r.

The Figure 6 gives the curve of the Lyapunov exponent
in function of the parameter r. One can remark that the
Lyapunov exponent of the new model of Gingerbreadman

International Journal of Network Security, Vol.21, No.3, PP.402-408, May 2019 (DOI: 10.6633/IJNS.201905 21(3).06) 404

map (NMGM) is positive when r > 2 for x0 = 0 and
y0 = 0, which implies that the proposed system is chaotic.

Figure 6: The Lyapunov exponent of the proposed system

Another simple method used to determine whether or
not a system is chaotic, is to use the sensitivity to initial
conditions. Figures 7, 8, 9 and 10 show how the attrac-
tors of the NMGM are affected by small differences in the
initial conditions.

Figure 7: NMGM with
r = 3.8, y0 = 0 and x0 =
0.1

Figure 8: NMGM with
r = 3.8, y0 = 0 and x0 =
0.1 + 0.1× 10−6

Figure 9: NMGM with
r = 3.8, y0 = 0 and x0 =
0.1 + 0.1× 10−9

Figure 10: NMGM with
r = 3.8, y0 = 0 and x0 =
0.1 + 0.1× 10−12

3.3 Comparison of the Bifurcation and
Lyapunov Exponent

In this section, the comparison between our system and
Gingerbreadman map is presented. Figures 1 and 2 shows
the bifurcation diagrams of Gingerbreadman map. It is
apparent from comparison of Figures 7, 8, 9 and 10, the
bifurcation of our system is well distributed.

Figures 11, 12, 13 and 14 shows the Lyapunov expo-
nent of NMGM is more than 0.6 where the Lyapunov
exponent of Gingerbreadman map is less than 0.15. So
we can concluded that, the NMGM is more chaotic.

Figure 11: Gingerbread-
man map y0

Figure 12: Gingerbread-
man map x0

Figure 13: NMGM with y0
Figure 14: NMGM with
x0

4 Designing a PRBG Based on
the NMGM

Our pseudo-random bit generator based on the new model
of Gingerbreadman map (PRBG-NMGM) is a determin-
istic generator initialized by a password Pw of any size,
whose output is a cryptographically secure binary se-
quence.

The initial conditions of our system (NMGM) x0, y0
and r0 are calculated from the password Pw by a method
based on a pointer that is positioned on a bit of the Pw.
The pointer moves from a position to another according
to a linear congruential throughout the ASCII represen-
tation of the Pw [2].

After a predetermined number of iterations performed
for the three initial conditions x0, y0 and r0, we start
generating the numbers needed to construct the final se-
quence S = S1...Sn with Si = Xi ⊕ Yi, where Xi and Yi
are two 32-bit numbers generated in the ith step.

International Journal of Network Security, Vol.21, No.3, PP.402-408, May 2019 (DOI: 10.6633/IJNS.201905 21(3).06) 405

4.1 The Calculation of the Initialization
Values x0 and y0

From a binary string of any length n which represents
the password Pw = (P1P2...Pn)2, we calculate the three
initial conditions x0,y0 and r0. For that we extracted 64
bits for each value from the Pw.

We consider a pointer (Zi) that takes values indicating
the bit positions of Pw. The sequences of positions are
defined as follows{

Z(0) = bn/4c
Z(i+ 1) = ((n2 + 1)× Z(i) + 1)mod(n)

(3)

The pointer moves throughout the password and re-
turns to 64 bits stream length, which are classified as
follows PT=(PZ(0)PZ(1)PZ(2)PZ(3)...PZ(61)PZ(62)PZ(63)).

We calculate the number A B and C from PT (0 ≤
A,B,C < 264) as follows:

A = (PZ(0)PZ(1)PZ(2)PZ(3)...PZ(61)
PZ(62)

PZ(63))2

=

21∑
i=0

PZ(3i) × 263−3i +

20∑
i=0

PZ(3i+1) × 263−3i−1

+

20∑
i=0

PZ(3i+2) × 263−3i−2 (4)

B = (PZ(0)PZ(1)PZ(2)PZ(3)...PZ(61)
PZ(62)

PZ(63))2

=

20∑
i=0

PZ(3i) × 263−3i +

21∑
i=0

PZ(3i+1) × 263−3i−1

+

20∑
i=0

PZ(3i+2) × 263−3i−2 (5)

C = (PZ(0)PZ(1)PZ(2)PZ(3)...PZ(61)PZ(62)PZ(63))2

=

20∑
i=0

PZ(3i) × 263−3i +

20∑
i=0

PZ(3i+1) × 263−3i−1

+

21∑
i=0

PZ(3i+2) × 263−3i−2 (6)

Finally, x0 = A
263 , y0 = B

263 and r0 = C
263 +2. So the initial

conditions values are in the fallowing intervals: 0 ≤ x0 <
2, 0 ≤ y0 < 2 and 2 ≤ r0 < 4.

Algorithm 1 is used to calculate initial values x0, y0
and r0

4.2 Generating the Pseudo-random Se-
quence

After extracting the initial values x0, y0 and r0, the sys-
tem (PRBG-NMGM) will be ready to generate the pseudo
random bits sequences.

Algorithm 2 of generating has two input parameters,
a password Pw and an integer F that indicates the
length of the output binary sequence.

Algorithm 1 Initialization

1: Input password Pw = (P1P2...Pn)2 a binary string
of any length n

2: Output initiation values x0, y0 and r0
3: Z ← bn/4c
4: A,B,C ← 0
5: for i← 0 to 63 do
6: Z ← ((n2 + 1)× Z + 1)mod(n)
7: if i mod (3) = 0 then
8: A← A+ PZ × 263−i

9: B ← B + PZ × 263−i

10: C ← C + PZ × 263−i

11: else
12: if i mod (3) = 1 then
13: A← A+ PZ × 263−i

14: B ← B + PZ × 263−i

15: C ← C + PZ × 263−i

16: else
17: A← A+ PZ × 263−i

18: B ← B + PZ × 263−i

19: C ← C + PZ × 263−i

20: end if
21: end if
22: end for
23: x0 ← A

263 ; y0 ← B
263 ; r0 ← C

263 + 2;
24: return x0; y0; r0

Step 1: In the first step leaving the system NMGM loop-
ing up to n0 iterations to avoid the harmful effects of
transitional procedures [1], where n0 is determined
from the length of Pw such as

n0 = r0 × length(Pw).

Step 2: The iteration of the system NMGM continues,
for each i ≤ F andmod(i, length(Pw)) 6= 0 we obtain
the pairs (xi, yi) to construct the sub-sequence Si =
Xi ⊕ Yi such as

Xi = floor(mod(xi, 1)× 232),

Yi = floor(mod(yi, 1)× 232),

where the floor(x) returns the largest integer less
than or equal to x, mod(x, y) returns the reminder
after division of x by y, Xi and Yi are two 32-bit
numbers generated in the ith step, and ⊕ represents
operator of exclusive-OR.

Step 3: If mod(i, length(Pw) = 0 the parameter rj of
the system NMGM change automatically, we obtain
the new rj with the following equation:

rj+1 = (rj + 1)2mod(2) + 2,

else return to step 2 until the bit stream limit is
reached.

The output S of the PRBG-NMGM is the concate-
nation of the sub-sequences S1S2...Si...SF . Figure 15
shows scheme of ith generation step of our PRNG-
NMGM.

International Journal of Network Security, Vol.21, No.3, PP.402-408, May 2019 (DOI: 10.6633/IJNS.201905 21(3).06) 406

Algorithm 2 Generation

1: Input password Pw = (P1P2...Pn)2 and F the length
of the requested binary sequence

2: Output S the random binary sequence
3: x, y, r ← Initialize(Pw)
4: M ← r × length(Pw)
5: S ← 0
6: i, j, k ← 0
7: while j ≤ F do
8: if i ≤M then
9: (xi+1, yi+1, r)← H(xi, yi, r)

10: i← i+ 1
11: else
12: if i%n 6= 0 then
13: (xi+1, yi+1, r)← H(xi, yi, r)
14: X ← b(xi+1mod(1)× 232c
15: Y ← b(yi+1mod(1)× 232c
16: R = X

⊕
Y

17: S ← S ‖ R
18: i← i+ 1
19: j ← j + 1
20: else
21: r ← (r + 1)2mod(2) + 2
22: i← i+ 1
23: end if
24: end if
25: end while
26: return S

5 Security Analysis

Security analysis is a tool for evaluating the performance
of our proposal PRBG-NMGM. In this section we exam-
ine the key space size, the sensitivity to the initial condi-
tions and the randomness level of the generated sequences.

5.1 Key Space

Among the most important criteria of a cryptosystem is
the size of key space. A space large enough security keys
make exhaustive attacks infeasible. Our PRBG-NMGM
initialized by a key of any size as already mentioned.

On the other hand a key space of size larger than 2128

is computationally secured against exhaustive attacks [5],
therefore, the key size N must be greater than 128.

The calculation of the three initial values x0, y0 and r0
needs exactly 192 bits, which are extracted via a pointer
that traverses the binary string, so the space of initial
values is 2192. This leads us to say that the size of the
key space is large enough to be attacked exhaustively.

5.2 Key Sensitivity

The key sensitivity implies that the small change in the
secret key should produce a big change in the pseudo-
random sequences, this property is essential to make a
highly secured PRBG against statistical and differential

Figure 15: Scheme of ith generation step of our PRNG

attacks. This property is also basic for the PRGB not to
be broken even if there is a small difference between the
keys. The proposed generator is based on a chaotic map
of the positive Lyapunov exponent meaning that is very
sensitive to the initial conditions.

In order to examine the security of our generator, we
have performed the key sensitivity test; we place several
keys ki in the input of the generator with a bit of difference
between them, then we calculate the hamming distance
between two pseudo-random sequences Si of the size N
generated by each key.

The calculation of the hamming distance between
two binary sequences is the number DH(Si, Sj) =
card{e/xe 6= ye} with Si = x1x2...xN and Sj = y1y2...yN .
In general, this distance is given by:

DH(Si, Sj) =

N∑
k=1

(xk
⊕

yk).

The fact that a generator is very sensitive to the key
makes the hamming distance vary in the neighbourhood
of N/2, resulting the DH(Si, Sj)/N being about 0.50 for
each pair of sequences produced.

In the next test we will generate a set of pseudo-random
sequences {Si} from the keys {ki}0≤i≤55.

We consider k0 = ”ABIDINE” whose binary repre-
sentation in ASCII code is k0 = (01000001 01000010
01001001 01000100 01001001 01001110 01000101)2.
The other 55 keys {ki}1≤i≤55 are derived from the k0,

International Journal of Network Security, Vol.21, No.3, PP.402-408, May 2019 (DOI: 10.6633/IJNS.201905 21(3).06) 407

modifying the ith bit among the 56 bits of the k0 to find
ki.

The result of the Hamming distance between the se-
quences is given in Figure 16.

Figure 16: The Hamming distance between the sequences

It is clear that the proportions of difference between the
sequences are about 50%, which implies that the proposed
generator is purely sensitive to the initial conditions.

This sensitivity is due to the chaotic system that con-
structs the generator, meaning that the generated se-
quences are chaotic and unpredictable. It is also due to
the initialization values of the PRBG-NMGM that are de-
rived from a password, using a method based on a Linear
Congruential Generators.

Indeed, a change of one bit between two keys leads to
a totally different initialization values as well as different
generated sequences.

5.3 Randomness Level

We used the NIST tests and DIEHARD tests in order
to measure the level of randomness of the bits sequences
generated by PRBG-NMGM .

The NIST tests suite consists of 15 tests developed to
quantify and to evaluate the degree of randomness of the
binary sequences produced by the cryptographic genera-
tors.

These tests are: frequency (monobit), block-frequency,
cumulative sums, runs, longest run of ones, rank, Fast
Fourier Transform (spectral), non-overlapping templates,
overlapping templates, Maurers Universal Statistical, ap-
proximate entropy, random excursions, random-excursion
variant, serial, and linear complexity.

For each statistical test, a Pvalue is calculated from the
bit sequence. This Pvalue is compared to a predefined
threshold α = 0.01, which is also called significance level.

If Pvalue is greater than 0.01, then the sequence is con-
sidered to be random, and it proceeds the statistical test
successfully. Otherwise, the sequence does not appear
random.

To apply the NIST tests on our generator we generated
1000 sequences, the size of each sequence is 106 bit from a

different key. The table 1 bellow presents the test results
in the sequences.

Table 1: NIST statistical test suite results for 1000 se-
quences of size 106 bit each generated by the our genera-
tor

NIST statistical test Pvalue Pass rate
Frequency 0,800005 989/1000

Block-Frequency 0,100709 990/1000
Cumulative Sums 0,233162 989/1000

Runs 0,350485 994/1000
Longest Run 0,719747 989/1000

Rank 0,402962 995/1000
FFT 0.345650 987/1000

Non-Overlapping 0,509841 990/1000
Overlapping 0.709558 987/1000

Universal 0.390721 990/1000
Approximate Entropy 0.846338 986/1000
Random Excursions 0,338148 620/628

Random Excursions Variant 0,592461 623/628
Serial 0,490572 990/1000

Linear Complexity 0.805569 987/1000

The minimum pass rate for each statistical test with
the exception of the random excursion (variant) test is ap-
proximately 980 for a sample size 1000 binary sequences.

The minimum pass rate for the random excursion (vari-
ant) test is approximately 613 for a sample size 627 binary
sequences.

The DIEHARD tests consists of a set of sta-
tistical tests for measuring the quality of random-
ness, developed by George Marsaglia, these tests
are: birthday spacings, overlapping 5-permutations, bi-
nary rank (31 x 31), binary rank (32 x 32), bi-
nary rank (6 x 8), bitstream, Overlapping-Pairs-Sparse-
Occupancy, Overlapping-Quadruples-Sparse-Occupancy,
DNA, stream count- the-ones, byte-count-the-ones, 3D
spheres, squeeze, overlapping sums, runs up, runs down,
craps.

For the DIEHARD tests, we generated 1000 sequences
of one million bits each, by the proposed pseudo-random
bit generators. The results are given in Table 2.

We can see from Table 1 that the NIST tests suite is
passed successfully. The pvalue of all tests is greater than
the minimum rate (0.01).

Table 2 shows the DIEHARD Pvalues are in acceptable
range of (0, 1), and all tests are passed successfully.

Based on these results, the NMGM based random gen-
erator is suitable for cryptographic applications.

6 Conclusion

In this paper, a novel pseudo-random bits generator based
on modified chaotic map was presented.

International Journal of Network Security, Vol.21, No.3, PP.402-408, May 2019 (DOI: 10.6633/IJNS.201905 21(3).06) 408

Table 2: DIEHARD statistical test suite results for 1000
sequences of size 106 bit each generated by the our gen-
erator

DIEHARD test name Pvalue Assessment
Birthday 0.92580677 passed

Overlapping 5-permutation 0.22867882 passed
Binary rank (32 x 32) 0.82601210 passed
Binary rank (6 x 8) 0.59379048 passed

Bitstream 0.90091209 passed
OPSO 0.09739253 passed
OQSO 0.54519450 passed
DNA 0.17853645 passed

Stream count-the-ones 0.50254509 passed
Byte count-the-ones 0.39753149 passed

Parking lot 0.91507220 passed
Minimum distance 0.91222820 passed

3D spheres 0.41362890 passed
Squeeze 0.63363326 passed
Runs up 0.09807447 passed

Runs down 0.49918763 passed
Craps 0.61161595 passed

The new model has been selected after a rigorous anal-
ysis that showed high dimensional chaotic which generate
more complex and unpredictable chaotic sequences.

The results of statistical analyses like randomness, key
space and key sensitivity indicate high security and suit-
ability of the proposed generator for practical encryption.

In future works, we will apply our proposal PRBG-
NMGM especially in audio and image encryption and in
other cryptographic applications

References

[1] S. Borislav and K. Krasimir, “Novel secure pseudo-
random number generation scheme based on two
tinkerbell maps,” Advanced Studies in Theoretical
Physics, vol. 9, no. 9, pp. 411–421, 2015.

[2] K. Charif, A. Drissi, and Z. E. A. Guennoun, “A
pseudo random number generator based on chaotic
billiards,” International Journal of Network Security,
vol. 19, pp. 479–486, May 2017.

[3] G. Feiab, F. Feng-xiaa, D. Yan-fanga, Q. Yi-boa, and
I. Balasingham, “A novel non-lyapunov approach
through artificial bee colony algorithm for detecting
unstable periodic orbits with high orders,” Expert

Systems with Applications, vol. 39, pp. 12389–12397,
Nov. 2012.

[4] F. Gao, H. Gao, Z. Li, H. Tong, and J. J. Lee, “De-
tecting unstable periodic orbits of nonlinear map-
pings by a novel quantum-behaved particle swarm
optimization non-lyapunov way,” Chaos, Solitons
and Fractals, vol. 42, pp. 2450–2463, Nov. 2009.

[5] E. Hato and D. Shihab, “Lorenz and rossler chaotic
system for speech signal encryption,” International
Journal of Computer Applications, vol. 128, pp. 25–
33, Oct. 2015.

[6] M. B. Jacques, C. Jean-François, and G. Christophe,
“Quality analysis of a chaotic proven keyed hash
function,” International Journal On Advances in In-
ternet Technology, Aug. 2016. (https://arxiv.org/
abs/1608.05928)

[7] S. Lynch, Dynamical Systems with Applications
Using MATLAB, Boston, USA: Birkhuser,
2014. (https://www.springer.com/us/book/
9783319068190)

[8] A. Musheer, A. Bashir, and F. Omar, “Chaos based
mixed keystream generation for voice data encryp-
tion,” International Journal on Cryptography and In-
formation Security, vol. 2, no. 1, pp. 36–45, 2014.

[9] S. Oishi and H. Inoue, “Pseudo-random number gen-
erators and chaos,” IEICE Transactions, vol. E65,
pp. 534–541, September 1982.

[10] R. Swati and T. Sanjeev, “Security analysis of multi-
media data encryption technique using piecewise lin-
ear chaotic maps,” International Journal on Recent
and Innovation Trends in Computing and Commu-
nication, vol. 1, pp. 458–461, May 2013.

Biography

Chokri NOUAR He is received his Master’s degree in
mathematics and statistics, option cryptography and in-
formation security from Mohammed-V University in Ra-
bat, Morocco. He is actually a PhD student in the Lab-
oratory of Mathematics, statistic and applications. His
major research interests include information security and
cryptography.

Zine El Abidine GUENNOUN He is a full professor
of Department of Mathematics at the Faculty of Science,
Mohamed V University in Rabat, Morocco. He received
his Ph.D. (1989). His research interests include non linear
analysis, fixed point theory, differential equation, financial
mathematics and cryptography.

