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Abstract

Anonymous identity based broadcast encryption (IBBE)
is a cryptographic primitive, which allows a broadcaster
to transmit encrypted data over a broadcast channel to
a large number of users such that only a select subset of
privileged users can decrypt it and any user cannot dis-
tinguish the encrypted message to which user. In this
paper, based on the asymmetric bilinear pairing, a new
anonymous IBBE scheme is proposed. Under the assump-
tion of symmetric external Diffie-Hellman, we prove that
the proposed scheme is fully secure (adaptive security)
in the standard model using the dual system encryption
method. This construction utilizes the dual pairing vector
space technique in the group of prime order to realize the
parameter hiding and cancelling properties of the group
of composite order. The performance analysis depict that
the proposed scheme achieves simultaneously the constant
size system parameters, private keys and ciphertexts. In
addition, the recipient anonymity can be captured.

Keywords: Dual System Encryption; Fully Secure; Group
of Prime Order; Identity Based Broadcast Encryption

1 Introduction

In 1993, Fiat and Naor [6] first introduced the concept of
broadcast encryption (BE). In a BE scheme, the broad-
caster broadcasts encrypted message over a broadcast
channel to some subset of users. Any user in the desig-
nated subset can decrypt the ciphertext using his private
key. Broadcast encryption is widely used in many fields,
such as multicast communication, pay TV, satellite based
electronic commerce, etc.. Since the concept of broadcast
encryption is proposed, many BE schemes [1,4,5,12,18,28]
have been proposed.

In 1984, the concept of identity based encryption (IBE)
was firstly proposed by Shamir [27]. The main idea of

IBE is that a user can utilize the identity (Email address,
IP address, etc.) of recipient as public key to encrypt
a message. It simplifies the management of public key
certificates and avoids the need to distribute certificates.
Identity based broadcast encryption (IBBE) is a general-
ization of identity based encryption (IBE). A scenario of
IBBE is shown in Figure 1.
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Figure 1: A typical structure of IBBE

In 2007, Delerable [3] proposed an IBBE scheme, which
captures constant size ciphertexts and private keys. But
the proposed scheme was only selective-identity secure
(the adversary must declare at the beginning of its at-
tack which identity it will target) in the random oracles
model. In 2009, Gentry et al. [8] presented a provably
secure BE scheme in the standard model, which achieved
fully secure (the adversary may choose the target iden-
tity adaptively) with sublinear ciphertext. Ren et al. [25]
proposed an IBBE scheme with constant size ciphertexts
and public keys. The proposed scheme was fully secure in
the standard model. Based on the dual system encryption
idea, a BE scheme in the bilinear groups of composite or-
der was presented by Waters [30]. However, this scheme
is inefficient because of decryption cost depending on the
user number. In 2010, Lewko et al. [20] presented an
IBBE scheme in the groups of composite order and proved
the security under the general subgroup decision assump-
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tion. The proposed scheme satisfied fully secure under
the static assumption via the convenient properties of the
bilinear groups of composite order. In 2012, Zhang et
al. [33] presented a fully secure IBBE using dual system
encryption technique in the subgroups, which achieved
the constant size ciphertexts and private keys. In 2015,
Kim et al. [13] proposed an IBBE scheme with constant
size ciphertexts. This scheme was adaptively secure under
the general decisional subgroup assumption in the stan-
dard model using the technique of dual system encryp-
tion. In 2016, Susilo et al. [29] given a recipient-revocable
IBBE scheme, where ciphertext size is independent of the
number of receivers.

In 2012, an anonymous BE scheme in the standard
model was proposed by Libert et al. [21]. However, in
which ciphertext size grows with the receiver numbers lin-
early. In 2013, Zhang et al. [35] presented an anonymous
BE scheme with the group of composite order in the stan-
dard model, that was proved fully secure and the cipher-
text size was constant at the same time. In 2014, Xie et
al. [31] presented an anonymous IBBE scheme in the bilin-
ear groups of prime order. The proposed scheme achieved
adaptive secure under the asymmetric decisional bilinear
Diffie-Hellman Exponent assumption without using the
random oracles. However, the system parameter and pri-
vate key size grows with the number of users and that of
receivers linearly, respectively. Ren et al. [26] proposed a
fully secure anonymous IBBE scheme based on asymmet-
ric bilinear groups, which achieved adaptive secure in the
standard model. But, system parameter, ciphertext and
private key size grows with the number of users or that of
receivers linearly, respectively. In 2015, Zhang et al. [34]
proposed a leakage-resilient anonymous IBBE with con-
stant size ciphertexts, which achieved fully secure in the
standard model. However, the system parameter size is
not constant and relies on the number of users. In 2016,
Lai et al. [16] constructed an anonymous IBBE with ci-
phertext revocation. He et al. [9] proposed a generic IBBE
construction in the random oracle model, which has con-
stant size system parameters, the private keys and de-
cryption cost. He et al. also [10] presented a secure IBBE
scheme under the DBDH assumption. The new scheme
was efficient and simultaneously achieved confidentiality
and anonymity. Xu et al. [32] proposed an IBBE scheme
with constant decryption complexity and strong anony-
mous. In 2017, He et al. [11] given a generic IBBE scheme
that achieved confidentiality and anonymity. The pro-
posed scheme was proven security in the random oracle
model and satisfied constant size system parameters and
private keys. Lai et al. [15, 17] proposed the fully re-
vocable privacy-preserving IBBE schemes in the random
oracle model.

To achieve the same security level, when the size of the
elliptic curve group of composite order is 1024 bits, and
that of prime order is only 160 bits [7]. Therefore, how
to design the IBBE scheme in the group of prime order
becomes a hot issue. In 2010, Freeman et al. [7] firstly
showed that the group of composite order has two fea-

tures: cancelling (orthogonality) and projecting and given
a general technique to convert composite order schemes
into prime order schemes relying on either cancelling or
projecting. In 2016, Ming et al. [23] proposed a secure
IBBE scheme using dual system encryption in the group
of prime order. In this paper, based on the asymmetric
bilinear pairing, we present an anonymous IBBE scheme
using the dual pairing vector space and dual system en-
cryption techniques. The proposed scheme captures fully
secure (adaptive security) in the standard model assume
that the symmetric external Diffie-Hellman problem is
hard. The performance analysis shows that the pro-
posed scheme has constant size system parameters, ci-
phertexts and private keys, and achieves the receiver’s
identity anonymity.

The rest of this paper is organized as follows. The pre-
liminaries are presented in Section 2. Section 3 gives the
formal model of anonymous IBBE. Our concrete construc-
tion is described in Section 4. Section 5 evaluates the per-
formance. Finally, conclusions are provided in Section 6.

2 Preliminaries

2.1 Asymmetric Bilinear Groups

Assume G1, G2 and GT be three cyclic groups with order
of q, where q is a large prime. Let g1 and g2 be a generator
of G1 and G2, respectively. The bilinear map e : G1 ×
G2 → GT has the following properties [14,22]:

Bilinearity: For all g1 ∈ G1, g2 ∈ G2 and s, t ∈ Zq,
e(gs1, g

t
2) = e(g1, g2)st.

Non-degeneracy: e(g1, g2) 6= 1.

Computability: There exists an efficient algorithm to
compute e(g1, g2) for all g1 ∈ G1, g2 ∈ G2.

2.2 Dual Pairing Vector Spaces

The asymmetric dual pairing vector spaces technique [24]
will be utilized in the following proposed scheme. For
v = (v1, · · ·, vn) ∈ Znq and gβ ∈ Gβ , gvβ is defined as n
elements of Gβ for β = 1, 2:

gvβ = (gv1β , · · ·, g
vn
β ).

For any a ∈ Zq and v,w ∈ Znq , we have:

gavβ = (gav1β , · · · , gavnβ ), gv+w
β = (gv1+w1

β , · · · , gvn+wnβ ).

Then we define

e(gv1 , g
w
2 ) =

n∏
i=1

e(gvi1 , g
wi
2 ) = e(g1, g2)v·w.

The two bases B = (b1, · · ·, bn) and B∗ = (b∗1, · · · , b∗n)
of Znq are randomly chosen to satisfy “dual orthonormal”.
This is to say that br · b∗k = 0(mod q) for r 6= k, bk · b∗k =
ψ(mod q) for all k and a random element ψ ∈ Zq.
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2.3 Security Assumptions

Decisional Diffie-Hellman problem in G1 (DDH1): Given
D = (G1,G2,GT , g1, g2, q, e, ga1 , gb1), pick randomly
g1 ∈ G1, g2 ∈ G2, a, b, c ∈ Zq and T1 = gab1 , T2 =
gab+c1 , the DDH1 problem is to distinguish T1 and
T2.

The advantage of an algorithm B solving the DDH1
problem is defined as:

AdvDDH1
B = |Pr[B(D,T1)]− Pr[B(D,T2)]|.

Decisional Diffie-Hellman problem in G2 (DDH2): Given
D = (G1,G2,GT

, g1, g2, q, e, g
a
2 , g

b
2), pick randomly

g1 ∈ G1, g2 ∈ G2, a, b, c ∈ Zq and T1 = gab2 , T2 =
gab+c2 , the DDH2 problem is to distinguish T1 and
T2.

The advantage of an algorithm B solving the DDH2
problem is defined as:

AdvDDH2
B = |Pr[B(D,T1)]− Pr[B(D,T2)]|.

Symmetric external Diffie-Hellman assumption [2]: This
assumption holds if both DDH 1 and DDH 2 prob-
lems are intractable.

Decisional subspace problem in G1 (DS1): Given
G1,G2,GT

, q, e, B = (b1, · · · , bn), B∗ = (b∗1, · · · , b∗n),
pick randomly g1 ∈ G1, g2 ∈ G2, τ1, τ2, µ1, µ2 ∈ Zq
and

U1 = g
µ1b
∗
1+µ2b

∗
K+1

2 , · · · ,

UK = g
µ1b
∗
K+µ2b

∗
2K

2 ,

V1 = gτ1b11 , · · · ,
VK = gτ1bK1 ,

W1 = g
τ1b1+τ2bK+1

1 , · · ·,
WK = gτ1bK+τ2b2K

1 .

Let D = (G1, G2, GT , q, e, g1, g2, g
b∗1
2 , · · · , gb

∗
K

2 ,

g
b∗2K+1

2 , · · · , gb
∗
N

2 , gb11 , · · · , g
bN
1 , U1, · · · , UK , µ2), where

K,N are positive integers satisfying 2K ≤ N .
The DS1 problem is to distinguish V1, · · · , VK and
W1, · · · ,WK .

The advantage of an algorithm B solving the DS1
problem is defined as:

AdvDS1B = |Pr[B(D,V1, · · · , VK) = 1]

−Pr[B(D,W1, · · · ,WK) = 1]|.

Decisional subspace problem in G2 (DS2): Given
G1,G2,GT

, q, e, B = (b1, · · · , bn), B∗ = (b∗1, · · · , b∗n),
pick randomly g1 ∈ G1, g2 ∈ G2, τ1, τ2, µ1, µ2 ∈ Zq

and

U1 = g
µ1b
∗
1+µ2b

∗
K+1

1 , · · · ,

UK = g
µ1b
∗
K+µ2b

∗
2K

1 ,

V1 = gτ1b12 , · · · ,
VK = gτ1bK2 ,

W1 = g
τ1b1+τ2bK+1

2 , · · ·,
WK = gτ1bK+τ2b2K

2 .

Let D = (G1,G2, GT , q, e, g1, g2, g
b∗1
1 , · · · , gb

∗
K

1 , g
b∗2K+1

1 ,

· · · , gb
∗
N

1 , gb12 , · · · , g
bN
2 , U1, · · · , UK , µ2), where K,N are

positive integers satisfying 2K ≤ N . The DS2 problem is
to distinguish V1, · · · , VK and W1, · · · ,WK .

The advantage of an algorithm B solving the DS2 prob-
lem is defined as:

AdvDS2B =
|Pr[B(D,V1, · · ·, VK) = 1]− Pr[B(D,W1, · · · ,WK) = 1]|.

The DS1 problem is intractable if DDH1 problem is
hard, the DS2 problem is intractable if DDH2 problem is
hard [2].

3 Framework of Anonymous
IBBE

3.1 Syntax

An IBBE scheme with security parameter λ consists of
the following algorithms:

Setup: Given λ and m, the maximal size of the receiver
set for one encryption, the Private Key Generator
(PKG) generates the system parameter params and
the master key msk. The params is made public
while the msk is kept secret.

Extract: Given params, msk and a user’s identity ID,
this algorithm outputs the private key SKIDi and
sends it to the user via a secure channel.

Encrypt: Given params, a set of identities S =
{ID1, · · · , IDn} with n ≤ m and a message M , this
algorithm outputs a ciphertext CT .

Decrypt: Given params, a subset S = {ID1, · · · , IDn}
with n ≤ m, a ciphertext CT , an identity IDi and
the private key SKIDi

, if IDi ∈ S, this algorithm
outputs the plaintext M .

3.2 Security Model

We depict the fully secure (adaptive security) model for
the anonymous IBBE scheme. The security is defined by
the following interaction game played between the adver-
sary A and the challenger C. Let Ω the maximal size of
the receivers set.
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Setup: The challenger C runs the algorithm Setup to
produce the master key msk and the system param-
eters params. Then C keeps master key msk secret
and returns params to A.

Phase 1: The adversary A adaptively issues the private
key queries and decryption queries.

Private key query: Given a private key query on IDi,
C runs the algorithm Extract to produce the private
key SKIDi and return it to A.

Decryption Query: Given a decryption query on
(IDi, S, CT ) with S ⊆ Ω and IDi ∈ S. C firstly
runs the algorithm Extract to produce the private
key SKIDi . Then it runs the algorithm Decrypt to
obtain the message M and send it to A.

Challenge: At the end of Phase 1, A outputs two same-
length messages M∗0 ,M

∗
1 and two user sets S∗0 , S

∗
1 on

which it wants to be challenged. The challenger C se-
lects a random value θ ∈ {0, 1} and denotes the chal-
lenge ciphertext CT ∗ = Encrypt(params,M∗θ , S

∗
θ ).

At last, C sends CT ∗ to A as its challenge cipher-
text.

Phase 2: The adversary A issues queries adaptively
again as in Phase 1. The challenger C responses
these queries as Phase 1 except thatA is not permit-
ted to issue a private key query on any IDi ∈ S∗0 , S∗1
and a decryption query on (CT ∗, S∗0 ) and (CT ∗, S∗1 ).

Guess: Eventually, the adversary A outputs its guess
θ′ ∈ {0, 1}. A wins the game if θ′ = θ.

The advantage of A wins the game is defined as

AdvA = |2 Pr[β′ = β]− 1|.

Definition 1. An anonymous IBBE scheme is said to be
(qk, qd, t, ε)-ANONY-IND-ID-CCA secure if for any ad-
versary making at most qk private key queries and qd
decryption queries in time t has advantage ε, we have
AdvA ≤ ε.

Definition 2. An anonymous IBBE scheme is said to be
(qk, t, ε)-ANONY-IND-ID-CPA secure if it is (qk, 0, t, ε)-
ANONY-IND-ID-CCA secure.

4 The Proposed Scheme

This section describes an anonymous IBBE scheme with
group of prime order. Let m denote the maximum size
of the user set. The concrete construction includes the
following phases:

Setup: Given the security parameter λ and a bilin-
ear map e : G1 × G2 → GT , the PKG ran-
domly picks α ∈ Zq and samples random dual
orthonormal bases (D,D∗). Let d1, · · · , d4 be the
elements of D and d∗1, · · · , d∗4 be the elements of

D∗. The master key is msk = {α, gd
∗
1

2 , g
d∗2
2 }.

The public system parameters are params =
{G1,G2,GT , g1, g2, e, q, e(g1, g2)αd1d

∗
1 , gd11 , g

d2
1 }.

Extract: Given the identity IDi ∈ S, where S =
{ID1, · · · , IDn} for n ≤ m, the PKG randomly
chooses r11, · · · , rn1 ∈ Zq and computes SKIDi =
{k1, k2} as follows:

k1 = g
(α+ri1IDi)d

∗
1−r

i
1d
∗
2

2 ,

k2 = g
(r11+r

2
1+···+r

i−1
1 +ri+1

1 +···+rn1 )(ID1+···+IDn)d∗1
2

·gr
i
1(ID1+ID2+···+IDi−1+IDi+1+···+IDn)d∗1

2

·g−(r
1
1+r

2
1+···+r

i−1
1 +ri+1

1 +···+rn1 )d∗2
2 .

Encrypt: Given the massageM , a broadcaster randomly
chooses z ∈ Zq and computes the ciphertext:

CT = {C1, C2}
= {M · e(g1, g2)αzd1d

∗
1 , g

zd1+z(ID1+···+IDn)d2
1 }

Decrypt: Given the ciphertext CT = {C1, C2}, any user
IDi ∈ S can compute

M = C1

e(C2,k1k2)
.

5 Analysis

5.1 Correctness

C1

e(C2, k1k2)

=
M · e(g1, g2)αzd1d

∗
1

e(g
zd1+z(ID)d2
1 , g

[α+R(ID)]d∗1−Rd
∗
2

2 )

=
M · e(g1, g2)αzd1d

∗
1

e(g1, g2)
αzd1d

∗
1+zR(ID)d1d

∗
1−zR(ID)d2d

∗
2

=
M · e(g1, g2)αzd1d

∗
1

e(g1, g2)
αzd1d

∗
1+[zR(ID)−zR(ID)]ψ

= M.

ID = ID1 + ID2 + · · ·+ IDn

R = r11 + r21 + · · ·+ rn1

k1 · k2 = g
(α+ri1IDi)d

∗
1−r

i
1d
∗
2

2

·g(r
1
1+r

2
1+···+r

i−1
1 +ri+1

1 +···+rn1 )(ID1+···+IDn)d∗1
2

·gr
i
1(ID1+ID2+···+IDi−1+IDi+1+···+IDn)d∗1

2

·g−(r11+r
2
1+···+r

i−1
1 +ri+1

1 +···+rn1 )d∗2
2

= g
[α+(r11+···+r

n
1 )(ID1+···+IDn)]d∗1−(r11+···+r

n
1 )d∗2

2

5.2 Security Proof

To prove the security of the proposed scheme using the
dual system encryption technique [30], we need to define
the semi-functional keys and semi-functional ciphertexts,
which are only provided for definitional purpose, and are
not part of the scheme.
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Semi-functional keys: A normal key SK ′IDi = {k′1, k′2}
is generated using the algorithm Extract and
v1, v2, v̇1, v̇2 ∈ Zq are randomly selected. The semi-
functional keys are defined as

SK
(SF )
IDi

= {k1, k2} = {k′1 ·g
v1d
∗
3+v2d

∗
4

2 , k′2 ·g
v̇1d
∗
3+v̇2d

∗
4

2 }.

Semi-functional ciphertexts: A normal ciphertext
CT ′ = {C ′1, C ′2} is generated using the algorithm En-
crypt and χ1, χ2 ∈ Zq are randomly selected. The
semi-functional ciphertexts are defined as

CT (SF ) = {C1, C2} = {C ′1, C ′2 · g
χ1d3+χ2d4
1 }.

A hybrid argument over a sequence of games is used in
proof. The first game is the real security game. The ad-
versary has no advantage unconditionally in the last game
and makes qn private keys queries. We show that each
game is indistinguishable from the next. These games are
described as follows:

Gamereal: This game is a real security game.

Gamek: For k = 1, ···, qn, Gamek is the same asGamereal
with the limitations:

1) The challenge ciphertext on the challenge set is
a semi-functional ciphertext.

2) The first k private keys are semi-functional, and
the remaining private keys are normal.

The challenge ciphertext is semi-functional, all the
private keys are normal in Game0, the challenge ci-
phertext, and all the private keys are semi-functional
in Gameqn .

GameFinal: This game is the same as Gameqn except
that the challenge ciphertext is a semi-functional en-
cryption of a random message, instead of one of the
two challenge messages.

In the following four lemmas, we prove that these
games are indistinguishable. Let AdvGamerealA be the ad-

vantage in Gamereal, Adv
Gamek
A be advantage in Gamek,

and Adv
Gamefinal
A be advantage in Gamefinal.

Lemma 1. Assume that there exists an adversary A such
that AdvGamerealA − AdvGame0A = ε, then there exists an
algorithm B0 with advantage AdvDS1B0

= ε in solving the
DS1 problem with (K,N) = (2, 4).

Proof. The algorithm B0 is given D = {G1,G2,GT , e, q,
g1, g2, g

b∗1
2 , g

b∗2
2 , g

b1
1 , · · · , g

b4
1 , U1, U2, µ2} along with T1, T2.

The goal of B0 is to decide whether T1, T2 are distributed
as gτ1b11 , gτ1b21 or gτ1b1+τ2b31 , gτ1b2+τ2b41 .

Setup: B0 randomly selects an invertible matrix A ∈
Z2×2
q and implicitly defines dual orthonormal bases

D = (d1, d2, d3, d4), D∗ = (d∗1, d
∗
2, d
∗
3, d
∗
4) as follows:

d1 = b1, d2 = b2, (d3, d4) = (b3, b4)A,

d∗1 = b∗1, d
∗
2 = b∗2, (d

∗
3, d
∗
4) = (b∗3, b

∗
4)(A−1)T.

B0 randomly chooses a value α ∈ Zq and sends the
public parameters params = {G1,G2,GT , e, q, g1,
g2, e(g1, g2)αd1d

∗
1 , gd11 , g

d2
1 } to the adversary A and

keeps the master key msk = {α, gd
∗
1

2 , g
d∗2
2 } secret.

Query 1: A adaptively makes the private key queries on
the identity IDi ∈ S, where S = {ID1, · · · , IDn}.
B0 runs the algorithm Extract using the master key
to respond to all of A’s queries.

Challenge: A outputs two challenge messages M∗0 ,M
∗
1

and two challenge sets S∗0 = {ID∗01, · · · , ID∗0n}, S∗1 =
{ID∗11, · · ·ID∗1n}. B0 randomly picks a bit θ ∈ {0, 1}
and defines the ciphertext as follows:

C1 = M∗θ · e(T1, g
b∗1
2 )α, C2 = T1 · (T2)ID

∗
θ1+···+ID

∗
θn .

Query 2: A continues to make the private key queries
on IDi where IDi /∈ S∗0 , S∗1 .

Guess: Eventually, A outputs a guess θ′ ∈ {0, 1}. A
wins the game if θ′ = θ.

Let τ1 = z. If T1, T2 are equal to gτ1b11 , gτ1b21 , then
CT = {C1, C2} is a properly distributed normal cipher-
text. Hence, B0 has properly simulated Gamereal.

If T1, T2 are equal to gτ1b1+τ2b31 , gτ1b2+τ2b41 , then CT =
{C1, C2} is a properly distributed semi-functional cipher-
text. There is an additional term of τ2[b3 + b4(ID∗β1 +
· · · + ID∗βn)] in the exponent of C2. To compute the
coefficients in the basis d3, d4, we multiply the ma-
trix A−1 by the transpose of this vector and obtain
τ2A−1[1 + (ID∗β1 + · · ·+ ID∗βn)]T. Since the matrix A is
random, these coefficients are uniformly random accord-
ing to statistical indistinguishability lemma [19]. Hence,
B0 has properly simulated Game0.
B0 can leverage A’s advantage between Gamereal and

Game0 to achieve an advantage AdvDS1B0
= ε in solving

DS1 problem.

Lemma 2. Assume that an adversary A makes at

most qn private key queries and such that Adv
Gamek−1

A −
AdvGamekA = ε. Then there exists an algorithm Bk with
advantage AdvDS2Bk

= ε− 1/q in solving the DS2 problem
with (K,N) = (2, 4).

Proof. The algorithm Bk is given D = {G1,G2,GT , e, q,
g1, g2, g

b1
1 , g

b2
1 , g

b∗1
2 , · · ·, g

b∗4
2 , U1, U2, µ2} along with T1, T2.

The goal of Bk is to decide whether T1, T2 are distributed

as g
τ1b
∗
1

2 , g
τ1b
∗
2

2 or g
τ1b
∗
1+τ2b

∗
3

2 , g
τ1b
∗
2+τ2b

∗
4

2 .

Setup: Bk randomly picks an invertible matrix A ∈ Z2×2
q

and implicitly defines dual orthonormal bases D =
(d1, d2, d3, d4), D∗ = (d∗1, d

∗
2, d
∗
3, d
∗
4) as follows:

d1 = b1, d2 = b2, (d3, d4) = (b3, b4)A,

d∗1 = b∗1, d
∗
2 = b∗2, (d

∗
3, d
∗
4) = (b∗3, b

∗
4)(A−1)T.

Bk randomly chooses a value α ∈ Zq and sends the
public parameters params = {G1,G2,GT , e, q, g1,
g2, e(g1, g2)αd1d

∗
1 , gd11 , g

d2
1 } to the adversary A and

keeps the master key msk = {α, gd
∗
1

2 , g
d∗2
2 } secret.
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Query 1: A adaptively makes the private key queries on
the identity IDi ∈ S, where S = {ID1, · · · , IDn}.
Bk answers as follows:

1) i < k, Bk firstly runs the algorithm Extract
using the master key to produce the normal pri-

vate keys. Since Bk knows g
d∗3
2 , g

d∗4
2 , it can easily

produce the semi-functional private keys.

2) i > k, Bk runs the algorithm Extract using the
master key to produce the normal private keys.

3) i = k, Bk randomly chooses r11, · · · , ri−11 , ri+1
1 ,

· · · , rn1 ∈ Zq and implicitly sets ri1 = τ1 and
computes SKIDi = {k1, k2} as follows:

k1 = g
αb∗1
2 · T IDi1 · T−12 ,

k2 = g
(r11+···+r

i−1
1 +ri+1

1 +···+rn1 )(ID1+···+IDn)]b∗1
2

·g−(r
1
1+···+r

i−1
1 +ri+1

1 +···+rn1 )b∗2
2

·T (ID1+···+IDi−1+IDi+1+···+IDn)
1

If T1, T2 are equal to g
τ1b
∗
1

2 , g
τ1b
∗
2

2 , SKIDi =
{k1, k2} is a properly distributed normal key.

If T1, T2 are equal to g
τ1b
∗
1+τ2b

∗
3

2 , g
τ1b
∗
2+τ2b

∗
4

2 ,
SKIDi = {k1, k2} is a semi-functional key,
whose exponent vector includes τ2[(ID1 + · · ·+
IDn)b∗3 − b∗4] as its component in the span
of b∗3, b∗4. To compute the coefficients in
the basis d3, d4, we multiply the matrix AT

by the transpose of this vector and obtain
τ2AT[(ID1 + · · ·+ IDn)− 1]T.

Challenge: A outputs two challenge messages M∗0 ,M
∗
1

and two challenge sets S∗0 = {ID∗01, · · · , ID∗0n},
S∗1 = {ID∗11, · · · , ID∗1n}. Bk randomly picks a bit
θ ∈ {0, 1} and defines the semi-functional ciphertext
as follows:

C1 = M∗θ · e(U1, g
b∗1
2 )α, C2 = U1 · U

(ID∗θ1+···+ID
∗
θn)

2 .

Bk sets z = u1. To calculate the coefficients of
the basis d3, d4, we multiply the matrix A−1 by
the vector u2[1 + (ID∗θ1 + · · · + ID∗θn)] and obtain
u2A−1[1 + (ID∗θ1 + · · ·+ ID∗θn)]. Since A is random,
these coefficients of d3, d4 are uniformly random ac-
cording to statistical indistinguishability lemma [19].

Query 2: A continues to make the private key queries
on IDi where IDi /∈ S∗0 , S∗1 .

Guess: Eventually, A outputs a guess θ′ ∈ {0, 1}. A
wins the game if θ′ = θ.

Therefore, according to the distribution of T1 and T2,
Bk has properly simulated either Gamek−1 or Gamek.
Bk can leverage A’s advantage between these games to
achieve an advantage AdvDS2Bk

= ε − 1/q in solving the
DS2 problem.

Lemma 3. For any adversary A, we have Adv
Gameqn
A =

AdvGameFinalA .

Proof. We prove that the joint distributions of

{params, {SK(SF )
IDli
}l∈[1,qn], CT

(SF )
ID∗θi
} in Gameqn and that

of {params, {SK(SF )
IDli
}l∈[1,qn], CT

(R)
ID∗Ri
} in GameFinal

are equivalent for A’s view, where CT
(R)
ID∗Ri

is a semi-

functional encryption of a random message.

We randomly pick a matrix A = (ξi,j) ∈ Z2×2
q and

define new dual orthonormal bases F = (f1, · · · , f4) and
F∗ = (f∗1 , · · · , f∗4 ) as follows:


f1
f2
f3
f4

 =


1 0 0 0
0 1 0 0
ξ1,1 ξ1,2 1 0
ξ2,1 ξ2,2 0 1




d1
d2
d3
d4

 ,


f∗1
f∗2
f∗3
f∗4

 =


1 0 −ξ1,1 −ξ2,1
0 1 −ξ1,2 −ξ2,2
0 0 1 0
0 0 0 1




d∗1
d∗2
d∗3
d∗4



It is easy to verify that F and F∗ are also dual orthonor-
mal, and are distributed the same as D and D∗.

The system parameters, private keys and the chal-

lenge ciphertext {params, {SK(SF )
IDli
}l∈[1,qn], CT

(SF )
ID∗θi
} in

Gameqn are expressed over the bases D and D∗ as fol-
lows:

params = {G1,G2,GT , g1, g2, e, q, e(g1, g2)αd1d
∗
1 , gd11 , g

d2
1 }

{SK(SF )
IDli

}l∈[1,qn] =

k1 = g
(α+rilIDli)d

∗
1−r

i
ld
∗
2+v1,ld

∗
3+v2,ld

∗
4

2

k2 = g
(r1l +···+r

i−1
l

+ri+1
l

+···+rnl )(IDl1+···+IDln)d∗1
2

·gr
i
l (IDl1+···+IDli−1+IDli+1+···+IDln)d∗1

2

·g−(r1l +···+r
i−1
l

+ri+1
l

+···+rnl )d∗2
2

·gv̇1,ld
∗
3+v̇2,ld

∗
4

2


l∈[1,qn]

CT
(SF )
ID∗θi

= {C1 = M∗θ · e(g1, g2)αzd1d
∗
1 ,

C2 = g
zd1+z(ID

∗
θ1+···+ID

∗
θn)]d2+χ1d3+χ2d4

1 }.

They are expressed over the bases F and F∗ as follows:

params = {G1,G2,GT , g1, g2, e, q, e(g1, g2)αf1f
∗
1 , gf11 , g

f2
1 }

{SK(SF )
IDli

}l∈[1,qn] =

k1 = g
(α+rilIDli)f

∗
1−r

i
lf
∗
2 +v′1,lf

∗
3 +v′2,lf

∗
4

2

k2 = g
(r1l +···+r

i−1
l

+ri+1
l

+···+rnl )(IDl1+···+IDln)f∗1
2

·gr
i
l (IDl1+···+IDli−1+IDli+1+···+IDln)f∗1

2

·g−(r1l +···+r
i−1
l

+ri+1
l

+···+rnl )f∗2
2

·g
v̇′1,lf

∗
3 +v̇′2,lf

∗
4

2


l∈[1,qn]

CT
(SF )
ID∗θi

= {C1 = M∗θ · e(g1, g2)αzf1f
∗
1 ,

C2 = g
z′1f1+z

′
2f2+χ1f3+χ2f4

1 }.

where

z′1 = z − χ1ξ1,1 − χ2ξ2,1,

z′2 = z(ID∗θ1 + · · ·+ ID∗θn)− χ1ξ1,2 − χ2ξ2,2,
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Table 1: Comparison I of IBBE schemes
Schemes System Parameter Size Private Key Size Ciphertext Size Decryption

[3] |G1|+ (m+ 1)|G2|+ |GT | |G1| |G1|+ |G2|+ |GT | 2P
[8]2 (m+ 1)|G0|+ |GT | |G0| 2|G0|+ |GT | 2P
[8]3 4m|G0| 2|G0| 4|G0|+ |GT | 2P
[25] 7|G0|+ 3|Z∗q | (|S|+ 2)|G0| 5|G0|+ |Z∗q | 3P
[33] (m+ 2)|G0|+ |GT | 3|G0| 3|G0| 2P
[13] (2m+ 3)|G0|+ |GT | (|S|+ 4)|G0| 4|G0|+ |GT | 4P
[35] (m+ 4)|G0|+ |GT | (|S|+ 1)|G0| 3|G0| 2P
[31] m(|G1|+ |G2|) + |GT | 3|S||G1| |G1|+|G2|+|GT | 2P
[26] |G1|+m|G2|+ |GT | |S||G2| |S||G1|+|GT | 2P
[9] |G0|+ |GT |+ |Z∗q | |G0| |S||GT| P
[10] 5|G0| |G0| 3|G0| + (|S|+ 1)|Z∗q | 2P
[32] |G0|+ |GT | |G0| 2|G0| + 2|S||GT| 2P
[11] 3|G0| 2|G0| 2|G0| + 2|S||Z∗q | 2P
[23] 24|G0|+ |GT | 6|G0| 6|G0|+ |GT | 6P
Our 8|G1|+ |GT | 4|G2| 4|G1|+ |GT | 4P



v′1,l = v1,l + (α+ rilIDli)ξ1,1 − r
i
lξ1,2

v′2,l = v2,l + (α+ rilIDli)ξ2,1 − r
i
lξ2,2

v̇′1,l = v̇1,l + (r1l + · · ·+ ri−1
l + ri+1

l + · · ·+ rnl )

(IDl1 + · · ·+ IDln)ξ1,1
+ril (IDl1 + · · ·+ IDli−1 + IDli+1 + · · ·+ IDln)ξ1,1
−(r1l + · · ·+ ri−1

l + ri+1
l + · · ·+ rnl )ξ1,2

v̇′2,l = v̇2,l + (r1l + · · ·+ ri−1
l + ri+1

l + · · ·+ rnl )

(IDl1 + · · ·+ IDln)ξ2,1
+ril (IDl1 + · · ·+ IDli−1 + IDli+1 + · · ·+ IDln)ξ2,1
−(r1l + · · ·+ ri−1

l + ri+1
l + · · ·+ rnl )ξ2,2


l∈[1,qn]

which are all uniformly distributed because ξ1,1, ξ1,2, ξ2,1,
ξ2,2, v1,1, v2,1, · · ·, v1,qn , v2,qn , v̇1,1, v̇2,1, · · · , v̇1,qn , v̇2,qn are
all uniformly chosen from Zq.

That is to say, the coefficients z[1, (ID∗β1+ · · ·+ID∗βn)]
of d1, d2 in the C2 term of the challenge ciphertext is
changed to random coefficients (z′1, z

′
2) ∈ Znq of f1, f2, thus

the challenge ciphertext can be seen as a semi-functional
encryption of a random message. Furthermore, all coef-

ficients {(v̇′1,l, v̇′2,l)}l∈[1,qn] of f∗3 , f
∗
4 in the SK

(SF )
IDli

are all
uniformly distributed because {(v̇1,l, v̇2,l)}l∈[1,qn] of d∗3, d

∗
4

are all independent random values. Therefore,

{params, {SK(SF )
IDli
}l∈[1,qn], CT

(SF )
ID∗θi
}

expressed over bases F and F∗ is properly distributed as

{params, {SK(SF )
IDli
}l∈[1,qn], CT

(R)
ID∗Ri
}

in GameFinal.

In terms of A’s view, both (D,D∗) and (F,F∗) are iden-
tical under the same public system parameters. Hence,
the private keys and challenge ciphertext can be depicted
in two manners, in Gameqn over bases (D,D∗) and in
GameFinal over bases (F,F∗). Therefore, Gameqn and
GameFinal are statistically indistinguishable.

Lemma 4. For any adversary A, we have AdvGameFinalA
= 0.

Proof. In GameFinal, the value θ selected is inde-
pendent from the adversary A’s view. Therefore,
AdvGameFinalA (λ) = 0. The challenge ciphertext is a semi-
functional encryption of a random message, independent
of the two challenge messages and the challenge iden-
tity sets chosen by A. Therefore, the proposed scheme
is anonymous (weakly attribute-hiding).

Theorem 1. The proposed scheme is fully secure
and anonymous under the symmetric external Diffie-
Hellman assumption. Specifically, if any adversary A
breaks the proposed scheme, there exist the algorithms
B0, B1, · · · , Bqn with advantage

AdvA ≤ AdvDS1B0
+

qn∑
k=1

AdvDS2Bk
+ qn

q ,

whose running time is essentially equal to that of A.

Proof. From Lemma 1-4, we obtain Theorem 1.

5.3 Efficiency

We compare the proposed scheme with the existing re-
lated works [3, 8–11, 13, 23, 25, 26, 31–33, 35] in terms of
performance and security. We denote by m and |S| the
maximal size of receivers set and that for one encryp-
tion, respectively. We also denote by |GX | and |G0| the
length of the group GX and the group of symmetric bi-
linear pairs, where X ∈ {0, 1, 2, T}. Let P the pairing
computation.

We summarize the comparisons of the fifteen schemes
in Tables 1-2. The System Parameter Size column, Pri-
vate Key Size column and Ciphertext Size column indi-
cates the length of system parameter, private key and
ciphertext, respectively. The Decryption stands for the
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Table 2: Comparison II of IBBE schemes
Schemes Hard Problem Security Model Standard Model Prime Order Group Anonymity

[3] D-GDHE Selective Security ×
√

×
[8]2 D-BDHE Fully Secure

√ √
×

[8]3 D-BDHE Fully Secure
√ √

×
[25] D-TBDE Fully Secure

√ √
×

[33] DLIN Fully Secure
√

× ×
[13] GSD Fully Secure

√
× ×

[35] DLIN Fully Secure
√

×
√

[31] D-BDHE Fully Secure
√ √ √

[26] DBDH Fully Secure ×
√ √

[9] DBDH Fully Secure ×
√ √

[10] DBDH Fully Secure ×
√ √

[32] DBDH Selective Secure ×
√ √

[11] DBDH Fully Secure ×
√ √

[23] DLIN Fully Secure
√ √

×
Our SXDH Fully Secure

√ √ √

number of pairing computation in the algorithm decryp-
tion. The Hard Problem column specifies the security
assumption that the schemes rely on. The Security Model
column shows the selective security or fully secure (adap-
tive security) that the schemes achieve. The Standard
Model column demonstrates whether the scheme is se-
cure in standard model. The Prime Order Group col-
umn means whether the scheme is secure in the group of
prime order. The Anonymity column describes whether
the scheme achieves anonymity property. The entry

√

indicates “satisfy” and × refers to “not satisfy”.

From Tables 1-2, we can see that the proposed scheme
is the provably secure (fully secure) anonymous IBBE
scheme. We note that the computation of the pairing
is the most consuming. Although there have been many
papers discussing the complexity of pairings and how to
speed up the pairing computation, the pairing computa-
tion is the operation which by far takes the most running
time. In decryption phase, our scheme needs 4 pairing
computations and is more efficient than the scheme in [23]
that needs 6 pairing computations. Moreover, the pro-
posed scheme satisfies the anonymity. Thus, our scheme
outperforms the scheme in [23] in terms of security and
computational efficiency in decryption phase. At the same
time, although the scheme in [9] needs one pairing com-
putation, the schemes in [3,8,10,11,26,31–33,35] need two
pairing computations and the scheme in [25] needs three
pairing computations, the schemes in [3, 8, 26, 31, 33, 35]
haven’t constant-size system parameters, the schemes
in [25, 26, 31, 35] haven’t constant-size private keys, and
the schemes in [10, 11, 32] haven’t constant-size cipher-
texts. But, the proposed scheme can simultaneously sat-
isfy constant-size system parameters, private keys and ci-
phertexts.

We assume that |Z∗q | = 256 bits. Under the level of
256-bit AES security, the bit length of group |G0| is 2560
bits, the bit length of group |G1| is 640 bits, the bit length

of group |G2| is 2560 bits, the bit length of group |GT | is
15360 bits.

We give the relationship between the system param-
eter size and the maximal size of the set of receivers in
Figure 2, the relationship between the private key size
and number of recipients in a single encryption process in
Figure 3 and the relationship between the ciphertext size
and number of recipients in a single encryption process in
Figure 4.
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Figure 2: System parameter size versus maximal size of
the set of receivers

From Figures 2-4, we find that the system parameter
size, the private key size and the ciphertext size in the
proposed scheme are constant and smaller than that in
scheme [23]; the private key size in schemes [3,8–11,32,33]
are constant and smaller than that of the proposed
scheme, but the system parameter size increase quickly
when the maximal size of receivers set become bigger in
schemes [3, 8, 33] and the ciphertext size increase quickly
when the number of recipients in a single encryption pro-
cess become bigger in schemes [9–11, 32]; the ciphertext
size in schemes [25,35] are constant and smaller than the
proposed scheme, however the private key size increase
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quickly when the number of recipients in a single encryp-
tion process become bigger in schemes [25,35]; the system
parameter size and the private key size are not constant in
schemes [26, 31]. Therefore, our proposed scheme is fully
secure anonymous IBBE scheme with group of prime or-
der in the standard model, which satisfies simultaneously
the constant-size of system parameters, private keys and
ciphertexts.
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Figure 3: Private key size versus number of recipients in
a single encryption process
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Figure 4: Ciphertext size versus number of recipients in
a single encryption process

6 Conclusion

In this paper, we propose a new anonymous IBBE scheme
with group of prime order using the asymmetric bilin-
ear pairing. Under the dual system encryption method-
ology, we showed that the proposed scheme satisfies the
fully secure in the standard model. In addition, the pro-
posed scheme has constant size system parameters, pri-
vate keys and ciphertexts, and achieves the receiver iden-
tity anonymity.
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