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Abstract

Cloud computing is a new paradigm of information tech-
nology and communication. Performing big and com-
plex computations in a context of cloud computing and
big data is highly appreciated today. Fully homomor-
phic encryption (FHE) is a powerful category of encryp-
tion schemes that allows working with the data in its en-
crypted form. It permits us to preserve confidentiality
of our sensible data and to benefit from cloud computing
powers. Currently, it has been demonstrated by many ex-
isting schemes that the theory is feasible but the efficiency
needs to be dramatically improved in order to make it us-
able for real applications. One subtle difficulty is how to
efficiently handle the noise. This article aims to introduce
an efficient fully homomorphic encryption scheme based
on a new mathematic structure that is noise free.

Keywords: Fully Homomorphic Encryption; Lipschitz In-
tegers; Probabilistic Transform; Quaternion

1 Introduction

Fully homomorphic encryption is a type of encryption
cryptosystems that support arbitrary computations on ci-
phertexts without ever needing to decrypt or reveal it. In
a context of cloud computing and distributed computa-
tion, this is a highly precious power. In fact, a signifi-
cant application of fully homomorphic encryption is to big
data and cloud computing. In these two situations, the
processed data often contains private information about
individuals or corporate secrets that would cause great
harm if they fell into the wrong hands. Generally, FHE
is used in outsourcing complex computations on sensitive
data stored in a cloud as it can be employed in specific ap-
plications for big data like secure search on encrypted dat
and private information retrieval. It was an open prob-
lem, conjectured by Rivest, Adleman and Dertozous [14]
in 1978, until the revolutionary work of Gentry in 2009 [8]
which opens the curtain for the study of fully homomor-
phic encryption. In his thesis, Gentry proposed the first

adequate fully homomorphic encryption scheme by ex-
ploiting properties of ideal lattices.

Gentry’s construction is based on his bootstrapping
theorem which provides that given a somewhat homomor-
phic encryption scheme (SWHE) that can evaluate homo-
morphically its own decryption circuit and an additional
NAND gate, we can pass to a ’leveled’ fully homomor-
phic encryption scheme and so obtain a FHE scheme by
assuming circular security. The purpose of using boot-
strapping technique is to allow refreshment of ciphertexts
and reduce noise after its growth.

Gentry’s construction is not a single algorithm but it
is considered as a framework that inspires cryptologists
to build new fully homomorphic encryption schemes [6,
9, 15, 17]. A FHE cryptosystem that uses Gentry’s boot-
strapping technique can be classified in the category of
noise-based fully homomorphic encryption schemes [2]. If
this class of cryptosystems has the advantage to be robust
and more secure, it has the drawback to be not efficient
in terms of runtime and ciphertext size. In several works
followed Gentry’s one, many techniques of noise man-
agement are invented to improve runtime efficiency and
to minimise ciphertext and key size’s (bootstrapping [8],
key switching, modulus switching [3], re-linearization [4],
flattening [10]), but the problematic of designing a prac-
tical and efficient fully homomorphic encryption scheme
remains the same until now.

In the literature, we can come up with a second cat-
egory of fully homomorphic encryption schemes called
noise-free based [2], which do not need a technique of
noise management to refresh ciphertexts. In a noise-free
fully homomorphic encryption scheme, one can do infin-
ity of operations on the same ciphertext without noise
growing. This class of encryption schemes is known to
be faster than the previous one, it involves simple oper-
ations to evaluate circuits on ciphertexts and do not re-
quire a noise management technique. However, it suffers
from security problems, because the majority of designed
schemes are cryptanalyzed today.

In this work, we will adopt the noise- free approach to
design a new and efficient fully homomorphic encryption
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scheme. We will try to overcome the problem of weak
security through using the ring of quaternions and intro-
ducing a new method of coding integers in the domain of
quaternions.

We propose a new noise-free fully homomorphic en-
cryption scheme that uses the ring of Lipschitz’s quater-
nions and permits computations on data encrypted un-
der a symmetric key; a new method of coding integers
(clear text) to Lipschitz’s integers and a new approach
to keep constant the free noise for any ciphertext after
any operation. We present also an implementation of our
fully homomorphic encryption scheme in JAVA program-
ing language, the obtained results constitute a concrete
proof and an effective demonstration to the performances
of our scheme.

Our Techniques and Results: We propose a new noise-
free fully homomorphic encryption scheme that uses
the ring of Lipschitz’s quaternions and permits com-
putations on data encrypted under a symmetric key;
a new method of coding integers (clear text) into Lip-
schitz quaternions and a new approach to keep con-
stant the free noise for any ciphertext and after any
operation. We present also an implementation of our
results in JAVA programing language.

2 Mathematical Background

2.1 Quaternionique Field H
A quaternion is a number in his generalized sense.
Quaternions encompass real and complex numbers in a
number system where multiplication is no longer a com-
mutative law.

The Irish mathematician William Rowan Hamilton in-
troduced the quaternions in 1843. They now find appli-
cations in mathematics, physics, computer science and
engineering.

Mathematically, the set of quaternions H is a non-
commutative associative algebra on the field of real num-
bers R generated by three elements i, j and k satisfy-
ing relations: i2 = j2 = k2 = i.j.k = −1. Con-
cretely, any quaternion q is written uniquely in the form:
q = a+ bi+ cj + dk where a, b, c and d are real numbers.

The operations of addition and multiplication by a
real scalar are trivially done term to term, whereas the
multiplication between two quaternions is termed by re-
specting the non-commutativity and the rules proper to
i,j and k. For example, given q = a + bi + cj + dk and
q′ = a′+b′i+c′j+d′k we have qq′ = a0+b0i+c0j+d0k such
that: a0 = aa′− (bb′+ cc′+dd′), b0 = ab′+a′b+ cd′− c′d,
c0 = ac′ − bd′ + ca′ + db′ and d0 = ad′ + bc′ − cb′ + a′d.

The quaternion q̄ = a − bi − cj − dk is the conjugate
of q.|q| =

√
(qq̄) =

√
(a2 + b2 + c2 + d2) is the module of

q. The real part of q is <(q) = (q + q̄)/2 = a and the
imaginary part is =(q) = (q − q̄)/2 = bi+ cj + dk.

A quaternion q is invertible if and only if its modulus
is non-zero, and we have q−1 = 1/|q|2q̄.

2.2 Reduced Form of a Quaternion

Quaternion can be represented in a more economical way,
which considerably alleviates the calculations and high-
lights interesting results. Indeed, it is easy to see that H
is a R-vectorial space of dimension 4, of which (1, i, j, k)
constitutes a direct orthonormal basis. We can thus sep-
arate the real component of the pure components, and we
have for q ∈ H,q = (a, u) such that u is a vector of R3. So
for q = (a, u), q′ = (a′, v) ∈ H and λ ∈ R we obtain:

1) q + q′ = (a+ a′, u+ v) and λq = (λa, λu);

2) qq′ = (aa′ − u.v, av + a′u + u ∧ v) Where ∧ is the
cross product of R3;

3) q̄ = (a,−u) and |q|2 = a2 + u2.

2.3 Ring of Lipschitz Integers

The set of quaternions defined as follows: H(Z) =
q = a+ bi+ cj + dk/a, b, c, d ∈ Z Has a ring structure
called the ring of Lipschitz integers. H(Z) is trivially non-
commutative.

For r n ∈ N∗, the set of quaternions: H(Z/nZ) = {q =
a + bi + cj + dk/a, b, c, d ∈ Z/nZ} has the structure of a
non-commutative ring.

A modular quaternion of Lipschitz q ∈ H(Z/nZ) is
invertible if and only if its module and the integer n are
coprime numbers, i.e |q|2 ∧ n = 1.

2.4 Quaternionique Matrices M2

(H(Z/nZ))

The set of matrices M2(H(Z/nZ)) describes the matrices
with four inputs (two rows and two columns) which are
quaternions of H(Z/nZ). This set has a non-commutative
ring structure.

There are two ways of multiplying the quaternion ma-
trices: the Hamiltonian product, which respects the order
of the factors, and the octonionique product, which does
not respect it.

The Hamiltonian product is defined as for all matrices
with coefficients in a ring (not necessarily commutative).
For example:

U =

[
u11 u12
u21 u22

]
, V =

[
v11 v12
v21 v22

]

⇒ UV =

[
u11v11 + u12v21 u11v12 + u12v22
u21v11 + u22v21 u21v12 + u22v22

]
The octonionique product does not respect the order of

the factors: on the main diagonal, there is commutativity
of the second products and on the second diagonal there
is commutativity of the first products.

U =

[
u11 u12
u21 u22

]
, V =

[
v11 v12
v21 v22

]
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⇒ UV =

[
u11v11 + v21u12 v12u11 + u12v22
v11u21 + u22v21 u21v12 + v22u22

]
In our article we will adopt the Hamiltonian product as
an operation of multiplication of the quaternionique ma-
trices.

2.5 Shur Complement and Inversibility of
Quaternionique Matrices

Let R be an arbitrary associative ring, a matrix M ∈
Rn×n is supposed to be invertible if ∃N ∈ Rn×n such
that MN = NM = In where N is necessarily unique.

The Schur complement method is a very powerful tool
for calculating inverse of matrices in rings. LetM ∈ Rn×n

be a matrix per block satisfying:

M =

[
A B
C D

]
such that A ∈ Rk×k.

Suppose that A is invertible, we have:

M =

[
Ik 0

CA−1 In−k

] [
A 0
0 As

] [
Ik A−1B
0 In−k

]
where As = D − CA−1B is the Schur complement of A
in M.

The inversibility of A ensures that the matrix M is
invertible if and only if As is invertible. The inverse of M
is:

M−1 =

[
Ik −A−1B
0 In−k

] [
A−1 0

0 A−1s

] [
Ik 0

−CA−1 In−k

]

=

[
A−1 +A−1BA−1s CA−1 −A−1BA−1s

−A−1s CA−1 A−1s

]
For a quaternionique matrix:

M =

[
a b
c d

]
∈ R2×2 = M2(H(Z/nZ)).

where the quaternion a is invertible as well as its Schur
complement as = d− ca−1b we have M is invertible and:

M−1 =

[
a−1 + a−1ba−1s ca−1 −a−1ba−1s

−a−1s ca−1 a−1s

]
Therefore, to generate an invertible quaternionique ma-
trix randomly, it is sufficient:

• To choose randomly three quaternions a,b and c for
which a is invertible.

• To select randomly the fourth quaternion d such that
the Schur complement as = d − ca−1b of a in M is
invertible.

3 Related Work

Generally, a fully homomorphic encryption
scheme is defined as a quadruplet of algorithms
(Gen,Enc,Dec,Eval), which can be executed in a
polynomial time, such as:

• Gen(λ): Is a key generation algorithm, inputs a secu-
rity parameter λ and outputs a pair of keys (sk, pk).

• Enc(m, pk): Is an encryption algorithm, it takes as
input a clear message m and a public key pk and
outputs a ciphertext c.

• Dec(c, sk): Is a decryption algorithm, takes as input
a ciphertext c and a secret key sk and outputs the
clear message.

• Eval(C, c1, .., cn): Is an evaluation algorithm, takes
as input a circuit C and ciphertexts c1, .., cn and ver-
ifies Dec(Eval(C, c1, .., cn), sk) = C(m1, ..,mn).

After resisting roughly three decades, Rivest et al. con-
jecture was finally resolved in 2009 by Craig Gentry [8].
Indeed, Gentry gave a renaissance to the search for homo-
morphic cryptography by designing a fully homomorphic
encryption scheme considered semantically secure. Gen-
try’s design can be summarized into three main stages:

• Somewhat Homomorphic Encryption Scheme
(SWHE): Gentry starts from a SWHE or simply ho-
momorphic scheme that supports a limited number
of homomorphic multiplications.

• Squashing the decryption circuit: Gentry reduces the
complexity of the decryption circuit by publishing a
set of vectors whose sum of a part of them is equal
to the secret key. This so-called ’squash’ scheme
can evaluate, in addition to its SWHE capabilities, a
NAND gate.

• Bootstrapping: The procedure of the bootstrap in-
vented by Gentry consists in the evaluation of the
circuit of decryption plus the NAND gate to obtain
a so-called ’leveled’ FHE which allows evaluating any
circuit with a depth of the circuit defined at the be-
ginning.

This first scheme is based on the addition of noise to
clear to obtain the homomorphy of the cryptosystem. The
major disadvantage of noise based approach is the growth
of noise after each manipulation of the ciphertext (addi-
tion and/or multiplication). Indeed, in order to main-
tain the decryption capacity, it is necessary to control
and reduce the noise generated after each treatment. The
control of noise in this type of schemes increases their
spatial and temporal complexity, which results in a slow
calculation (especially during bootstrapping) and a greed-
iness of the memory space required for storing the results
(noise amplification). Therefore, this situation influences
the application of fully homomorphic encryption to our
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daily life. All these causes have encouraged researchers
to find other frameworks for designing efficient fully ho-
momorphic encryption.

Among the most eminent attempts to simplify fully ho-
momorphic encryption schemes is the MORE cryptosys-
tem [12]. It is a symmetric cryptosystem based on mod-
ular arithmetic whose homomorphy is derived from the
usual matrix operations. Multiplication and addition are
matrix multiplication and addition. In the MORE en-
cryption scheme, the clear space is the ring Z/nZ (ring of
residual integers modulo n) where n is a modulo chosen
as in the famous RSA algorithm, whereas the ciphertext
space is the ring of the modular matrices K ∈M2(Z/nZ).
The secret key of this cryptosystem is an invertible ma-
trix K ∈ M2(Z/nZ) chosen randomly by the client and
kept confidential with its inverse K−1.

However, the MORE cryptosystem does not support
the IND-CPA (Indistinguishability under Chosen Plain-
text Attack) and IND-KPA (Indistinguishability under
Known Plaintext Attack) attacks. Indeed, if a third party
in bad faith has access to a single clear and its ciphertext
it will be able to decrypt any encrypted message thereafter
without having found the secret key. The cryptosystem
MORE has been cryptanalyzed several times [1, 16].

A second attempt, to overcome the security flaws of
the MORE encryption scheme and to build a secure fully
homomorphic encryption scheme, is recently due to Wang
and Li [13]. The two authors retained almost the same
conception of MORE except that they proposed to change
the ring Z/nZ by a non-commutative ring R and they used
square matrices of order 3 instead of square matrices of
order 2. Despite the use of a non-commutative ring R,
clear messages always remain numbers that commute with
the elements of R.

Therefore an attack on the Wang and Li scheme is
given by Kristian Gjsteen and Martin Strand in [11]. In-
deed, according to these authors: to attack the cryptosys-
tem of Wang-Li, we only need to distinguish the encryp-
tions of 0 from a random encryption.

The two authors observed that the diagonal of the ci-
phertext matrix completely determines the inversibility
of the matrix, because an encryption of ”0” cannot be
inverted. Thus, with a high probability, we can distin-
guish the non-zero elements of the ring R from the zero
elements. If the ring R is divisible, then there are no other
non-zero elements than ” 0 ”. Finally, using a variant of
the LU decomposition adapted to the non-commutative
rings, we can efficiently calculate the secret key matrix of
the scheme.

From what has come before, it can be pointed out
that there are two types of fully homomorphic encryp-
tion scheme constructions:

A noise-based construction that uses the bootstrapping
technique as described in Gentry’s framework. The ad-
vantage of this construction is its robust security, since
the schemes designed so far (based on this approach) are
based on mathematical problems arising from the the-
ory of Euclidean lattices, which remains an immune and

complex theory. While the major disadvantage of this
construction lies in the slowness of its operations (espe-
cially the bootstrapping step) and the complexity of its
algorithms.

A noise-free construction that uses matrix operations
as described in the MORE framework. This construction
has the advantage of being very simple, easy to implement
and provides very fast operations for any processing on
ciphertexts. The main disadvantage of this construction
lies in the security of the schemes designed so far. The
schemes based on the MORE framework were subject to
IND-CPA and IND-KPA attacks.

A first objective of the present encryption scheme is
to improve the runtime in fully homomorphic encryption.
For that reason we will adopt the MORE framework as
the basis of construction instead of the Gentry’s one which
requires a very slow bootstrapping step. Our second ob-
jective is to overcome the dramatic problem of security
in previous cryptosystems. We propose a more secure
cryptosystem than its predecessors do and resistant to
IND-CPA and IND-KPA attacks. Finally, we aim to en-
sure that our cryptosystem is fully homomorphic, that
is to say it allows executing any type of processing on
encrypted data. Therefore, the choice of a well-adapted
clear space is paramount to concretize the entire homo-
morphy of our cryptosystem. We intend to use the ring
Z/N2Z, sanctioned by the two operations × and+, as
clear text space for our encryption scheme. In addition
to this, we use a homomorphic transform that converts
an integer into a quaternion of Lipschitz. This makes it
possible to randomize integers to ensure that the diago-
nal gives no useful information about the clear (avoid the
attack of the cryptosystem of Li-Wang).

Our cryptosystem is resistant to IND-CPA and IND-
KPA attacks by the non-commutativity of the ring of the
Lipschitz quaternions and by the use of a randomized
transform. It inherits its homomorphy, on the one hand
from the matrix operations and on the other hand from
a new homomorphic transform, between the ring Z/N2Z
and the ring of the Lipschitz integers. Its complete ho-
momorphy is obtained by manipulating these Lipschitz
integers using a homomorphic transform intToQuatern.

4 Homomorphic Transform
intToQuatern

Any integer σ ∈ Z/N2Z can be encoded into a Lips-
chitz quaternion according to a homomorphic transform
whose operations on the quaternions retain those on the
integers. This transform can be given as follows: intTo-
Quatern: σ ∈ Z/N2Z 7−→ intToQuatern(σ) = m+αNi+
βNj + γNk ∈ H(Z) such that α, β, γ ∈ Z/NZ are ran-
domly chosen integers. The inverse transform that will
be named quaternToInt is given by: quaternToInt(q) =
Re(q)modN2.

It is easy to verify the homomorphism of the intTo-
Quatern transform:
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• For the addition operation we have clearly:
intToQuatern(σ) + intToQuatern(σ

′
) =

intToQuatern(σ + σ
′
modN2).

• For the multiplication operation, by passing to the
reduced notation of the quaternions, we obtain
intToQuatern(σ) × intToQuatern(σ

′
) = (m,u) ×

(m
′
, v) = (mm

′ − u.v,mv + m
′
u + u ∧ v),so we

can easily verify that mm
′ − u.v ≡ (σ × σ′

)modN2

and thatmv + m
′
u + u ∧ v can be put on the form

(2L,P,Q) such that P ≡ Q[2] and L is an inte-
ger. So intToQuatern(σ) × intToQuatern(σ

′
) =

intToQuatern(σ × σ′
modN2).

The homomorphic transform intToQuatern encode and
randomize an input integer. The homomorphic property
allows us to preserve operations from integers to Lipschitz
quaternions. The non commutativity of multiplication
give two results for the same product of two encoded in-
tegers (i.e intToQuatern(σ) × intToQuatern(σ

′
) =

intToQuatern(σ × σ
′
) and intToQuatern(σ

′
) ×

intToQuatern(σ) = bitToQuatern(σANDσ
′
)

but intToQuatern(σ
′
) × intToQuatern(σ) 6=

intToQuatern(σ) × intToQuatern(σ
′
) ). The in-

verse transform quaternToInt permits to find the
encoded integer from a Lipschitz quaternion.

5 An Efficient Fully Homomor-
phic Encryption Scheme

We place ourselves in a context where Bob wants to store
confidential data in a very powerful but non-confident
cloud. Bob will later need to execute complex processing
on his data, of which he does not have the necessary com-
puting powers to perform it. At this level he thinks for,
at first, the encryption of his sensitive data to avoid any
fraudulent action. But the ordinary encryption, which he
knows, does not allow the cloud to process his calcula-
tion requests without having decrypted the data stored
beforehand, which impairs their confidentiality. Bob asks
if there is a convenient and efficient type of encryption to
process his data without revealing it to the cloud. The
answer to Bob’s question is favorable, in fact since 2009
there exist so-called fully homomorphic encryption, the
principle of which is quite simple: doing computations on
encrypted data without thinking of any previous decryp-
tion.

To be completely homomorphic, it is sufficient for a
cryptosystem to perform the two operations of addition
and multiplication a multitude of times on ciphertexts.
Since their first appearance in 2009, fully homomorphic
encryption schemes allow to easily realize the additions
whereas the multiplication remains very expensive in term
of runtime and exhausting in terms of the noise growth.
Actually, on average, an addition doubles the noise of an
encrypted message while a multiplication raises it to the
square.

In order to profitably benefit from the technological
advance of the cloud and to outsource its heavy calcula-
tions comfortably, Bob needs a robust highly secure fully
homomorphic encryption scheme whose operations of ad-
dition and multiplication are done in a judicious time and
whose noise generated during a treatment is manageable.

To help Bob take full advantage of the powers of the
cloud, we introduce a probabilistic symmetric fully ho-
momorphic encryption scheme without noise. The addi-
tion and multiplication operations generate no noise. The
multiplication is very fast and it is done in less than a mil-
lisecond. The security of our cryptosystem is based on the
difficulty of solving a system of multi-varied equations in
a non-commutative ring.

5.1 Key Generation

• Bob generates randomly two big prime numbers p
and q.

• Then, he calculates N = p.q.

• Bob generates randomly an invertible matrix

K =

 a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

 ∈M3(H(Z/N2Z))

• Bob calculates the inverse of K, Which will be de-
noted K−1).

• The secrete key is (K,K−1).

5.2 Encryption

Lets σ ∈ Z/N2Z be a clear text. To encrypt σ Bob pro-
ceed as follows:

• Using the transform intToQuatern , Bob transforms
σ into a quaternion: m = intToQuatern(σ) ∈
H(Z/N2Z)).

• Bob generates a matrix

M =

 m r3 r4
0 r1 r5
0 0 r2

 ∈M3(H(Z/N2Z))

such that ri ∈ H(Z/NZ)∀i ∈ [1, 5] are randomly gen-
erated with |r1| ≡ 0[N ].

• The ciphertext of σ is C = Enc(σ) = KMK−1 ∈
M3(H(Z/N2Z)).

5.3 Decryption

Lets C ∈ M3(H(Z/N2Z)) be a ciphertext. To decrypt C
Bob proceeds as follows:

• He calculates M = K−1CK using his secrete key
(K,K−1).
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• Then he takes the first input of the resulting matrix
m = (M)1,1.

• Finally, he recovers his clear message by calculat-
ing σ = quaternToInt(m) using the quaternToInt
transform.

5.4 Addition and Multiplication

Let σ1 and σ2 be two clear texts and C1 = Enc(σ1) and
C2 = Enc(σ2) be their ciphertexts respectively. It is easy
to verify, thanks to the intToQuatern transform, that:

• Cadd = C1 + C2 = Enc(σ1) + Enc(σ2) = Enc(σ1 +
σ2modN

2).

• Cmult = C1.C2 = Enc(σ1).Enc(σ2) = Enc(σ1 ×
σ2modN

2).

6 Comparison with Other
Schemes

As it is shown in Table 1, our cryptosystem presents good
performances compared to other existing schemes. Its
ciphertext and key sizes depend linearly to cleartext space
dimension. The other schemes use a small cleartext space
which influences the runtime of the algorithm. In our case
we are using a large cleartext space which allows us to
encrypt big messages and perform computations directly
on ciphertexts. We can observe that the complexity of
Li-Wang’s scheme is smaller than ours, but this scheme
uses a smaller cleartext space.

7 Security

Ciphertext indistinguishability is an important security
property of many encryption schemes. Intuitively, if a
cryptosystem possesses the property of indistinguishabil-
ity, then an adversary will be unable to distinguish pairs
of ciphertexts based on the message they encrypt. It is
easy to see that a fully homomorphic encryption scheme
cannot be secure against adaptive chosen ciphertext at-
tacks (IND − CCA2).

The adversary: We are protecting ourselves from an ad-
versary A, who:

• Is a probabilistic polynomial time Turing machine.

• Has all the algorithms.

• Has full access to communication media.

Chosen Ciphertext Attack: In this model, the attack
assumes that the adversary A has access to an en-
cryption oracle and that the adversary can choose
an arbitrary number of plaintexts to be encrypted
and obtain the corresponding ciphertexts. In addi-
tion, the adversary A gains access to a decryption

oracle, which decrypts arbitrary ciphertexts at the
adversary’s request, returning the plaintext.

Startup:

1) The challenger generates a secret key Sk based on
some security parameter k (e.g., a key size in bits)
and retains it.

2) The adversary A may ask the encryption oracle for
any number of encryptions, calls to the decryption
oracle based on arbitrary ciphertexts, or other oper-
ations.

3) Eventually, the adversary A submits two distinct cho-
sen plaintexts m0,m1 to the challenger.

The Challenge:

1) The challenger selects a bit b ∈ {0, 1} uniformly at

random, and sends the `̀challengé́ ciphertext C =
Enc(Sk,mb) back to the adversary. The adversary
is free to perform any number of additional compu-
tations or encryptions.

2) In the non-adaptive case (IND − CCA), the adver-
sary may not make further calls to the decryption
oracle before guessing.

3) In the adaptive case (IND − CCA2), the adversary
may make further calls to the decryption oracle, but
may not submit the challenge ciphertext C.

4) In the end it will guess the value of b.

The Result:

• Again, the adversary A wins the game if it guesses
the bit b.

• A cryptosystem is indistinguishable under chosen ci-
phertext attack if no adversary can win the above
game with probability p greater than 1/2 + ε where
is a negligible function in the security parameter k.

• If p > 1/2 then the difference p−1/2 is the advantage
of the given adversary in distinguishing the cipher-
text.

In our situation, the adversary A should distinguish an
encryption of zero from an encryption of one after asking
the encryption oracle of a number of encryptions and the
decryption oracle to decrypt arbitrary ciphertexts. The
adversary A can do operations on the two given cipher-
texts to distinguish zero from one, as he can do operations
on the entire ciphertext matrices or just to use some en-
trees (the diagonal of ciphertexts matrices). In our case,
even if the diagonal of M determines completely the in-
vertibility of C, an encryption of an integer σ ∈ Z/N2Z
is always non invertible because of the choice of the ran-
dom r1(|r1| ≡ 0[N ]). Therefore, an adversary cannot then
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Table 1: Comparison of the performances of FHE schemes

Algorithm Cleartext Space Secret Key Public Key Ciphertext
Gentry [8] {0, 1} n7 n3 n1.5

Smart-Vercautern [15] {0, 1} O(n3) n3 O(n1.5)

DGHV [17] {0, 1} Õ(λ10) Õ(λ2) Õ(λ5)

CMNT [7] {0, 1} Õ(λ7) Õ(λ2) Õ(λ5)

Batch DGHV [5] {0, 1}l Õ(λ7) l.Õ(λ2) l.Õ(λ5)
Li-Wang [13] Z/NZ O(N) NA O(N)
Our scheme Z/N2Z O(N2) NA O(N2)

distinguish encryptions of units from encryptions of non-
units. Consequently, the attack proposed on Li-Wang’s
scheme [13] in [11] do not work for our case. Based on
these assumptions, we believe that our fully homomor-
phic encryption scheme is indistinguishable under chosen
ciphertext attacks (IND − CCA1).

Concerning the security of the secret key:
Given a random secret key of our encryption scheme:

K =

 a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3


and

K−1 =

 ¯a1,1 ¯a1,2 ¯a1,3
¯a2,1 ¯a2,2 ¯a2,3
¯a3,1 ¯a3,2 ¯a3,3


and a cleartext σ ∈ Z/N2Z.

A ciphertext of m = intToQuatern(σ) is determined
by:

C = KMK−1 =

 c1,1 c1,2 c1,3
c2,1 c2,2 c2,3
c3,1 c3,2 c3,3


such that

M =

 m r3 r4
0 r1 r5
0 0 r2


Therefore, we obtain the nine following equations:

1) c1,1 = a1,1m ¯a1,1 + (a1,1r3 + a1,2r1) ¯a2,1 + (a1,1r4 +
a1,2r5 + a1,3r2) ¯a3,1

2) c1,2 = a1,1m ¯a1,2 + (a1,1r3 + a1,2r1) ¯a2,2 + (a1,1r4 +
a1,2r5 + a1,3r2) ¯a3,2

3) c1,3 = a1,1m ¯a1,3 + (a1,1r3 + a1,2r1) ¯a2,3 + (a1,1r4 +
a1,2r5 + a1,3r2) ¯a3,3

4) c2,1 = a2,1m ¯a1,1 + (a2,1r3 + a2,2r1) ¯a2,1 + (a2,1r4 +
a2,2r5 + a2,3r2) ¯a3,1

5) c2,2 = a2,1m ¯a1,2 + (a2,1r3 + a2,2r1) ¯a2,2 + (a2,1r4 +
a2,2r5 + a2,3r2) ¯a3,2

6) c2,3 = a2,1m ¯a1,3 + (a2,1r3 + a2,2r1) ¯a2,3 + (a2,1r4 +
a2,2r5 + a2,3r2) ¯a3,3

7) c3,1 = a3,1m ¯a1,1 + (a3,1r3 + a3,2r1) ¯a2,1 + (a3,1r4 +
a3,2r5 + a3,3r2) ¯a3,1

8) c3,2 = a3,1m ¯a1,2 + (a3,1r3 + a3,2r1) ¯a2,2 + (a3,1r4 +
a3,2r5 + a3,3r2) ¯a3,2

9) c3,3 = a3,1m ¯a1,3 + (a3,1r3 + a3,2r1) ¯a2,3 + (a3,1r4 +
a3,2r5 + a3,3r2) ¯a3,3

According to the decryption algorithm, the plaintext m
can be obtained by the equation:

(*) m = ( ¯a1,1c1,1 + ¯a1,2c2,1 + ¯a1,3c3,1)a1,1 + ( ¯a1,1c1,2 +
¯a1,2c2,2 + ¯a1,3c3,2)a2,1 + ( ¯a1,1c1,3 + ¯a1,2c2, 3 + ¯a1,3c3,3)a3,1

An adversary who possesses the ciphertext C and
wants to find the cleartext m or the secret key from the
above nine equations should, at least, extract the secret
components ¯a1,1, ¯a1,2, ¯a1,3, a1,1, a2,1 and a3,1 according to
the equation (*). Since our fully homomorphic encryption
scheme is probabilistic, these nine equations are randomly
independent even if the encrypted messages are the same
one. Therefore finding the secret key is equivalent to a
problem of solving an over-defined system of quadratic
multivariate polynomial equations in a non-commutative
ring.

8 Implementation and Test

We provide an implementation of our fully homomorphic
encryption scheme with the fully homomorphic capabil-
ity, i.e. we implement the key generation, encryption,
decryption, add and mult operations.

The implementation is done using a personal computer
with characteristics: bi-cores Intel core i5 CPU running
at 2.40 GHz, with 512KB L2 cache and 4GB of Random
Access Memory. The present implementation is done un-
der JAVA programming language using the IDE Eclipse
platform.

The fundamental results of our tests are summarized
in Table 1, for the security parameter n that we used
to generate the secret key. In this table we summarize
the main parameters of our fully homomorphic encryption
scheme.
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Table 2: Comparison of the performances of FHE schemes

Security Key Secret
param Gen Encryption Decryption Addition Multiplication Key Ciphertext
256 bit 0.12s 0.02s 0.003 s � 1ms � 1ms 2.25KB 1.125KB
512 bit 0.31s 0.04s 0.004s � 1ms 1ms 4.5KB 2.25KB
1024 bit 1.2s 0.19s 0.01s � 1ms 2ms 9KB 4.5 KB
2048 bit 10.16s 1.76s 0.034s � 1ms 10ms 18KB 9KB
4096 bit 130s 20s 0.1s � 1ms 27ms 36KB 18KB

In one hand, we observe that, even if encryption and
decryption operations are approximately the same, the
runtime of encryption operation is significantly higher
than the runtime of the decryption operation. This exces-
sive difference between the two operations is due to the
intToQuatern transform, we note that the most of the
encryption time is spent in transforming an integer to a
quaternion of Lipschitz. Concerning the evaluation op-
erations, we observe that addition is always done in less
than one millisecond and multiplication is done in an op-
timized time. This is adequate in view of the fact that
matrix operations are simples. Therefore, these runtimes
are practical in the context of a cloud that has unlimited
computation powers.

In the other hand, we note that the secret key size
is of the order of some few Kbytes for a given security
parameter n. Moreover, the ciphertext size is about half
the secret key size. This is because the secret key consists
of two matrices but the ciphertext is just one matrix. All
ciphertext sizes are fixe owing to the fact that we are using
a noise free fully homomorphic encryption scheme.

9 Conclusion

In this article, we presented a new fully homomorphic
encryption scheme. It is symmetric, noise free and prob-
abilistic cryptosystem, for which the ciphertext space is
a non-commutative ring quaternionic based. We utilize
a homomorphic transform to encode an integer into a
quaternion before its encryption. Our encryption scheme
find its applications in the domain of cloud computing
and big data security. It is an efficient and practical
scheme whose security is based on the problem of solving
an over-defined system of quadratic multivariate polyno-
mial equations in a non-commutative ring. We have pro-
vided an implementation and simulation of our algorithm
using JAVA programming language and a personal com-
puter Core i5 CPU running at 2.40 GHz, with 512KB L2
cache and 4GB of Random Access Memory. The experi-
mental results justifies the efficiency of our construction.
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