
International Journal of Network Security, Vol.21, No.2, PP.250-258, Mar. 2019 (DOI: 10.6633/IJNS.201903_21(2).09) 250

Construction and Analysis of Key Generation

Algorithms Based on Modi�ed Fibonacci and

Scrambling Factors for Privacy Preservation

Amiruddin Amiruddin1,2, Anak Agung Putri Ratna1, and Riri Fitri Sari1

(Corresponding author: Amiruddin Amiruddin)

Department of Electrical Engineering, Universitas Indonesia1

Jl. Margonda Raya, Pondok Cina, Beji, Kota Depok, Jawa Barat 16424, Indonesia

Sekolah Tinggi Sandi Negara, Bogor, Jawa Barat, Indonesia2

(Email: amir@stsn-nci.ac.id)

(Received Sept. 24, 2017; revised and accepted Apr. 12, 2018)

Abstract

Cryptographic key is the most important factor for sup-
porting encryption of con�dential data before it is trans-
mitted in a communication network. A good crypto-
graphic key has properties of random sequence and long
period. For these purposes, a randomness capable and
lightweight computing algorithm is required. The ran-
domness capability and computation time of such an algo-
rithm can be measured by using randomness test and al-
gorithmic complexity analysis, respectively. In this paper,
two models of key generation algorithm using the mod-
i�ed Fibonacci and scrambling factor were constructed.
Such modi�cation and scrambling factor are intended to
support the randomness capability and low algorithmic
complexity. The proposed key generation algorithms have
been simulated and analyzed. The key generation algo-
rithm Model 2 (called hereinafter "Scrambled Fibonacci-
based") is better than Model 1 in term of randomness,
despite both having similar linear algorithmic complex-
ity, denoted by O(n).
Keywords: Cryptography; Key Generation; Randomness;
Scrambled Fibonacci; Scrambling Factor

1 Introduction

Wireless communication system and its services have be-
come an important component of modern life and society.
An example of such a wireless network is the Internet
of Things (IoT) that grows rapidly, nowadays, to sup-
port human beings need on information. However, due to
the nature of the Radio Frequency (RF) spectrum used
as shared transmission medium, wireless communications
are essentially vulnerable and prone to interception [5].
The next generation of wireless communication systems
should support applications with very low communication
latency, availability, high reliability and security [27]. To

protect from interception and to ensure the data con�den-
tiality, many wireless systems use cryptographic systems
with secret keys that are only available to the legitimate
senders and recipients.

Various methods or approaches have been proposed to
generate long and random encryption keys [36]. Each
method or approach has advantages and disadvantages
and cannot be applied to all di�erent kinds of applica-
tions. Therefore, a key generation function should be
tailored and adjusted to the characteristics of the appli-
cations that will use it. One important consideration in
designing a key generation algorithm is its algorithmic
complexity [24]. For applications in low-capacity devices
for IoT, low complexity algorithms are required. Unfor-
tunately, the existing key generation algorithms lack the
measurement of their complexity.

Fibonacci sequence [10] which is a very famous series
function in the �eld of mathematics can be used to gener-
ate encryption keys. It is a sequence of numbers where a
number is found by adding up the two preceding numbers.
Beginning with 0 and 1, the sequence goes as 0, 1, 1, 2,
3, 5, 8, 13, 21, 34, and so forth. Written as a rule, the
expression is xi = xi−1 + xi−2. Its lightweight operation
and ability to save computing time are of the reasons for
using it in the key generation function. Several crypto-
graphic methods used Fibonacci sequence or its behavior
for encryption application [9, 12]. Applying Fibonacci is
suitable for common areas that do not involve data pri-
vacy. However, for con�dential data-based applications,
it is necessary to make improvement on the Fibonacci
function. Moreover, the operation used in Fibonacci pro-
duces a regular pattern (ascending or descending) that
can be used as an entrance point to analyze the resulted
key sequence. Therefore, it is necessary to modify the
Fibonacci operation so that the resulted pattern becomes
random and hardens the e�orts to analyze it.

In this paper, a key generation algorithm based on the

International Journal of Network Security, Vol.21, No.2, PP.250-258, Mar. 2019 (DOI: 10.6633/IJNS.201903_21(2).09) 251

modi�ed Fibonacci and scrambling factor is constructed
and analysed. The key generation function will be ap-
plied to the Internet of Things network with constrained
devices that have limited storage, low computing power
and energy. The contribution of this work is a construc-
tion and analysis of key generation algorithm based on
Fibonacci and scrambling factor which satis�es the re-
quirement for random and long period of key sequences.

The remaining of the paper is organized as follows. Sec-
tion 2 gives a brief overview of the previous related works
regarding cryptographic key generation methods. Section
3 describes the key generation de�nition and its perfor-
mance measurement. The proposed method is described
in Section 4. Section 5 discusses the simulation and the
result and Section 6 closes the paper with the conclusion.

2 Related Works

As technology grows, research on cryptographic key man-
agement [17,20,22,25,32] continues to be done in various
aspects including key generation [14, 18, 28, 29, 34, 35, 37],
agreement [3, 6, 7, 13, 15, 33] or exchange [4], distribu-
tion [8], assignment [19], authentication [16], and update.
However, we focus on e�orts for key generation to be used
on symmetric cryptosystems. Verma et al. [31] proposed a
method for generating cryptographic key using biometrics
with the help of �ngerprint pattern. The algorithm gen-
erates key by extracting minutiae points and core point
and the �nal key is obtained from the �ngerprint image.
Turakulovich et al. Turakulovich et al. [30] discussed com-
parative factors of the key generation techniques include
randomness, key space, key space of biometric, entropy,
measured entropy of biometric, convenience and cost, se-
cure saving, update. However, they mostly discussed the
factor for biometric-based key generation technique which
is di�erent from our proposed method.

Hossain et al. [11] proposed a One Time Key (OTK)
generation technique based on User ID (UID) and pass-
word. The key generation method involves a server-side
process to check for possible collisions between a new UID
and a given UID to the previous client. This process takes
a long time so it is not applicable for devices with limited
storage and energy. Torre et al. [29] studied the practical
performance of an enhanced channel-based key generation
system with a very short roundtrip delay, allowing recip-
rocal channel assessment with increased accuracy. The re-
ciprocal channel measurements performed by body-worn
sensor nodes is used to extract encryption keys. Although
the performance is slightly increased due to the shorter
round-trip delay, further apparent non-reciprocity in the
channel measurements can probably be attributed to in-
accuracy of the received signal strength indication in the
transceiver chip.

Tavangaran et al. [27] studied the secret key generation
protocol for a compound Discrete Memoryless Multiple
Sources (DMMS) with one-way communication in pres-
ence of an eavesdropper. The key generation protocol uses

a two phase approach to achieve secret key. In the �rst
step, the sender estimates his state and sends this along
with other information which is obtained from his obser-
vation to the recipient. In the second step, the recipient
uses this information including the estimated state of the
sender to generate the secret key. However, the protocol
has not been reported whether it has been implemented
or not.

Al-Moliki et al. [2] enhanced the con�dentiality of Vis-
ible Light Communication (VLC) networks by suggest-
ing a new key generation protocol for optical Orthog-
onal Frequency Division Multiplexing (OFDM) schemes
in an indoor environment. The keys are extracted from
the bipolar OFDM samples produced from optical OFDM
schemes. This approach which emphasizes the source of
key generation di�ers from our proposed approach which
emphasizes the process of the key generation.

Karimian et al. [14] proposed a novel approach of key
generation that extracts keys from real-valued ECG fea-
tures. However, this approach is only suitable for ECG-
based applications although it can also be modi�ed for
other �eld applications.

In this research, we proposed new key generation algo-
rithm based on modi�ed Fibonacci and scrambling factor
to support long periodicity and randomness of the gener-
ated key sequence. The research position of our proposed
key generation algorithm among other algorithms is sum-
marized in Table 1.

3 Key Generation and Perfor-

mance Measurement

3.1 Key Generation

In the �eld of cryptography, key is the most urgent pa-
rameter for data encryption or decryption. By de�nition,
a key is a sequence of a random string of bits created ex-
plicitly for scrambling and unscrambling data. Instances
of cryptographic processes demanding the usage of keys
include, inter alia, the transformation of plain text data
into cipher text data (encryption) and vice versa (decryp-
tion), the computation and veri�cation of a digital signa-
ture, the computation and veri�cation of an authentica-
tion code from data, the computation of a shared secret
that is used to obtain keying material, and the derivation
of additional keying material from a key-derivation key.

There are two types of key, i.e. symmetric and asym-
metric key. Symmetric key is a key used in a symmetric-
key cryptographic algorithm which requires that the key
must be kept secret. Asymmetric key is a key used with
a public-key algorithm. In asymmetric key cryptography,
there are two corresponding keys, i.e. private and pub-
lic keys. A private key is a cryptographic key used with
a public-key algorithm that must be kept secret and is
uniquely associated with an entity that is authorized to
use it. Public key is a key used with a public-key algo-
rithm that may be made public and is associated with a

International Journal of Network Security, Vol.21, No.2, PP.250-258, Mar. 2019 (DOI: 10.6633/IJNS.201903_21(2).09) 252

Table 1: Research position of key generation

Author Method Source Implementation

Verma et al., 2016 extraction Biometric with �nger-print pattern Simulated on Matlab
Hossain et al., 2016 generation UID and password Simulated on mobile phone
Torre et al., 2017 extraction Reciprocal channel measurements Not reported
Tanvangaran et al., 2017 generation Compound: information, estimated state Not yet
Al-Moliki et al., 2017 extraction Bipolar OFDM samples Simulated on Monte Carlo
Karimian et al., 2017 extraction ECG value -
Amiruddin et al., 2017 generation User input Simulated on Matlab

private key and an entity that is authorized to use that
private key.

Key generation is the process of generating keys for
cryptographic purpose such as encryption [1,21]. A cryp-
tographic key can be generated through a function in soft-
ware or hardware with input parameters that can be ob-
tained from various sources, e.g. channels used by each
pair of users [28], phase �uctuations in �ber links, and
values entered by the user.

3.2 Measurement

To measure the performance of the proposed key genera-
tion algorithm, several tests were used, i.e. key generation
speed, key randomness, key periodicity, and algorithmic
complexity analysis. The key generation speed was mea-
sured by recording the start time and �nish time of the
key generation process and then subtracting the start time
from the �nish time. The key randomness was measured
by using autocorrelation function, while the key period-
icity was manually analyzed. All of these kinds of key
performance measurement were also used in [26]. The
analysis of algorithmic complexity was measured by fol-
lowing the description and calculation example presented
in [24].

4 Proposed Methods

We have constructed two models of new key generation
algorithm based on the modi�ed Fibonacci, described in
detail as follows.

4.1 Model 1

In Model 1, modi�cation made on Fibonacci series is the
application of modulo number (annotated with c). In
this model, the �rst key, K1, is obtained by the result of
a%c. K2 is obtained by the result of b%c. Ki is obtained
by the result of the addition of (Ki−1 + Ki−2)%c. By
applying a modulus number in this model, the ascending
or descending pattern of the generated key sequences is
reduced in periodicity. The key generation function of
Model 1 is given in pseudocode form in Algorithm 1.

Algorithm 1 Key Generation (Model 1)

1: Begin
2: Initialize the parameters: a, b, n, c
3: Derive the 1st element of the key
4: K(1)← mod(a, c)
5: Derive the 2nd element of the key
6: K(2)← mod(b, c)
7: Derive the 3rd to n-th element of the key
8: for i = 3 to n do

9: K(i)← mod(K(i− 1) +K(i− 2), c)
10: end for

11: Output the key sequence, K
12: End

The simulation result showed that this model pro-
duces key sequences that have a better randomness level
than those produced by the original Fibonacci. However,
the randomness of the key sequences is not yet satis�ed
the randomness test. Therefore, we constructed another
model of key generation algorithm, Model 2, by adding
a scramble factor to the previous model, Model 1. This
addition of scrambling factor was expected to make the
generated key sequences more random to satisfy the ran-
domness test.

4.2 Model 2

In Model 2, Fibonacci is modi�ed to generate random and
long period key sequences. Input parameters for the func-
tion are a, b, n and d as the �rst number, second number,
key length, and modulus number, respectively. Through
this model, the �rst key,K1, is generated from the formula
(a∗b−a)%d. K2 is generated similarly from (a∗b−b)%d.
For i = 3 : n, Ki is obtained from the addition of the two
previous key, Ki−1 +Ki−2, and a scrambling factor, 3 ∗ i
in formula of Ki−1 +Ki−2 + 3 ∗ i%d. Actually, the origi-
nal Fibonacci is presented in the addition marked with a
+ symbol. However, such an addition can cause the re-
sulted key sequences to have a low randomness and easy
to be guessed (as described in Model 1). Therefore, in
Model 2, a scrambling factor using a multiplication, 3 ∗ i,
is added to improve the modi�ed Fibonacci in generat-
ing random key sequences. The scrambling factor with
the use of multiplication (*) involving an ever-changing

International Journal of Network Security, Vol.21, No.2, PP.250-258, Mar. 2019 (DOI: 10.6633/IJNS.201903_21(2).09) 253

International Journal of Network Security, Vol. xxx, No.xx, PP.xxx-xxx, xxx. 20xx
used with a public-key algorithm. In asymmetric key
cryptography, there are two corresponding keys, i.e. private
and public keys. A private key is a cryptographic key used
with a public-key algorithm that must be kept secret and is
uniquely associated with an entity that is authorized to use
it. Public key is a key used with a public-key algorithm that
may be made public and is associated with a private key
and an entity that is authorized to use that private key.

Key generation is the process of generating keys for
cryptographic purpose. A cryptographic key can be
generated through a function in software or hardware with
input parameters that can be obtained from various sources,
e.g. channels used by each pair of users [21], phase
fluctuations in fiber links, and values entered by the user.

3.2 Measurement

To measure the performance of the proposed key
generation algorithm, several tests were used, i.e. key
generation speed, key randomness, key periodicity, and
algorithmic complexity analysis.

The key generation speed was measured by
recording the start time and finish time of the key
generation process and then subtracting the start time from
the finish time. The key randomness was measured by
using autocorrelation function, while the key periodicity
was manually analyzed. All of these kinds of key
performance measurement were also used in [33]. The
analysis of algorithmic complexity was measured
following the description and calculation example
presented in [9].

4 PROPOSED METHOD

We have constructed two models of new key generation
algorithm based on the modified Fibonacci described in
detail as follows.

4.1 Model 1

In Model 1, modification made on Fibonacci series is the
application of modulo number (annotated with %). In this
model, the first key, &', is obtained by the result of (%
%. &) is obtained by the result of * % %. &+ is obtained by
the result of the addition of (&(+ − ') + &(+ −))) % %.
By applying a modulus number in this model, the
ascending or descending pattern of the generated key
sequences is reduced in periodicity. The key generation
function of Model 1 is given in pseudocode form in
Algorithm 1.

Algorithm 1: Key Generation (Model 1)

1 //Input parameters: a, b, n, c;
2 //Derive the 1st element of the key
3 K(1)ß mod(a,d);
4 //Derive the 2nd element of the key
5 K(2)ß mod(b,c);
6 //Derive the 3rd to nth element of the key
7 For i from 3 to n
8 K(i)ß mod(K(i-1)+K(i-2), c);
9 Next i
10 //Output the key sequence, K

The simulation result showed that this model produces key
sequences that have a better randomness level than those
produced by the original Fibonacci. However, the
randomness of the key sequences is not yet satisfied the
randomness test. Therefore, we constructed another model
of key generation algorithm, Model 2, by adding a
scramble factor to the previous model, Model 1. This
addition of scrambling factor was expected to make the
generated key sequences more random to satisfy the
randomness test.

4.2 Model 2

In Model 2, Fibonacci is modified to generate random and
long period key sequences. Input parameters for the
function are (,*, . and / as the first number, second
number, key length, and modulus number, respectively.
Through this model, the first key,	&', is generated from the
formula ((∗ * − () % /. &)	 is generated similarly from
((∗ * − *)	% /. For 4 = 3:	#, &+ is obtained from the
addition of the two previous key, &(i-1)+&(i-2, and a
scrambling factor, 3 ∗ 4 in formula of &(i-1)+&(i-2)+3 ∗ 4 %
/. Actually, the original Fibonacci is presented in the
addition marked with a + symbol. However, such an
addition can cause the resulted key sequences to have a low
randomness and easy to be guessed (as described in Model
1). Therefore, in Model 2, a scrambling factor using a
multiplication, 9 ∗ +, is added to improve the modified
Fibonacci in generating random key sequences. The
scrambling factor with the use of multiplication (*)
involving an ever-changing number, i, produces a non-
patterned or random number.

The scrambling factor with the use of power (^)
operation can also generate random numbers, but has a high
computational overhead. The scrambling factor of the
addition (+) and subtraction (-) produces a number that is
ascending or descending pattern, while the division (:) can
cause infinite numbers if the divisor is a zero. In Fig. 1 we
show the experiment result of processing time comparison
among the addition, multiplication, and power operations.
Based on this result and the previous explanation, we use
the multiplication in our scrambling factor in modifying the
Fibonacci sequence.

Fig. 1 Processing time comparison of several operations

The proposed generation algorithm of Model 2 is
given in pseudocode form in Algorithm 2.

0,00

50,00

100,00

150,00

200,00

250,00

10 20 30 40 50 60Pr
oc

es
sin

g
Ti

m
e

(µ
s)

Key Size (Byte)

ADD MULTIPLY POWER

Figure 1: Processing time comparison of several opera-
tions

number, i, produces a non-patterned or random number.

The scrambling factor with the use of power () oper-
ation can also generate random numbers, but has a high
computational overhead. The scrambling factor of the ad-
dition (+) and subtraction (−) produces a number that is
ascending or descending pattern, while the division (:) can
cause in�nite numbers if the divisor is a zero. In Figure 1
we show the experiment result of processing time com-
parison among the addition, multiplication, and power
operations. Based on this result and the previous expla-
nation, we use the multiplication in our scrambling factor
in modifying the Fibonacci sequence.

The proposed generation algorithm of Model 2 is given
in pseudocode form in Algorithm 2.

Algorithm 2 Key Generation (Model 2)

1: Begin
2: Initialize the parameters: a, b, n, c
3: Derive the 1st element of the key
4: K(1)← mod(a ∗ b− a, c)
5: Derive the 2nd element of the key
6: K(2)← mod(a ∗ b− b, c)
7: Derive the 3rd to n-th element of the key
8: for i = 3 to n do

9: K(i)← mod(K(i− 1) +K(i− 2) + 3 ∗ i, c)
10: end for

11: Output the key sequence, K
12: End

The use of ∗b − a, ∗b − b, and 3 ∗ i in Algorithm 2 is
intended to satisfy the randomness test and long period-
icity of the generated key sequences as the requirements
of good key as stated by Shannon [34].

The di�erence of operations among the original Fi-
bonacci, modi�ed Fibonacci Model 1, and Model 2 is pre-
sented in Table 2.

International Journal of Network Security, Vol. xxx, No.xx, PP.xxx-xxx, xxx. 20xx
Algorithm 2: Key Generation (Model 2)

1 //Input parameters: a, b, n, d;
2 //Derive the 1st element of the key
3 K(1)ß mod(a*b-a,d);
4 //Derive the 2nd element of the key
5 K(2)ß mod(a*b-b,d);
6 //Derive the 3rd to nth element of the key
7 For i from 3 to n
8 K(i)ß mod(K(i-1)+K(i-2)+3*i,d);
9 Next i
10 //Output the key sequence, K

Table 2 Different operations among Fibonacci-based algorithms

Original
Fibonacci

Modified Fibonacci
Model 1

Modified Fibonacci
Model 2

:' 	= 	(:' = 	;</((, %) :'
= 	;</((∗ * − (, /)

:) 	= 	* :) 	= 	;</(*, %) :) 	
= 	;</((∗ * − *, /)

:+
= :+='
+ :+=)

:+
= 	;</(:+='
+ :+=), %)

:+
= 	;</(:+=' + :+=)
+ 9 ∗ +, /)

The use of ∗ *	 − 	(, ∗ * − 	*, and 9 ∗ + in Algorithm 2 is
intended to satisfy the randomness test and long periodicity
of the generated key sequences as the requirements of good
key as stated by Shannon [34].

The difference of operations among the original
Fibonacci, modified Fibonacci Model 1, and Model 2 is
presented in Table 2.

5 RESULTS AND DISCUSSION

5.1 Model 1

Fig. 2 Key element plot of three key sequences with different
initial value of parameter a of proposed algorithm Model 1

The performance of the proposed key generation
algorithms Model 1 and Model 2 were evaluated by
simulation using Matlab software. The key generation
algorithm of Model 1 does not meet the randomness test as
in Fig.1, indicated by similar pattern of the three generated
key sequences. By varying the value of parameter a with
19 (Key1), 20 (Key2), and 21(Key3), the three key
sequences for up to 10 Bytes length have similar plot of key
elements and this means that the key sequences are not

random. Due to the unsatisfactory result of randomness of
proposed Model 1 algorithm, we then proposed Model 2
algorithm.

5.2 Model 2

The key generation simulation used the Algorithm
2 by varying the parameters i.e. the first number ((),
second number (*), and the key length (key size) (.) and
let the modulus number (/) be remains in 256, as the
maximum value of alphabet characters. In this simulation,
we measured the key generation speed and randomness
level, and compared with other algorithm.

5.3 Key generation speed

For measuring the speed of key generation, 1000
(one thousand) key sequences were generated. Each key
sequence was then recorded at the start and the end time to
get the processing time (>4#4?ℎ	A4BC	 − 	?ADEA	A4BC), then
looked for the average processing time by summing up all
processing time and then divided by 1000. We can see on
Fig.2 the time it took to generate key sequences of varying
key length sizes with the same initial parameter.

It showed that the key generation time increases
along with the increase of the key length. However, the
proposed Model 1 algorithm has the fastest processing time
among all, while the proposed Model 2 has the lowest
processing time in certain time but still has a relatively
same processing time to the original Fibonacci algorithm.
However, this can be explained as a consequence of using
more functions in the proposed algorithm Model 2 than the
number of functions in the Model 1 and the original
Fibonacci. The use of more functions is intended to support
the randomness of the generated key sequences. The
increase in key length size is not linear with increasing
generation time, since the ratio between the two is
relatively decreasing as the key length increases.

Fig. 3 Comparison of key generation processing time (ms) for
varying key length (byte) Figure 2: Key element plot of three key sequences with

di�erent initial value of parameter a of proposed algo-
rithm Model 1

5 Results and Discussion

5.1 Model 1

The performance of the proposed key generation algo-
rithms Model 1 and Model 2 were evaluated by simulation
using Matlab software. The key generation algorithm of
Model 1 does not meet the randomness test as in Fig-
ure 1, indicated by similar pattern of the three generated
key sequences. By varying the value of parameter a with
19 (Key1), 20 (Key2), and 21(Key3), the three key se-
quences for up to 10 Bytes length have similar plot of key
elements and this means that the key sequences are not
random. Due to the unsatisfactory result of randomness
of proposed Model 1 algorithm, we then proposed Model 2
algorithm.

5.2 Model 2

The key generation simulation used the Algorithm 2 by
varying the parameters i.e. the �rst number (a), second
number (b), and the key length (key size) (n) and let the
modulus number (c) be remains in 256, as the maximum
value of alphabet characters. In this simulation, we mea-
sured the key generation speed and randomness level, and
compared with other algorithm.

5.3 Key Generation Speed

For measuring the speed of key generation, 1000 (one
thousand) key sequences were generated. Each key se-
quence was then recorded at the start and the end time
to get the processing time (�nish time - start time), then
looked for the average processing time by summing up all
processing time and then divided by 1000. We can see
on Figure 2 the time it took to generate key sequences of

International Journal of Network Security, Vol.21, No.2, PP.250-258, Mar. 2019 (DOI: 10.6633/IJNS.201903_21(2).09) 254

Table 2: Di�erent operations among �bonacci-based algorithms

Original Fibonacci Modi�ed Fibonacci Model 1 Modi�ed Fibonacci Model 2

U1 = a U1 = mod (a, c) U1 = mod (a ∗ b− a, d)
U2 = b U2 = mod (b, c) U2 = mod (a ∗ b− b, d)
Ui = Ui−1 + Ui−2 Ui = mod (Ui−1 + Ui−2, c) Ui = mod (Ui−1 + Ui−2 + 3 ∗ i, d)

International Journal of Network Security, Vol. xxx, No.xx, PP.xxx-xxx, xxx. 20xx
Algorithm 2: Key Generation (Model 2)

1 //Input parameters: a, b, n, d;
2 //Derive the 1st element of the key
3 K(1)ß mod(a*b-a,d);
4 //Derive the 2nd element of the key
5 K(2)ß mod(a*b-b,d);
6 //Derive the 3rd to nth element of the key
7 For i from 3 to n
8 K(i)ß mod(K(i-1)+K(i-2)+3*i,d);
9 Next i
10 //Output the key sequence, K

Table 2 Different operations among Fibonacci-based algorithms

Original
Fibonacci

Modified Fibonacci
Model 1

Modified Fibonacci
Model 2

:' 	= 	(:' = 	;</((, %) :'
= 	;</((∗ * − (, /)

:) 	= 	* :) 	= 	;</(*, %) :) 	
= 	;</((∗ * − *, /)

:+
= :+='
+ :+=)

:+
= 	;</(:+='
+ :+=), %)

:+
= 	;</(:+=' + :+=)
+ 9 ∗ +, /)

The use of ∗ *	 − 	(, ∗ * − 	*, and 9 ∗ + in Algorithm 2 is
intended to satisfy the randomness test and long periodicity
of the generated key sequences as the requirements of good
key as stated by Shannon [34].

The difference of operations among the original
Fibonacci, modified Fibonacci Model 1, and Model 2 is
presented in Table 2.

5 RESULTS AND DISCUSSION

5.1 Model 1

Fig. 2 Key element plot of three key sequences with different
initial value of parameter a of proposed algorithm Model 1

The performance of the proposed key generation
algorithms Model 1 and Model 2 were evaluated by
simulation using Matlab software. The key generation
algorithm of Model 1 does not meet the randomness test as
in Fig.1, indicated by similar pattern of the three generated
key sequences. By varying the value of parameter a with
19 (Key1), 20 (Key2), and 21(Key3), the three key
sequences for up to 10 Bytes length have similar plot of key
elements and this means that the key sequences are not

random. Due to the unsatisfactory result of randomness of
proposed Model 1 algorithm, we then proposed Model 2
algorithm.

5.2 Model 2

The key generation simulation used the Algorithm
2 by varying the parameters i.e. the first number ((),
second number (*), and the key length (key size) (.) and
let the modulus number (/) be remains in 256, as the
maximum value of alphabet characters. In this simulation,
we measured the key generation speed and randomness
level, and compared with other algorithm.

5.3 Key generation speed

For measuring the speed of key generation, 1000
(one thousand) key sequences were generated. Each key
sequence was then recorded at the start and the end time to
get the processing time (>4#4?ℎ	A4BC	 − 	?ADEA	A4BC), then
looked for the average processing time by summing up all
processing time and then divided by 1000. We can see on
Fig.2 the time it took to generate key sequences of varying
key length sizes with the same initial parameter.

It showed that the key generation time increases
along with the increase of the key length. However, the
proposed Model 1 algorithm has the fastest processing time
among all, while the proposed Model 2 has the lowest
processing time in certain time but still has a relatively
same processing time to the original Fibonacci algorithm.
However, this can be explained as a consequence of using
more functions in the proposed algorithm Model 2 than the
number of functions in the Model 1 and the original
Fibonacci. The use of more functions is intended to support
the randomness of the generated key sequences. The
increase in key length size is not linear with increasing
generation time, since the ratio between the two is
relatively decreasing as the key length increases.

Fig. 3 Comparison of key generation processing time (ms) for
varying key length (byte) Figure 3: Comparison of key generation processing time

(ms) for varying key length (byte)

varying key length sizes with the same initial parameter.
It showed that the key generation time increases along

with the increase of the key length. However, the pro-
posed Model 1 algorithm has the fastest processing time
among all, while the proposed Model 2 has the lowest
processing time in certain time but still has a relatively
same processing time to the original Fibonacci algorithm.
However, this can be explained as a consequence of using
more functions in the proposed algorithm Model 2 than
the number of functions in the Model 1 and the origi-
nal Fibonacci. The use of more functions is intended to
support the randomness of the generated key sequences.
The increase in key length size is not linear with increas-
ing generation time, since the ratio between the two is
relatively decreasing as the key length increases.

5.4 Randomness of Key Sequence

Randomness tests are involved in a measuremnet to ana-
lyze the distribution of a set of data to see if it is uncorre-
lated or random. To test the randomness of the generated
key sequences, we have simulated key generation by vary-
ing the value of variable a, i.e. 19, 219, 119 for Key 1,
Key 2, and Key 3, as given in Figure 3. It appears that
all the key sequences have di�erent and irregular patterns
indicating that all of the key sequences are uncorrelated
or random.

By varying only the parameter values b from 119 to 124,
we generated six key sequences and obtained their plot of
key autocorrelation values as shown in Figure 4. The au-

International Journal of Network Security, Vol. xxx, No.xx, PP.xxx-xxx, xxx. 20xx

Fig. 4 Plot of key elements of three key sequences of 64 Bytes

with different value of parameter a: 19 (Key1), 219 (Key2), and
119 (Key3) of the proposed algorithm Model 2

5.4 Randomness of key sequence

Randomness tests are involved in a measuremnet to
analyze the distribution of a set of data to see if it is
uncorrelated or random. To test the randomness of the
generated key sequences, we have simulated key
generation by varying the value of variable (, i.e. 19, 219,
119 for Key1, Key2, and Key3, as given in Fig. 3. It appears
that all the key sequences have different and irregular
patterns indicating that all of the key sequences are
uncorrelated or random.

By varying only the parameter values b from 119 to
124, we generated six key sequences and obtained their plot
of key autocorrelation values as shown in Fig. 4. The
autocorrelation function (ACF), Rk, is calculated using the
equation (1) described in [52], when given a measurement
of the variables F1, F2,	..., F#	 on	I1, I2, . . . , I#, by
shifting (lag) of J.

 (1)

Fig. 5 Plot of autocorrelation value of 64 Byte key sequences
with different value of parameter b generated by the proposed

Model 2 algorithm

As shown in Fig. 4, the autocorrelation value of all
64-Byte key sequences with the defined lags of 1 to 20 is
in the range between the upper boundary (0.2) and the
lower boundary (-0.2) indicating that all of the key
sequences are uncorrelated or random. The autocorrelation
value for lags of 0 is 1 which means that the two compared
key sequences are not random, since there is no key
element shift (lag = 0) so there is no difference between the
two key sequences. By using Pearson's correlation test, and
varying the parameter of b, we have simulated the key
generation for 200 key sequences and yielded the
correlation coefficient between two key sequences as in
Table 3.

Table 3 Correlation test between two key sequences generated
by the proposed Model 2 algorithm

 Correlation between 2 key sequences

 K1, K2 K2, K3 K3, K4 K4, K5 K5, K6
Pearson
Coefficient -0.117 -0.085 -0.080 0.078 -0.222
Significa-
nce test 0.535 0.653 0.673 0.681 0.237

Result Pass Pass Pass Pass Pass

 Correlation between 2 key sequences

 K6, K7 K7, K8 K8, K9 K9,K10 K10,K1
Pearson
Coefficient -0.062 -0.157 0.056 -0.418 0.050
Significa-
nce test 0.744 0.406 0.765 0.022 0.790

Result Pass Pass Pass Pass Pass

The Pearson correlation is calculated using equation
(2),

 (2)

where EK, I, F, X̄, Ȳ, i, n are Pearson correlation, value of
variable L, value of variable M, mean value of variable L,
mean value of variable M, nth iteration, and number of
elements.

Fig. 6 Comparison of key element plot among three key

sequences generated by (a) proposed algorithm (b) Raphael’s
algorithm

N-k
(Yi-Y)(Yi+k-Y)

i=1R =k N
(Yi-Y)

i=1
2

å

å

n
(Xi - X)(Yi - Y)

i=1rP =
n
(Xi -X) (Yi -Y)I=1

2 2

å

å

Figure 4: Plot of key elements of three key sequences of
64 Bytes with di�erent value of parameter a: 19 (Key1),
219 (Key2), and 119 (Key3) of the proposed algorithm
Model 2

tocorrelation function (ACF), Rk, is calculated using the
Equation (1) described in [52], when given a measurement
of the variables Y1, Y2, ..., Yn on X1, X2, ..., Xn, by shifting
(lag) of k.

Rk =

∑N−k
i=1

(
Yi − Y

) (
Yi+k − Y

)∑N
i=1

(
Yi − Y

)2 (1)

As shown in Figure 4, the autocorrelation value of all
64-Byte key sequences with the de�ned lags of 1 to 20 is
in the range between the upper boundary (0.2) and the
lower boundary (-0.2) indicating that all of the key se-
quences are uncorrelated or random. The autocorrelation
value for lags of 0 is 1 which means that the two com-
pared key sequences are not random, since there is no key
element shift (lag = 0) so there is no di�erence between
the two key sequences. By using Pearson's correlation
test, and varying the parameter of b, we have simulated
the key generation for 200 key sequences and yielded the
correlation coe�cient between two key sequences as in
Table 3.

The Pearson correlation is calculated using Equa-
tion (2),

rP =

∑N−k
i=1

(
Xi −X

) (
Yi+k − Y

)∑N
i=1

(
Xi −X

)2 (
Yi − Y

)2 (2)

International Journal of Network Security, Vol.21, No.2, PP.250-258, Mar. 2019 (DOI: 10.6633/IJNS.201903_21(2).09) 255

Table 3: Correlation test (Pearson coe�cient and signif-
icant test) between two key sequences generated by the
proposed Model 2 algorithm

Correlation between 2 key sequences

K1,K2 K2,K3 K3,K4 K4,K5 K5,K6

Prson Coef -0.117 -0.085 -0.080 0.078 -0.222

Sig. test 0.535 0.653 0.673 0.681 0.237

Result Pass Pass Pass Pass Pass

Correlation between 2 key sequences

K6,K7 K7,K8 K8,K9 K9,K10 K10,K1

Prson Coef -0.062 -0.157 0.056 -0.418 -0.050

Sig. test 0.744 0.406 0.765 0.022 0.790

Result Pass Pass Pass Pass Pass

where rP , X, Y , (X), Y , i, n are Pearson correlation,
value of variable x, value of variable y, mean value of
variable x, mean value of variable y, nth iteration, and
number of elements.

A comparison of the randomness of several key se-
quences between the proposed algorithm and the Raphael
algorithm is given in Figure 5, Figure 6, and Table 4. In
Figure 5, it can be seen that the plot of key elements
between the three key sets generated by the proposed al-
gorithm is more random than that generated by Raphael's
algorithm which yields relatively similar plots of key ele-
ments.

As shown in Figure 6, by varying only the value of pa-
rameter b, the correlation coe�cient plot and the P-value
of the key sequence generated by the proposed algorithm
indicate a random sequence of keys because the value of
P-value in average is greater than the correlation coe�-
cient. While in contrast, Raphael's algorithm produces
a key sequence that has P-value and a competing corre-
lation coe�cient, indicating that the key sequence has a
correlation or not random. Further, as shown in Table 4,
the comparison of two adjacent key sequences using the
Spearman correlation test, indicating that the proposed
algorithm passed all randomness tests, while the Raphael
algorithm failed on all random tests. All of the above
comparisons show the advantages of proposed Model 2
key generation algorithm over Raphael's algorithm.

Table 4: Correlation comparison of two adjacent key se-
quences of the proposed algorithm

Adj.Key
Proposed algorithm Raphael's algorithm

Rho Pval Test Rho Pval Test

K1,K2 -0.118 0.5356 Pass 0.253 0.178 Fail

K2,K3 -0.085 0.6533 Pass 0.453 0.012 Fail

K3,K4 -0.080 0.6739 Pass 0.375 0.041 Fail

K4,K5 0.078 0.6816 Pass 0.005 0.980 Pass

K5,K6 -0.222 0.2375 Pass 0.484 0.007 Fail

K6,K7 -0.062 0.7445 Pass 0.252 0.180 Fail

K7,K8 -0.157 0.4064 Pass 0.234 0.214 Fail

K8,K9 0.057 0.7659 Pass 0.390 0.033 Fail

K9,K10 -0.419 0.0222 Pass 0.103 0.588 Pass

K10,K1 0.051 0.7901 Pass 0.002 0.002 Fail

International Journal of Network Security, Vol. xxx, No.xx, PP.xxx-xxx, xxx. 20xx

Fig. 4 Plot of key elements of three key sequences of 64 Bytes

with different value of parameter a: 19 (Key1), 219 (Key2), and
119 (Key3) of the proposed algorithm Model 2

5.4 Randomness of key sequence

Randomness tests are involved in a measuremnet to
analyze the distribution of a set of data to see if it is
uncorrelated or random. To test the randomness of the
generated key sequences, we have simulated key
generation by varying the value of variable (, i.e. 19, 219,
119 for Key1, Key2, and Key3, as given in Fig. 3. It appears
that all the key sequences have different and irregular
patterns indicating that all of the key sequences are
uncorrelated or random.

By varying only the parameter values b from 119 to
124, we generated six key sequences and obtained their plot
of key autocorrelation values as shown in Fig. 4. The
autocorrelation function (ACF), Rk, is calculated using the
equation (1) described in [52], when given a measurement
of the variables F1, F2,	..., F#	 on	I1, I2, . . . , I#, by
shifting (lag) of J.

 (1)

Fig. 5 Plot of autocorrelation value of 64 Byte key sequences
with different value of parameter b generated by the proposed

Model 2 algorithm

As shown in Fig. 4, the autocorrelation value of all
64-Byte key sequences with the defined lags of 1 to 20 is
in the range between the upper boundary (0.2) and the
lower boundary (-0.2) indicating that all of the key
sequences are uncorrelated or random. The autocorrelation
value for lags of 0 is 1 which means that the two compared
key sequences are not random, since there is no key
element shift (lag = 0) so there is no difference between the
two key sequences. By using Pearson's correlation test, and
varying the parameter of b, we have simulated the key
generation for 200 key sequences and yielded the
correlation coefficient between two key sequences as in
Table 3.

Table 3 Correlation test between two key sequences generated
by the proposed Model 2 algorithm

 Correlation between 2 key sequences

 K1, K2 K2, K3 K3, K4 K4, K5 K5, K6
Pearson
Coefficient -0.117 -0.085 -0.080 0.078 -0.222
Significa-
nce test 0.535 0.653 0.673 0.681 0.237

Result Pass Pass Pass Pass Pass

 Correlation between 2 key sequences

 K6, K7 K7, K8 K8, K9 K9,K10 K10,K1
Pearson
Coefficient -0.062 -0.157 0.056 -0.418 0.050
Significa-
nce test 0.744 0.406 0.765 0.022 0.790

Result Pass Pass Pass Pass Pass

The Pearson correlation is calculated using equation
(2),

 (2)

where EK, I, F, X̄, Ȳ, i, n are Pearson correlation, value of
variable L, value of variable M, mean value of variable L,
mean value of variable M, nth iteration, and number of
elements.

Fig. 6 Comparison of key element plot among three key

sequences generated by (a) proposed algorithm (b) Raphael’s
algorithm

N-k
(Yi-Y)(Yi+k-Y)

i=1R =k N
(Yi-Y)

i=1
2

å

å

n
(Xi - X)(Yi - Y)

i=1rP =
n
(Xi -X) (Yi -Y)I=1

2 2

å

å

Figure 5: Plot of autocorrelation value of 64 Byte key
sequences with di�erent value of parameter b generated
by the proposed Model 2 algorithm

International Journal of Network Security, Vol. xxx, No.xx, PP.xxx-xxx, xxx. 20xx

Fig. 4 Plot of key elements of three key sequences of 64 Bytes

with different value of parameter a: 19 (Key1), 219 (Key2), and
119 (Key3) of the proposed algorithm Model 2

5.4 Randomness of key sequence

Randomness tests are involved in a measuremnet to
analyze the distribution of a set of data to see if it is
uncorrelated or random. To test the randomness of the
generated key sequences, we have simulated key
generation by varying the value of variable (, i.e. 19, 219,
119 for Key1, Key2, and Key3, as given in Fig. 3. It appears
that all the key sequences have different and irregular
patterns indicating that all of the key sequences are
uncorrelated or random.

By varying only the parameter values b from 119 to
124, we generated six key sequences and obtained their plot
of key autocorrelation values as shown in Fig. 4. The
autocorrelation function (ACF), Rk, is calculated using the
equation (1) described in [52], when given a measurement
of the variables F1, F2,	..., F#	 on	I1, I2, . . . , I#, by
shifting (lag) of J.

 (1)

Fig. 5 Plot of autocorrelation value of 64 Byte key sequences
with different value of parameter b generated by the proposed

Model 2 algorithm

As shown in Fig. 4, the autocorrelation value of all
64-Byte key sequences with the defined lags of 1 to 20 is
in the range between the upper boundary (0.2) and the
lower boundary (-0.2) indicating that all of the key
sequences are uncorrelated or random. The autocorrelation
value for lags of 0 is 1 which means that the two compared
key sequences are not random, since there is no key
element shift (lag = 0) so there is no difference between the
two key sequences. By using Pearson's correlation test, and
varying the parameter of b, we have simulated the key
generation for 200 key sequences and yielded the
correlation coefficient between two key sequences as in
Table 3.

Table 3 Correlation test between two key sequences generated
by the proposed Model 2 algorithm

 Correlation between 2 key sequences

 K1, K2 K2, K3 K3, K4 K4, K5 K5, K6
Pearson
Coefficient -0.117 -0.085 -0.080 0.078 -0.222
Significa-
nce test 0.535 0.653 0.673 0.681 0.237

Result Pass Pass Pass Pass Pass

 Correlation between 2 key sequences

 K6, K7 K7, K8 K8, K9 K9,K10 K10,K1
Pearson
Coefficient -0.062 -0.157 0.056 -0.418 0.050
Significa-
nce test 0.744 0.406 0.765 0.022 0.790

Result Pass Pass Pass Pass Pass

The Pearson correlation is calculated using equation
(2),

 (2)

where EK, I, F, X̄, Ȳ, i, n are Pearson correlation, value of
variable L, value of variable M, mean value of variable L,
mean value of variable M, nth iteration, and number of
elements.

Fig. 6 Comparison of key element plot among three key

sequences generated by (a) proposed algorithm (b) Raphael’s
algorithm

N-k
(Yi-Y)(Yi+k-Y)

i=1R =k N
(Yi-Y)

i=1
2

å

å

n
(Xi - X)(Yi - Y)

i=1rP =
n
(Xi -X) (Yi -Y)I=1

2 2

å

å

Figure 6: Comparison of key element plot among three
key sequences generated by (a) proposed algorithm (b)
Raphael's algorithm

International Journal of Network Security, Vol.21, No.2, PP.250-258, Mar. 2019 (DOI: 10.6633/IJNS.201903_21(2).09) 256

5.5 The Periodicity of Key Sequences

Suppose a given key sequence A is 1 3 4 6 5 8 1 3 4 6 5 8 1
3 4 6 5 8 . . . Then the period of key sequence A is 6 (the
number of elements from 1 3 4 6 5 8 before experiencing
the exact same loop). The longer the period, the better
a key sequence. Since the proposed algorithm uses four
parameters a, b, d, and n, and there is a scrambling factor
that depends on the process iteration, the key sequences
generated by the proposed algorithm has a long period
equal to n (the key length to be generated, determined by
the user). This character is called One Time Key or One
Time Pad. Meanwhile, the algorithm used by Raphael et
al. [23] also satis�es a long period, but since it does not
use the modulus function, the resulting key sequence has
a regular pattern of ascending or descending. So it does
not meet the randomness test and it requires a larger
memory to sum the number that will enlarge as the key
length increases.

5.6 Complexity of Algorithm

In the Key Generation algorithm Model 1 (see Algorithm
1), there are 10 Line of Codes (LOCs). However, LOCs
beginning with a double forward slash (//) are only de-
scriptions and not executed, and hence these parts are
ignored and not counted in the analysis of the algorith-
mic complexity. LOC 3, 5, 7-9 are the processing part of
the algorithm that will be calculated on its complexity.
In LOC 3, there are 2 instructions i.e. mod (a, d) and
assignment (=) of the variable K(1). In LOC 5, similar
to LOC 3, there are 2 instructions, i.e. mod (b, c) and
assignment (=) of the variable K(2). LOC 7-9 is an in-
cremental loop as many as (n + 1 − 3) or (n − 2) times
with variable i as the counter. The assignment instruction
(i = 3) is executed before the loop.

Inside the loop, there are 1 comparison instruction (i <
n+1) and 1 incremental counter (i++). In addition, there
are also an assignment operation (K(i) = mod (K(i −
1)+K(i−2), c)) involving 1 sum operation (+), 1 modulus
operation (mod) and 1 assignment (=) of the variable
K(i). Thus, in LOC 7-9 there are 5 instructions repeated
(n − 2) times and 1 non-repeated instruction. Thus, in
detail, the number of instructions in LOC 3 = 2, LOC 5
= 2, and LOC 7-9 = 5(n − 2) + 1. Thus the complexity
of the Algorithm 1 is 5(n− 2) + 1 + 2+ 2 or 5(n− 2) + 5
or 5n− 5 or O(n).

In the Key Generation algorithm Model 2 (see Algo-
rithm 2), there are 10 LOCs. LOCs beginning with double
forward slash are ignored and not counted in the analy-
sis of the algorithmic complexity. LOC 3, 5, 7-9 is the
processing part of the algorithm that will be calculated
on its complexity. In LOC 3, there are 4 instructions i.e.
multiplication (*), subtraction (-), modulus (mod) and
assignment (=) of the variable K(1). In LOC 5, similar
to LOC 3, there are 4 instructions, i.e. multiplication (*),
subtraction (-), modulus (mod) and assignment (=) of the
variable K(2). LOC 7-9 is an incremental loop as many

International Journal of Network Security, Vol. xxx, No.xx, PP.xxx-xxx, xxx. 20xx
A comparison of the randomness of several key

sequences between the proposed algorithm and the Raphael
algorithm is given in Fig.5, Fig.6, and Table 4. In Fig. 5, it
can be seen that the plot of key elements between the three
key sets generated by the proposed algorithm is more
random than that generated by Raphael's algorithm which
yields relatively similar plots of key elements.

Fig. 7 Comparison of correlation coefficient with different value

of parameter b

As shown in Fig.6, by varying only the value of
parameter b, the correlation coefficient plot and the P-value
of the key sequence generated by the proposed algorithm
indicate a random sequence of keys because the value of P-
value in average is greater than the correlation coefficient.
While in contrast, Raphael's algorithm produces a key
sequence that has P-value and a competing correlation
coefficient, indicating that the key sequence has a
correlation or not random. Further, as shown in Table 4, the
comparison of two adjacent key sequences using the
Spearman correlation test, indicating that the proposed
algorithm passed all randomness tests, while the Raphael
algorithm failed on all random tests. All of the above
comparisons show the advantages of proposed Model 2 key
generation algorithm over Raphael’s algorithm.

Table 4 Comparison of correlation of two key sequences of the

proposed algorithm

Adjacent
Keys

Proposed algorithm Raphael’s algorithm

Rho Pval Result Rho Pval Result

K1, K2 -0.118 0.5356 Pass 0.253 0.178 Fail

K2, K3 -0.085 0.6533 Pass 0.453 0.012 Fail

K3, K4 -0.080 0.6739 Pass 0.375 0.041 Fail

K4, K5 0.078 0.6816 Pass 0.005 0.980 Pass

K5, K6 -0.222 0.2375 Pass 0.484 0.007 Fail

K6, K7 -0.062 0.7445 Pass 0.252 0.180 Fail

K7, K8 -0.157 0.4064 Pass 0.234 0.214 Fail

K8, K9 0.057 0.7659 Pass 0.390 0.033 Fail

K9,K10 -0.419 0.0222 Pass 0.103 0.588 Pass

K10, K1 0.051 0.7901 Pass 0.535 0.002 Fail

5.5 The periodicity of key sequences

Suppose a given key sequence A is 1 3 4 6 5 8 1 3 4
6 5 8 1 3 4 6 5 8 .… Then the period of key sequence A is
6 (the number of elements from 1 3 4 6 5 8 before
experiencing the exact same loop). The longer the period,
the better a key sequence. Since the proposed algorithm
uses four parameters a, b, d, and n, and there is a
scrambling factor that depends on the process iteration, the
key sequences generated by the proposed algorithm has a
long period equal to n (the key length to be generated,
determined by the user) . This character is called One Time
Key or One Time Pad. Meanwhile, the algorithm used by
Raphael et al.[35] also satisfies a long period, but since it
does not use the modulus function, the resulting key
sequence has a regular pattern of ascending or descending.
So it does not meet the randomness test and it requires a
larger memory to sum the number that will enlarge as the
key length increases.

5.6 Complexity of algorithm

In the Key Generation algorithm Model 1 (see
Algorithm1), there are 10 Line of Codes (LOCs).
However, LOCs beginning with a double forward slash (//)
are only descriptions and not executed, and hence these
parts are ignored and not counted in the analysis of the
algorithmic complexity. LOC 3, 5, 7-9 are the processing
part of the algorithm that will be calculated on its
complexity. In LOC 3, there are 2 instructions i.e.
BNO	(D, O) and assignment (=) of the variable P(1). In
LOC 5, similar to LOC 3, there are 2 instructions, i.e.
BNO	(Q, R) and assignment (=) of the variable P(2). LOC
7-9 is an incremental loop as many as (# + 1 − 3) or (# −
2)	times with variable 4 as the counter. The assignment
instruction (4	 = 	3) is executed before the loop.

Inside the loop, there are 1 comparison instruction
(4	 < #	 + 	1) and 1 incremental counter	(4	 + +). In
addition, there are also an assignment operation (P(4) 	=
	BNO	(P	(4 − 1) + P	(4 − 2), R)) involving 1 sum
operation (+), 1 modulus operation (mod) and 1 assignment
(=) of the variable P(4). Thus, in LOC 7-9 there are 5
instructions repeated (# − 2) times and 1 non-repeated
instruction. Thus, in detail, the number of instructions in
LOC 3 = 2, LOC 5 = 2, and LOC 7-9 = 5	(# − 2) 	+ 1.
Thus the complexity of the Algorithm 1 is 5	(# − 2) 	+
	1	 + 	2	 + 	2 or 5(# − 2)	+ 5 or 5# − 5	or !(#).

In the Key Generation algorithm Model 2 (see
Algorithm 2), there are 10 LOCs. LOCs beginning with
double forward slash are ignored and not counted in the
analysis of the algorithmic complexity. LOC 3, 5, 7-9 is the
processing part of the algorithm that will be calculated on
its complexity. In LOC 3, there are 4 instructions i.e.
multiplication (*), subtraction (-), modulus (mod) and
assignment (=) of the variable P(1). In LOC 5, similar to
LOC 3, there are 4 instructions, i.e. multiplication (*),
subtraction (-), modulus (mod) and assignment (=) of the
variable P(2). LOC 7-9 is an incremental loop as many as
(# + 1 − 3) or (# − 2) times with the variable 4 as the

Figure 7: Comparison of correlation coe�cient with dif-
ferent value of parameter b

as (n+ 1− 3) or (n− 2) times with the variable i as the
counter. The assignment instruction (i = 3) is executed
before the loop.

Inside the loop, there are 1 comparison instruction
(i < n + 1) and 1 incremental counter (i + +). In ad-
dition, there are also an assignment operation of (K(i) =
mod (K(i− 1) +K(i− 2) + 3 ∗ i, d)) involving 2 addition
operations (+), 1 multiplication operation (*), 1 modu-
lus operation (mod) and 1 assignment operation (=) of
the variable K(i). Thus, in LOC 5-7, there are 7 instruc-
tions repeated (n-2) times and 1 non-repeated instruction.
Thus, in detail, the number of instructions in LOC3 = 4,
LOC5 = 4, and LOC 7-9 = 7(n− 2) + 1. Thus the com-
plexity of the Model 2 algorithm is 7(n − 2) + 1 + 4 + 4
or 7(n− 2) + 9 or 7n− 5 or O(n).

From the above analysis, it appears that both mod-
els of the proposed key generation algorithms have the
same algorithmic complexity that is linear complexity ex-
pressed by O(n). However, only the Model 2 satis�es the
randomness test.

6 Conclusions

We have utilized the Fibonacci sequence in construct-
ing two proposed models of key generation algorithm,
Model 1 (without scrambling factor) and Model 2 (with
scrambling factor). The modi�cation by adding a scram-
bling factor is intended to generate key sequences that
satisfy randomness tests and long periodicity which have
not been used in measuring the existing key algorithms
found in recent literature. Simulation results of the two
models indicate that the key generation time increases
along with the increase of the key length, but the ratio
between key generation time and key length relatively de-
creases. The randomness test results indicate that the key
sequences generated by Model 1 do not meet the random-
ness test despite having relatively fast computation time.

International Journal of Network Security, Vol.21, No.2, PP.250-258, Mar. 2019 (DOI: 10.6633/IJNS.201903_21(2).09) 257

Model 2 produces key sequences with accepted autocor-
relation value (accepted random value) since it is always
in the range between the upper boundary (0.2) and the
lower boundary (-0.2). The result of algorithmic complex-
ity analysis showed that both of key generation algorithms
have a similar linear algorithmic complexity, expressed by
O(n). However, considering all the performance measure-
ment used in the present work, the proposed key gener-
ation algorithm Model 2 (Called hereinafter scrambled
�bonacci) is the best compared to the proposed Model 1
and original Fibonacci-based Raphael algorithm. The fu-
ture work of this research would be to implement the pro-
posed Scrambled Fibonacci-based key algorithm in an en-
cryption/decryption application in constrained devices to
support security and privacy preservation in the Internet
of Things.

References

[1] D. S. AbdElminaam, �Improving the security of cloud
computing by building new hybrid cryptography al-
gorithms,� International Journal of Electronics and
Information Engineering, vol. 8, no. 1, pp. 40�48,
2018.

[2] Y. M. Al-Moliki, M. T. Alresheedi, and Y. Al-Harthi,
�Secret key generation protocol for optical OFDM
systems in indoor VLC networks,� IEEE Photonics
Journal, vol. 9, no. 2, pp. 1�15, 2017.

[3] S. Arasteh, S. F. Aghili, and H. Mala, �A new
lightweight authentication and key agreement proto-
col for internet of things,� in 13th International Ira-
nian Society of Cryptology Conference on Informa-
tion Security and Cryptology (ISCISC'16), pp. 52�
59, 2016.

[4] M. Azrour, Y. Farhaoui, and M. Ouanan, �A new
secure authentication and key exchange protocol for
session initiation protocol using smart card,� Inter-
national Journal of Network Security, vol. 19, no. 6,
pp. 870�879, 2017.

[5] S. Baksi, J. Snoap, and D. C. Popescu, �Secret key
generation using one-bit quantized channel state in-
formation,� in IEEE Wireless Communications and
Networking Conference (WCNC'17), pp. 1�6, 2017.

[6] M. Bayat, M. Aref, �An attribute based key agree-
ment protocol resilient to KCI attack," International
Journal of Electronics and Information Engineering,
vol. 2, no. 1, pp. 10�20, 2015.

[7] T. Y. Chang, W. P. Yang, M. S. Hwang, �Simple au-
thenticated key agreement and protected password
change protocol", Computers & Mathematics with
Applications, vol. 49, pp. 703�714, 2005.

[8] S. F. Chiou, M. S. Hwang, and S. K. Chong, �A sim-
ple and secure key agreement protocol to integrate
a key distribution procedure into the DSS,� Interna-
tional Journal of Advancements in Computing Tech-
nology (IJACT'12), vol. 4, no. 19, pp. 529�535, 2012.

[9] K. Eguchi, K. Abe, M. Fujimoto, D. Yan, and
I. Oota, �The development of a negative single-
input/multi-output driver using a �bonacci-like con-
verter,� in 13th International Conference on Elec-
trical Engineering/Electronics, Computer, Telecom-
munications and Information Technology (ECTI-
CON'16), pp. 1�4, 2016.

[10] S. M. Farooq and S. H. S. Basha, �A study on �-
bonacci series generation algorithms,� in 3rd Interna-
tional Conference on Advanced Computing and Com-
munication Systems (ICACCS'16), pp. 1�5, 2016.

[11] S. Hossain, A. Goh, C. H. Sin, and L. K. Win, �Gen-
eration of one-time keys for single line authentica-
tion,� in 14th Annual Conference on Privacy, Secu-
rity and Trust (PST'16), pp. 686�689, 2016.

[12] C. H. Hsu, H. S. Dang, and T. A. T. Nguyen,
�The application of �bonacci sequence and taguchi
method for investigating the design parameters on
spiral micro-channel,� in International Conference
on Applied System Innovation (ICASI'16), pp. 1�4,
2016.

[13] Q. Jiang, S. Zeadally, J. Ma, and D. He, �Lightweight
three-factor authentication and key agreement proto-
col for internet-integrated wireless sensor networks,�
IEEE Access, vol. 5, pp. 3376�3392, 2017.

[14] N. Karimian, Z. Guo, M. Tehranipoor, and D. Forte,
�Highly reliable key generation from electrocardio-
gram,� IEEE Transactions on Biomedical Engineer-
ing, vol. 64, no. 6, pp. 1400�1411, 2017.

[15] M. Lavanya and V. Natarajan, �Lightweight key
agreement protocol for iot based on IKEv2,� Com-
puters & Electrical Engineering, vol. 64, pp. 580-594,
2017.

[16] C. C. Lee, M. S. Hwang, L. H. Li, �A new key au-
thentication scheme based on discrete logarithms",
Applied Mathematics and Computation, vol. 139, no.
2, pp. 343-349, July 2003.

[17] A. Lei, H. Cruickshank, Y. Cao, P. Asuquo, C. P. A.
Ogah, and Z. Sun, �Blockchain-based dynamic key
management for heterogeneous intelligent trans-
portation systems,� IEEE Internet of Things Jour-
nal, vol. 4, no. 6, pp. 1832�1843, 2017.

[18] C. T. Li, M. S. Hwang and Y. P. Chu, �An e�-
cient sensor-to-sensor authenticated path-key estab-
lishment scheme for secure communications in wire-
less sensor networks", International Journal of Inno-
vative Computing, Information and Control, vol. 5,
no. 8, pp. 2107-2124, Aug. 2009.

[19] I. C. Lin, M. S. Hwang, C. C. Chang, �A new
key assignment scheme for enforcing complicated ac-
cess control policies in hierarchy", Future Generation
Computer Systems, vol. 19, no. 4, pp. 457�462, May
2003.

[20] I. C. Lin, H. H. Ou, M. S. Hwang, �E�cient ac-
cess control and key management schemes for mobile
agents", Computer Standards & Interfaces, vol. 26,
no. 5, pp. 423�433, 2004.

International Journal of Network Security, Vol.21, No.2, PP.250-258, Mar. 2019 (DOI: 10.6633/IJNS.201903_21(2).09) 258

[21] L. Liu and Z. Cao, �Analysis of two con�dentiality-
preserving image search schemes based on additive
homomorphic encryption,� International Journal of
Electronics and Information Engineering, vol. 5,
no. 1, pp. 1�5, 2016.

[22] Z. Mahmood, H. Ning, and A. Ghafoor, �Lightweight
two-level session key management for end user au-
thentication in internet of things,� in IEEE Interna-
tional Conference on Internet of Things and IEEE
Green Computing and Communications and IEEE
Cyber, Physical and Social Computing and IEEE
Smart Data, pp. 323�327, 2016.

[23] A. J. Raphael and Dr. V. Sundaram, �Secured com-
munication through �bonacci numbers and unicode
symbols,� International Journal of Scienti�c and En-
gineering Research, vol. 3 no. 4, no. 4, pp. 1�5, 2012.

[24] L. Rosyidi and R. F. Sari, �A practical approach for
complexity analysis of autonomic internet of things
protocol algorithm,� in 19th International Sympo-
sium on Wireless Personal Multimedia Communica-
tions (WPMC'16), pp. 256�261, 2016.

[25] T. H. Sun and M. S. Hwang, �A hierarchical data ac-
cess and key management in cloud computing,� ICIC
Express Letters, vol. 6, no. 2, pp. 569�574, 2012.

[26] Y. Suryanto, Suryadi, and K. Ramli, �A secure and
robust image encryption based on chaotic permu-
tation multiple circular shrinking and expanding,�
Journal of Information Hiding and Multimedia Sig-
nal Processing-Ubiquitous International, vol. 7 no. 4,
pp. 697�713, 2016.

[27] N. Tavangaran, H. Boche, and R. F. Schaefer,
�Secret-key generation using compound sources and
one-way public communication,� IEEE Transactions
on Information Forensics and Security, vol. 12, no. 1,
pp. 227�241, 2017.

[28] C. D. T. Thai, J. Lee, and T. Q. S. Quek, �Physical-
layer secret key generation with colluding untrusted
relays,� IEEE Transactions on Wireless Communi-
cations, vol. 15, no. 2, pp. 1517�1530, 2016.

[29] P. Van Torre, Q. Van den Brande, J. Verhaevert,
J. Van�eteren, and H. Rogier, �Key generation based
on fast reciprocal channel estimation for body-worn
sensor nodes,� in 11th European Conference on An-
tennas and Propagation (EUCAP'17), pp. 293�297,
2017.

[30] K. Z. Turakulovich and Y. B. Karamatovich, �Com-
parative factors of key generation techniques,� in In-
ternational Conference on Information Science and
Communications Technologies (ICISCT'16), pp. 1�
3, 2016.

[31] I. Verma and S. Jain, �Biometric based key-
generation system for multimedia data security,�
in 3rd International Conference on Computing for
Sustainable Global Development (INDIACom'16),
pp. 864�869, 2016.

[32] P. Vijayakumar, M. Azees, A. Kannan, and L. Je-
gatha Deborah, �Dual authentication and key man-
agement techniques for secure data transmission in

vehicular ad hoc networks,� IEEE Transactions on
Intelligent Transportation Systems, vol. 17, no. 4,
no. 4, pp. 1015�1028, 2016.

[33] F. Wu, L. Xu, S. Kumari, X. Li, J. Shen, K. K. R.
Choo, M.Wazid, and A. K. Das, �An e�cient authen-
tication and key agreement scheme for multi-gateway
wireless sensor networks in iot deployment,� Jour-
nal of Network and Computer Applications, vol. 89,
no. Supplement C, pp. 72�85, 2017.

[34] S. Xiao, Y. Guo, K. Huang, and L. Jin, �High-rate
secret key generation aided by multiple relays for in-
ternet of things,� Electronics Letters, vol. 53, no. 17,
pp. 1198�1200, 2017.

[35] H. Zhang, Y. Liang, L. Lai, and S. Shamai Shitz,
�Multi-key generation over a cellular model with a
helper,� IEEE Transactions on Information Theory,
vol. 63, no. 6, pp. 3804�3822, 2017.

[36] J. Zhang, T. Q. Duong, A. Marshall, and R. Woods,
�Key generation from wireless channels: A review,�
IEEE Access, vol. 4, pp. 614�626, 2016.

[37] J. Zhang, B. He, T. Q. Duong, and R. Woods, �On
the key generation from correlated wireless chan-
nels,� IEEE Communications Letters, vol. 21, no. 4,
pp. 961�964, 2017.

Biography

Amiruddin Amiruddin, a lecturer at Sekolah Tinggi
Sandi Negara (STSN), Indonesia. He received Bachelor?s
degree in Informatics from Universitas Budi Luhur. He
received his Master?s in Information Technology from the
Faculty of Computer Science, Universitas Indonesia (UI).
He just received a Ph.D degree from the Electrical Engi-
neering Department, Faculty of Engineering, Universitas
Indonesia (UI).

Anak Agung Putri Ratna, a Senior Lecturer of Com-
puter Engineering at Electrical Engineering Department,
Faculty of Engineering, Universitas Indonesia (UI). She
graduated with a BSc in Electrical Engineering from UI, a
Master in Engineering from the Waseda University Japan,
and a Ph.D in Electrical Engineering from UI.

Riri Fitri Sari, a Professor of Computer Engineering at
the Electrical Engineering Department, Faculty of Engi-
neering, Universitas Indonesia (UI). She graduated with
a BSc in Electrical Engineering from UI, a Master in Hu-
man Resources Management from the Atmajaya Univer-
sity Jakarta and an MSc in Software Systems and Paral-
lel Processing from the Department of Computer Science,
University of She�eld, UK, funded by British Council
Chevening Award, and a Ph.D in Computer Networks
from the School of Computing, University of Leeds, UK.
Her current main teaching and research area includes
Computer Network, Internet of Things (IoT), Cloud Com-
puting, Vehicle Ad Hoc Networks, and ICT implementa-
tion.

