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Abstract

LWE based homomorphic encryption scheme has been
proven as secured technique and consequently widely im-
plemented since the last decade. However, the scheme is
not considered to be practical because of its larger size of
public keys and ciphertexts. In this paper, LWE based
additively homomorphic encryption technique is further
modified to enhance the performance in minimizing the
space required for public keys and ciphertext without
compromising the security of the scheme. This makes
the scheme suitable for implementation in low space de-
vices. The practical implementation of the scheme is ex-
plored and its performance analysis has been presented
here. The scheme is also compared with the standard
LWE.
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1 Introduction

A Fully Homomorphic Encryption (FHE) is treated as
theholy grail of cryptography, because, it allows arbi-
trary processing of data in encrypted mode [8, 13]. An
encryption scheme is called homomorphic if, given two
ciphertexts say c1 = Ek(m1) and c2 = Ek(m2) where
m1,m2 are plaintexts and k is the key, one can com-
pute c = c1oc2 = Ek(m1om2) for some operation o such
that Dk(c) = m1om2 [11]. This idea of homomorphic
encryption was initially proposed by Rivert, et al [19]
in 1978. If o corresponds to a single operation of ei-
ther addition or multiplication only, the scheme is said
to be partially homomorphic. Several partially homo-
morphic encryption schemes were proposed and success-
fully used in applications such as electronic voting, pri-
vate information retrieval, multiparty computation, obliv-
ious polynomial evaluation and so on [11, 15]. However,

to perform arbitrary computations over the encrypted
data so that the scheme is suitable for any application
in general, it must support both addition and multipli-
cation operations over the ciphertexts without any limits
in case of which it is called as fully homomorphic encryp-
tion (FHE) [8]. Solving a three-decade old long lasting
cryptographic problem of designing an FHE scheme was
a dream of cryptographers, which was first theoretically
solved in a pioneering work by Craig Gentry in 2009 us-
ing an innovative construction method [8] Gentry’s FHE
is based on the algebraic lattice theory and consists a
general blueprint that can be used for the construction
of FHE schemes. However, the scheme was practically
infeasible due to high computational complexities under-
lying the blueprint, specifically, the bootstrapping or ci-
phertext refreshing process. In a quest for devising a
practical FHE scheme, several variants of the Gentry’s
scheme were explored [20–22]. Many new schemes based
on different security assumptions and hard algebraic and
number theoretic problems such as Approximate Greatest
Common Divisors (AGCD) [22], Chinese Remainder The-
orem (CRT) [5], identity based [13] and attribute based
schemes [10] were proposed. Though all these works have
shown progressive improvements one over the other, none
of them could be a candidate for practical deployment.
Therefore, devising an FHE scheme with practical time
complexities is still an open problem.

The Learning with errors (LWE) based cryptographic
scheme was first proposed and implemented by Regev [18]
in 2009. LWE problem has been considered well suited
for new research on public key cryptography. LWE based
cryptosystem is proven as simple and fast for implemen-
tation. Moreover, the security of the LWE problems is
proven to be hard [17] since it is related to the well-known
“learning parity with noise” problem.

Several variants of LWE based Homomorphic encryp-
tion schemes such as FHE using standard LWE [2, 3],
RLWE (Ring LWE) [2, 14], and other variants [1, 4, 9]
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have been proposed. The theoretical implementation of
the schemes has been considered to preserve privacy in
cloud computing while practical implementation of LWE
based homomorphic encryption is considered to be com-
plex due to its larger public keys and ciphertexts. The
space constraint also limits the implementation of these
schemes on compact devices. However, there were some
techniques [6, 7, 12, 16] proposed elsewhere to reduce the
size of public keys and ciphertexts which are suitable for
the implementation in low speed and low storage devices.
The aim of this work is to propose the possible imple-
mentation of the LWE based cryptosystem suited for the
devices with low storage capacity.

Contributions. The major contribution of this paper
is to reduce the size of the public keys and cipher-
texts. The scheme is theoretically presented with
time complexities for the Encryption, Decryption,
Key Generation and Additions functions in the pre-
vious work [16]. In this work, the extended version of
the encryption is presented to further minimize the
public key space without compromising the security.

2 Preliminaries

2.1 Notations

In this section, basic concepts related to LWE notations
are presented for quick appreciation of the proposed work.
An integer is denoted as small case letter in single quo-
tations (e.g., ′n′). The bold upper case letters (e.g., V ))
are used to denote vectors. The symbols ′+′ and ′.′ are
used for the addition and multiplication operations re-
spectively. The symbol < V 1,V 2 > denotes the integer
which resulted as the sum of individual products of ele-
ments of the vectors V 1 and V 2.

2.2 LWE Based Homomorphic Encryp-
tion

Standard LWE based homomorphic encryption scheme [3]
is constructed based on two major parameters: ′n′ (di-
mension) and ′q′ (modulus). First Secret vector S of
′n′ integers is chosen and then set of public keys (Ai, b),
denoted as PK = {PK1, PK2...}, is computed using
key generation function, where Ai is an arbitrary vec-
tor of ′n′ integers, and ′b′ is an integer computed as
< Ai,S > +2.ei; where ′e′i is small randomly chosen
error. Now, for every jth public key generation, the
random arbitrary vector Aj is chosen, and jth public
key, PKj , computed from the secret key S as follows:
PKj = (Aj , bj) = (Aj , < Aj ,S > +2.ej).

Given the plaintext message bit mi, encryption al-
gorithm computes the ciphertext C i = (Ai, vi) using
any random jth public key PKj= (Aj , bj ) where vi =
bj +mi (mod q) = (< Aj ,S > +2.ej +mi (mod q)) and
Ai= Aj .

Decryption takes ciphertext C i = (Ai, vi) and com-
putes the plaintext message bit ′mi’ using the secret key
S . The decryption process is given as follows:

mi = (vi− < Ai,S >)mod2,

Decryption eliminates two masks and leaves the message
bit as output.

3 Scheme with Shorter Public
Keys and Ciphertexts

In this section, we formally present the LWE based
additively homomorphic encryption scheme with shorter
public keys and ciphertexts. Seed based technique is
proposed to minimize the each public key as well as
ciphertext from (n + 1).log2(q) bits down to 2.log2(q)
bits [7, 16]. A pseudo random number generator with
initialized seed value (seedj) is used to generate the
vectorAj of ‘n′ elements which in turn generates the jth

public key PKj = (Aj , bj).

Instead of publishing the public keyPKj = (Aj , bj) of
size n + 1, the public key vector is shortened to two inte-
gers and published as (seedj , bj). LWE based encryption
with shortened public keys with the support of homomor-
phic encryption [16] is formally presented as follows:

KeyGen function. It takes initial parameters, modulus
′q′ and dimension ′n′ as inputs, then it chooses the
secret key vector S of ′n′ integers and generates set
of public keys PK(= {PK1, PK2, . . . ..}). Any ith el-
ement of PK, using parameters ′n′,′ q′ and the secret
key vector S , is computed as follows:

1) Choose a prime value ′p′i as a seed value and
pass it to the pseudo random number generator
for generating ′n′ integers of vector Ai.

2) Compute the public key PKi = (Ai, bi) as
(Ai, < Ai,S > +2ei) where ′e′i is a small ran-
dom error.

3) Publish the public key PKi = (pi, bi) instead of
(Ai, bi).

Encryption function. For encrypting any ith plain text
message bit mi (0 or 1)

1) Choose any kth public key PKk : (pk, bk)

2) Compute ciphertext Ci using public key PKk

as follows:

Ci = (pi, vi) = (pk, bk + mj).

Homomorphic addition function. Given any two ci-
phertexts Cx= (px, vx) and Cy= (py, vy), compute
the new sum cipher Cz as follows:

Cz= (pz, vz),

where pz = px.py and vz = vx + vy.
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Figure 1: Proposed LWE based additively homomorphic
encryption process

Decryption function. For any given ciphertext Cj=
(pj , vj) decryption function computes the plaintext
message bit mj using the secret key S . The process
is given as follows:

1) Compute set of prime factors p1, p2, p3 and so
on from pj using prime factoring technique.

2) Generate vector Ai of size ′n′ using pseudo ran-
dom number generator function from the seed
value ′p′i for all prime factors computed from
′p′j .

3) Compute sum vector A from all vectors A1,
A2, A3,... as follows:

A =
∑
i

Ai

4) Compute message mj from ciphertext using the
following relation,

mj = (vj− < A,S >) mod 2
where S is the secret key vector.

The whole process of key generation, encryption, and
decryption and addition operation is illustrated as
shown in the Figure 1.

4 An Extended Encryption

The key generation function is used to generate a set of ′x′

public keys and these keys are stored in the public store.

In the encryption process, a public key, PKk = (pk, bk)
is chosen randomly from the public key store to encrypt
the plain text message bit mi and to compute the cipher-
text Ci= (pi, vi) as described under Encryption Function
in Section 3. The ciphertext thus computed is stored in
publicly accessed ciphertext store. Also, the second com-
ponent ′v′i of the ciphertext is computed by adding the
message bit (0 or 1) to the second component ′b′k of the
public key, PKk. If the message is 0, then vi = bk and if
the message is 1, then vi = bk + 1. This makes very little
difference to the component ′v′i of the ciphertext. Since
the public key store and the ciphertext store are publicly
accessible, an adversary can choose any ciphertext from
the ciphertext store and search for its corresponding pub-
lic key (used for its encryption) in the public key set. If
the size of public key set is small, then it becomes easy for
an adversary to search for its corresponding public key,
hence, to compute the message bit. Therefore, big size of
the public key set ensures that the scheme is secure. How-
ever, the huge size may affect the suitability of scheme in
implementing over compact devices.

Modification in the encryption function, proposed ear-
lier [16], helps to reduce the number of keys down to small
number and to make the scheme suitable for compact de-
vices without compromising the security. The proposed
extended version of the scheme utilizes the modified en-
cryption function.

Modified encryption function. For encrypting any
ith message bit mi (0 or 1)

1) Choose any kth public key PKk : (pk, bk)

2) Compute ciphertext Ci

Ci = (pi, vi) = (pk, bk + mi + 2.ei)
where ′e′i is randomly chosen error.

Now, the newly added error term ‘e′i in the encryp-
tion seems to make the scheme significantly more se-
cure; further, the public key set can be minimized to
fit for the low storage devices.

Security of the scheme.

• The security of the scheme is totally dependent
on modulus ′q′, dimension ′n′ and the secret
vector S. Hence, its hardness is equivalent to
that of the LWE problem.

• It is important to consider the privacy of the op-
erations on the ciphertext as it is important for
homomorphic encryption scheme. The size of
the ciphertext is reduced to two and it maintains
the privacy even after performing the many ad-
dition operations on it.

5 Results and Discussion

In the proposed scheme, the total size required for storing
′x′ public keys or ciphertexts is minimized to [2x. log2(q)],
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whereas the size required in standard LWE schemes is
[x.(n + 1). log 2(q)]. The comparison of the storage (in
bits) required for publishing 1024 public keys in standard
LWE scheme and the proposed scheme is given in Table 1.
For the parameter n = 10 and for an integer ′q′ with
10 bits the maximum storage required for 1024 public
keys in the proposed scheme is 24477 bits, whereas for
the standard LWE scheme, the storage required is 112624
bits. A key implication of this minimization is that the
size of the public keys or ciphertexts becomes independent
of the security parameter ′n′.

In the practical implementation of the proposed LWE
based additively homomorphic encryption scheme, it is
observed that the execution time for the encryption op-
eration is in the same range as that of the previously
proposed work [16]. The comparison of the time com-
plexities of standard LWE scheme [3] and the proposed
version of the LWE scheme for different values of ′n′ and
′q′ are given in Figure 2. It is observed that the execu-
tion time for the homomorphic encryption functions of
the proposed LWE are comparable to the standard LWE.
The execution time for the Key Generation, Encryption
and Decryption operations are in the same range too as
that of the standard LWE. However, the execution time
for the addition operation is significantly low in the pro-
posed LWE which becomes more prominent at higher ′n′

and ′q′ values. At n = 100000 and ′q′ to be a 50 bit
number, the execution time for the addition operation in
standard LWE is 2.1×108 whereas for the proposed LWE,
it is 4× 103.

6 Conclusions

An efficient LWE based additively Homomorphic Encryp-
tion has been proposed and explored with practical im-
plementation. The prime number used as the seed value
for the pseudo random generator helps shorten the public
keys and ciphertexts. The proposed enhanced encryption
function provides the enhanced security and further mini-
mization of public key space large extent. In the practical
implementation of the scheme, the execution time com-
plexities for every function are reasonably small even for
higher values of the security parameters. This makes the
scheme suitable to implement over compact devices.
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