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Abstract

Modern lightweight block ciphers and hash functions ap-
ply linear layers for the diffusion purpose. In this paper,
we characterize a class of lightweight MDS matrices de-
composed into two cyclic matrices. As the main contribu-
tion, we presents a class of lightweight 4 × 4 cyclic MDS
matrices lighter than the state-of-the-art which reduces
the implementation cost (in terms of number of XOR
gates required) of linear diffusion layers for hardware-
oriented cryptographic primitives.
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1 Introduction

Many modern lightweight block ciphers and hash func-
tions apply MDS or almost MDS matrices as diffusion
layers. For example, Midori [3] and QARMA [1, 9] fami-
lies of block ciphers use almost MDS matrices and LED
block cipher [10] and PHOTON hash function [11] use
MDS matrices as diffusion layers. The performance of a
diffusion layer depends on its branch number and imple-
mentation cost which is usually measured by the number
of XORs required. Since the branch number of an MDS
matrix is already maximum, for constrained applications
like RFID and IoT [7, 8, 19, 21, 22], the implementation
cost remains the main concern. For this purpose, we pro-
vide a hardware-efficient class of lightweight 4 × 4 cyclic
MDS matrices.

1.1 Related Works

Providing MDS matrices that can be implemented with
as few XOR operations as possible is one of the essentials
in the design of lightweight symmetric primitives.

The XOR metric for measuring the efficiency of hard-
ware implementations was first presented in [13] and later
improved in [4] and [12]. Based on results from [18], many
publications tried to find as efficient MDS matrices as pos-
sible.

In [4], the authors present lightweight cyclic MDS ma-
trices by the use of lightweight multiplication in F2m (the
field with 2m elements). The cost of their presented 4× 4
MDS matrices is 12m + 12 XORs, 4 ≤ m ≤ 8. Here, m
is the size of input words. The authors of [15] construct
lightweight 4 × 4 cyclic MDS matrices with implementa-
tion cost of 60 and 108 XORs for 4-bit and 8-bit input
words, respectively.

Bai and Wang [2] characterize lightweight 4 × 4 MDS
matrices with 4-bit input words for which the entries im-
plementation needs 10 XORs and overall, the entire ma-
trix requires 4 × 12 + 10 = 58 XORs for implementa-
tion. Then, a class of 4× 4 MDS matrices proposed with
the help of Toeplitz matrices with 58 XORs for 4-bit and
123 XORs for 8-bit input words by Sarkar et al. in [17].
Later, in [6] Cauchois et al. constructed quasi-involutory
recursive-like MDS matrices from 2-cyclic codes for which
the implementation cost of 4×4 MDS matrices with 4-bit
input words is 72 XORs. Zhang et al. in [23] provide
cyclic 4× 4 MDS matrices with 4-bit input words and 12
XORs for entries which overall requires 4× 12 + 12 = 60
XORs for implementation. Recently, Zhou et al. [20] pro-
posed two kinds of lightweight 4 × 4 MDS matrices over
4-bit and 8-bit input words which require 4×12+10 = 58
and 8× 12 + 10 = 106 XORs, respectively.
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1.2 Our Contribution

In most of recently presented lightweight primitives, e.g.
QARMA [1] and Midori [3] block ciphers, almost MDS
matrices are used due to the low implementation cost, i.e.
24 XORs for 4-bit input words; while the lightest MDS
ones take 58 XORs (before this paper). Hence, there is
a significant gap between the implementation cost of al-
most MDS matrices and MDS matrices. On the other
hand, employing an almost MDS matrix as diffusion layer,
in general, provides lower security bounds for the same
number of rounds. Thus, in this paper, we took a step
forward to reduce the gap between the implementation
cost of almost MDS matrices and MDS ones, to motivate
designers to use MDS matrices.

Our concern in this paper is to construct lightweight
4 × 4 cyclic MDS matrices with efficient implementation
in hardware, measured by the number of XOR gates re-
quired. We construct 4× 4 lightweight MDS matrices by
the multiplication of two cyclic matrices. More precisely,
one of its multiplicands is a 4 × 4 cyclic matrix whose
entries are binary permutation matrices (which have no
implementation cost in hardware) and the other is a cyclic
matrix with two non-zero entries per row. We character-
ize the MDS property of this type of matrices. As a result,
we provide lightweight 4 × 4 cyclic MDS matrices on m-
bit input words with the implementation cost of 10m+ 4
XORs for 4 ≤ m ≤ 8.

Note that our results would be infeasible without our
new approach of representing the MDS matrix as a prod-
uct. This is because of the fact that an MDS matrix
cannot have zero entries. So, a 4 × 4 MDS matrix over
m-bit input words would need already 12m XORs only
for the additions within the matrix multiplication, which
exceeds our results. That is, we benefit from being able
to use matrices with many zero entries.

We believe that, it is irrelevant to compare the imple-
mentation cost of cyclic MDS matrices with non-cyclic
ones, but since cyclic MDS matrices are less studied, we
compare our results with cyclic and non-cyclic matrices
in Table 1 for m-bit input words, m = 4, 8 (details are
given in sections 3 and 4). Note that, in Table 1, by
#A = #A−1 we mean the matrices A for which the im-
plementation cost of A and A−1 are equal.

1.3 Outline of the Paper

In Section 2, we give the preliminary notations and def-
initions. Section 3 presents new criteria for constructing
cyclic MDS matrices. In Section 4, we verify the imple-
mentation cost of our constructions and their inverses.
Section 5 concludes the paper.

2 Preliminaries

In this paper, n and m are natural numbers. By |A|
we denote the number of elements of a finite set A. We
denote the set of all n × n matrices with entries in R by

Mn(R) and the determinant of a matrix A inMn(R) by
detR(A). The XOR of two binary vectors or matrices v
and w is denoted by v ⊕ w, a zero vector or matrix by 0
and an identity matrix by I. We represent the finite field
with 2 elements by F2 and use Fm

2 to represent the set of
all m-bit vectors. We denote by #A, the number of XORs
needed to implement the binary matrix A ∈Mn(F2).

By the notation A = cycl(a1, a2, a3, . . . , an) we mean
the cyclic matrix

A =


a1 a2 a3 . . . an
an a1 a2 . . . an−1
...

...
...

. . .
...

a2 a3 a4 . . . a1


For a vector v = (v3, v2, v1, v0) ∈ F4

2 we correspond a
number v̄ =

∑
vi 6=0

2i in hexadecimal representation. So, a

matrix M ∈ M4(F2) could be represented by four num-
bers (in hexadecimal representation) corresponding to its
rows. For instance, the following matrix is represented by
7bde:

M =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 (1)

The set of all invertible binary matrices of order m
that have exactly one non-zero entry in each row is de-
noted by PMm(F2) and called binary permutation ma-
trices. For example, by our notations, the matrix 2814 ∈
PM4(F2) maps the vector x = (x3, x2, x1, x0) ∈ F4

2 to
(x2, x0, x3, x1). So, for any A ∈ PMm(F2) and x ∈ Fm

2 ,
y = xA is a vector whose components are a permutation
of the components of x and #A = 0.

The i-th component of a vector x ∈ (Fm
2 )n is denoted

by xi, i.e. x = (xn−1, ..., x0). The weight of a vector
x ∈ (Fm

2 )n with respect to m-bit input words is denoted
by wtm(x) and defined as

wtm(x) = |{ xi : xi 6= 0, 0 ≤ i ≤ n− 1}|.

For example, let

x = 1001110000101110,

we have, wt1(x) = 8, wt2(x) = 6 and wt4(x) = 4.

Definition 1. [5] Let M ∈ Mn(Mm(F2)). The (differ-
ential) branch number of M with respect to m-bit input
words is defined as

Bm(M) = min
x 6=0
{wtm(x) + wtm(xM) : x ∈ (Fm

2 )n}.

For the matrix M defined in Equation (1), we have
B1(M) = 4, i. e. wt1(x) + wt1(xM) ≥ 4 for any non-
zero x ∈ F4

2. On the other hand, the matrix M could be
considered as a 2× 2 matrix with entries inM2(F2), i. e.

M =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 ∈M2(M2(F2))
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Table 1: Comparison between the implementation cost of 4× 4 MDS matrices, for m-bit input words

Source Cyclic #A = #A−1 XOR count (m=4 / m=8)
[4]

√
X 60 / 108

[2] X X 58 / -
[15]

√
X 60 / 108

[15]
√ √

68 / -
[17] X X 58 / 123
[12] X X 58 / 116
[16]

√ √
60 / 128

[20]
√

X 58 / 106
[23]

√
X 60 / -

This paper
√

X 44 / 84

In this case, one can check that B2(M) = 2.
It is straightforward to verify that for a matrix M ∈

Mn(Mm(F2)) we have Bm(M) ≤ n+ 1.

Definition 2. [5] A matrix M ∈Mn(Mm(F2)) is called
MDS with respect to m-bit input words if

Bm(M) = n+ 1.

It is worth noting that, with the help of an n×n MDS
matrix with respect to m-bit input words, we can con-
struct an MDS code of length 2n over m-bit alphabets [5].

3 Constructing Lightweight 4 × 4
Cyclic MDS Matrices

In this section we verify a class of cyclic 4 × 4 matri-
ces to give sufficient conditions when they are MDS. The
proposed matrices are the product of two cyclic matrices
such that the non-zero entries of the first factor are in
PMm(F2) and the non-zero entries of the second factor
belong to Mm(F2).

For the mentioned verification, we need the following
theorems.

Theorem 1. [5] For M ∈ Mn(Mm(F2)), M is MDS
with respect to m-bit input words if and only if every
square submatrix of M of order t, 1 ≤ t ≤ n, is invertible.

Theorem 2. [14] For M ∈Mn(Mm(F2)), if the entries
of M in R =Mm(F2) are pairwise commuting, then

detF2
(M) = detF2

(detR(M)).

The following lemma is a straightforward result of The-
orem 1.

Lemma 1. Let A ∈ Mm(F2) and P1, P2, P3, P4 ∈
PMm(F2)

⋃
{0}. If the matrix

M = cycl(P1, P2, P3, P4)× cycl(I, A,0,0),

is MDS with respect to m-bit input words, then at most
one of Pi’s, 1 ≤ i ≤ 4, could be zero.

According to Lemma 1, we verify the following class of
matrices in more details:

M = cycl(P1, P2, P3,0)× cycl(I, A,0,0). (2)

It is easy to verify that, the matrix defined in Equa-
tion (2) is MDS if and only if the matrix

M ′ = cycl(I, P−11 P2, P
−1
1 P3,0)× cycl(I, A,0,0),

is MDS. As PMm(F2) is closed under multiplication
and inversion, we have p1 = P−11 P2, p2 = P−11 P3 ∈
PMm(F2). Now if we assume that p1, p2 and A are pair-
wise commuting, then the determinants of the square sub-
matrices of

M ′ = cycl(I, p1, p2,0)× cycl(I, A,0,0)

= cycl(I, A⊕ p1, p1A⊕ p2, p2A),

are as following.

(a) 1× 1 submatrices:

I, A⊕ p1, p1A⊕ p2, p2A.

(b) 2× 2 submatrices:

p1p2A⊕ I, p1(A2 ⊕ p1A⊕ p2),

A2 ⊕ p1A⊕ p21 ⊕ p2, p22A2 ⊕ p1A⊕ p2,
p1p2A

2 ⊕ (p22 ⊕ I)A⊕ p1, p21A2 ⊕ p22 ⊕ I,
(p21 ⊕ p2)A2 ⊕ p1p2A⊕ p22, (p22 ⊕ I)A2 ⊕ p21,
p2A

2 ⊕ p1p2A⊕ I.

(c) 3× 3 submatrices:

(p1 ⊕ p1p22)A3 ⊕ (p2 ⊕ p21 ⊕ p32)A2 ⊕ p31A
⊕p22 ⊕ p21p2 ⊕ I,

(p2 ⊕ p21 ⊕ p32)A3 ⊕ p31A2 ⊕ (p21p2 ⊕ p22 ⊕ I)A

⊕p1 ⊕ p1p22,
p31A

3 ⊕ (p21p2 ⊕ p22 ⊕ I)A2 ⊕ (p1 ⊕ p21p2)A

⊕p21 ⊕ p32 ⊕ p2,
(p22 ⊕ p21p2 ⊕ I)A3 ⊕ (p1 ⊕ p1p22)A2

⊕(p21 ⊕ p2 ⊕ p32)A⊕ p31.
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(d) 4× 4 submatrices:

(I ⊕ p21p2 ⊕ p2p21 ⊕ p41 ⊕ p42)(I ⊕A4).

According to Theorem 1 and Theorem 2, M ′ is MDS
with respect to m-bit input words if and only if the afore-
mentioned submatrices are invertible.

In the special case of p1 = p2 = I, we have the following
theorem.

Theorem 3. Let A ∈Mm(F2). The matrix

M = cycl(I, I, I,0)× cycl(I,A,0,0) (3)

is MDS with respect to m-bit input words if and only if
A,A3 ⊕ I, A7 ⊕ I are invertible.

Proof. By replacing p1 and p2 with I in matrices of
(a),(b),(c) and (d), it results that M is MDS if and only
if the following matrices are invertible.

I, A, I ⊕A, A2, (I ⊕A)2,
A(I ⊕A), I ⊕A⊕A2, I ⊕A⊕A3,

I ⊕A2 ⊕A3, A(I ⊕A⊕A2),
A3 ⊕A2 ⊕A⊕ I, (I ⊕A)4.

(4)

Given that I ⊕ A3 = (I ⊕ A)(I ⊕ A ⊕ A2), I ⊕ A7 =
(I⊕A)(I⊕A⊕A3)(I⊕A2⊕A3), (I⊕A)4 = (I⊕A)(A3⊕
A2 ⊕ A⊕ I) and regarding (4), all submatrices of M are
invertible if and only if A, I ⊕ A3, I ⊕ A7 are invertible,
which completes the proof.

Similar to Theorem 3, the next theorem could be
proved.

Theorem 4. Let A ∈Mm(F2). The matrix

M = cycl(I, I, I,0)× cycl(I,0,0, A)

is MDS with respect to m-bit input words if and only if
A,A3 ⊕ I, A7 ⊕ I are invertible.

Similarly, we verified the MDS property of matrices

M = cycl(I, I, I,0)× cycl(I,0, A,0).

We found out that, there is no matrix A ∈Mm(F2) such
that M is MDS.

4 Implementation and Experi-
mental Results

In this section, we discuss the implementation cost of the
4× 4 cyclic MDS matrices given in Theorem 3 and The-
orem 4 and their corresponding inverses. For the matrix
M in Equation (3), we have

#M = 10m+ 4#A. (5)

This is because the implementation cost of C =
cycl(I, A,0,0) would be 4m+ 4#A XORs; since, for the

action of C on input words, we should apply A four
times plus extra 4m XORs for the additions within ma-
trix multiplication. On the other hand, to implement
B = cycl(I, I, I,0), we use the following procedure:

(X3, X2, X1, X0)B = (Y3, Y2, Y1, Y0),

Z0 = X1 ⊕X2, Z1 = X0 ⊕X3,

Y0 = X0 ⊕ Z0, Y1 = X3 ⊕ Z0,

Y2 = X2 ⊕ Z1, Y3 = X1 ⊕ Z1,

which shows that B needs 6m XORs. By the same cal-
culations, the implementation cost of matrices M verified
in Theorem 4 equals to 10m+ 4#A XORs.

Now according to Equation (5), the construction of
lightweight 4 × 4 MDS matrices with respect to m-bit
input words, 4 ≤ m ≤ 8, given in Theorem 3 and The-
orem 4, would be reduced to finding invertible matrices
A ∈ Mm(F2) with as low implementation cost as possi-
ble such that I ⊕ A3 and I ⊕ A7 are invertible. Every
invertible matrix A with #A = 0 belongs to PMm(F2);
so, at least one of the non-zero entries of A would be on
its principal diagonal, i. e. one of the rows of A equals to
the corresponding row of I. This means that I ⊕A could
not be invertible. Thus, we should search for matrices A
with #A = 1.

For this purpose, we have exhaustively searched the
proposed matrices A in Sm, 4 ≤ m ≤ 8, where, Sm is the
set of all binary matrices A ∈Mm(F2), for which just one
of the rows has two non-zero entries and the other rows
have only one non-zero entry. Clearly, |Sm| =

(
m
2

)
mm and

for every A ∈ Sm, we have #A = 1. It takes few hours
to find all matrices A ∈ S8 (|S8| = 7 × 226) such that A,
I ⊕A3 and I ⊕A7 are invertible, by programming. Note
that the case of m = 8 is the most time consuming case.
As a result, we found 48, 240, 960, 480 and 25920 such
matrices for m = 4, 5, 6, 7, 8, respectively. We present all
48 matrices for m = 4 as follows and give a list of five
matrices for each of the other cases in Appendix.

1286, 1294, 1846, 18c2, 1942, 1a84, 214a, 2158,
281c, 2854, 2948, 2a14, 3814, 3842, 418a, 41c2,
421c, 4298, 4318, 4382, 5182, 5284, 6148, 6218.
1285, 12a4, 1684, 1843, 1862, 1c42, 2149, 2168,
2548, 2815, 2834, 2c14, 4183, 41a2, 4219, 4238,
4582, 4618, 9284, 9842, a148, a814, c182, c218.

(6)

According to Equation (5), by choosing A from the list
of the matrices (6) or from the Appendix, the implemen-
tation cost of the proposed MDS matrices with respect to
m-bit input words, 4 ≤ m ≤ 8, derived from Theorem 3
and Theorem 4 are 10m+ 4 XORs.

Often, when aiming for the most efficient MDS matrix,
the inverse of the matrix is not considered and might have
much higher implementation cost. This is because of the
fact that, in many applications in symmetric cryptogra-
phy, we do not need to implement the inverse of com-
ponents. Examples of such applications include stream
ciphers, hash functions, block ciphers in CTR and OFB
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modes or block ciphers with Feistel or Lai-Massy struc-
tures. Accordingly, most of the papers we are comparing
with, have not verified the implementation cost of the in-
verse of their proposed MDS matrices [2, 4, 12, 17, 20, 23].
However, we give an upper bound for the implementa-
tion cost of the inverse of our proposed MDS matrices as
following.

For B = cycl(I, I, I,0) we have, B−1 = cycl(I,0, I, I).
Therefore, #B−1 = #B = 6m. On the other hand, if
C = cycl(I, A,0,0), then C−1 = αC3, α = (I ⊕ A4)−1.
As C2 = cycl(I,0, A2,0), we have

C−1 = αC × cycl(I,0, A2,0).

By this decomposition, an upper bound for the implemen-
tation cost of C−1 is

(4m+ 4#A2) + (4m+ 4#A) + 4#α.

So, the implementation cost of the inverse of the matri-
ces derived from Theorem 3 and Theorem 4 would be
bounded by

14m+ 4#A+ 4#A2 + 4#α.

For m = 4, we presented 48 candidates of matrix A with
1 XOR implementation cost (listed in (6)), for which
the corresponding matrices M in Theorem 3 and The-
orem 4 are MDS. Among them, the first 24 matrices
have the property that I ⊕ A4 = A. In this case,
αC2 = cycl(A−1,0, A,0). So,

C−1 = cycl(I, A,0,0)× cycl(A−1,0, A,0).

This means that, if we select A from the first 24 ma-
trices of the list (6), then the implementation cost of
corresponding cyclic MDS matrix M would be 44 XORs
and the implementation cost of M−1 would be 68 XORs.
Note that, for every invertible matrix A ∈ Sm, we have
A−1 ∈ Sm; i. e. #A−1 = 1.

To verify whether the matrices presented in Equa-
tion (2) are MDS or not, in the case of m = 4, we ex-
haustively checked P1, P2, P3 and A. The total number
of such matrices is (4!)3216 = 81 × 225. The result of
our programming shows that for all of the resultant MDS
matrices, we have P1 = P2 = P3.

5 Conclusion

In this paper, we proposed a new class of lightweight 4×4
cyclic MDS matrices with respect to m-bit input words
based on the product of cyclic matrices. The resultant
MDS matrices need 10m + 4 XORs for implementation.
In comparison to the state-of-the-art, to the best of our
knowledge, our proposed cyclic MDS matrices outperform
the previous known cyclic MDS matrices.
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Appendix

Here, for simplicity, a matrix A ∈ Mm(F2), 5 ≤ m ≤ 8,
is represented by a sequence of m decimal numbers cor-
responding to its rows. For example, (1, 2, 8, 16, 6) repre-
sents the matrix 

0 0 0 0 1
0 0 0 1 0
0 1 0 0 0
1 0 0 0 0
0 0 1 1 0

 .

List of some matrices for m = 5:

(1, 2, 8, 16, 6), (2, 1, 10, 4, 16), (3, 4, 1, 8, 16),
(4, 2, 1, 17, 8), (12, 2, 16, 1, 4).

List of some matrices for m = 6:

(1, 2, 4, 16, 32, 10), (2, 1, 32, 20, 4, 8), (4, 2, 1, 16, 8, 34),
(12, 2, 1, 16, 8, 32), (33, 32, 16, 2, 8, 4).

List of some matrices for m = 7:

(1, 2, 4, 16, 32, 64, 40), (2, 8, 1, 4, 64, 16, 96),
(9, 1, 32, 16, 2, 64, 4), (17, 1, 4, 2, 32, 64, 8),

(34, 16, 8, 2, 1, 4, 64).

List of some matrices for m = 8:

(1, 2, 4, 8, 32, 64, 144, 16), (2, 1, 4, 64, 128, 8, 16, 40),
(20, 32, 1, 128, 16, 2, 64, 8), (80, 128, 8, 1, 4, 64, 32, 2),

(96, 128, 4, 8, 2, 16, 1, 64).
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