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Abstract

Malicious software events are usually stealthy and thus
challenging to detect. A triggering relation can be as-
sumed to be causal and to create a temporal relation-
ship between the events. For example, in a spoofed TCP
DDoS flooding attack, the attacker manipulates a three-
way handshake procedure. During this attack, the num-
ber of spoofed IP addresses and the number of open ports
used by the attacker follow a causal relationship. This pa-
per demonstrates the effectiveness of Granger Causality
in confirming TCP flooding attacks. We focus on discov-
ering the presence of TCP-SYN flooding DDoS activity
in network traffic by analyzing causal information in near
real time.
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1 Introduction

Most DNS reflection attacks are currently caused by
spoofing the source IP address to flood the Internet. SYN
floods, for example, are spoofed TCP floods, in which the
source of the IP packets appears to be different from their
actual origin. Figure 1 shows that SYN and TCP attacks
are predominant according to the Kaspersky DDoS Intel-
ligence Report for the first quarter 2016 [25]. If the servers
are compromised, they too can send spoofed packets to
create a large attack. In the third quarter of 2016, there
was a huge intensity TCP-SYN flood attack of approxi-
mately 60 giga bytes per second and 150 million packets
per second, as rated by Verisign [43]. It was bigger than
the previous biggest at 125 million packets per second
during the fourth quarter of 2015.

In the recent past, a good number of efforts to provide
real time detection or mitigation of DDoS attacks with
adequate accuracy have been proposed [2, 7, 8, 10, 18, 39].
However, a report of the United States Computer Emer-
gency Readiness Team (US-CERT), has recently observed
that an effective DDoS defense solution that can handle
DDoS attacks of all types well, is still lacking [42]. In

Figure 1: Recent DDoS attack statistics

addition, with the evolution of botnet technology, it has
become even more difficult to provide real time defense.

To investigate into causal or correlational behavior in
the network traffic during a SYN flood attack, we have
to analyze the traffic if the intrusion detection systems
(IDS) system generates any alarm about an abnormal
situation. It is often a challenge to effectively deal with
the large number of alerts generated by intrusion detec-
tion systems. Alert correlation is necessary to discover
true anomalous behaviors. Generally, IDSs aim to un-
earth anomalies [11, 14, 30, 37]. They raise alerts for any
anomaly they find, when they find it, and do so indepen-
dently of all other anomalies they may find. However,
going beyond individual alerts, it may be possible to find
logical evidence of connections among them. Sometime,
attacks may be intensive with a large number of gener-
ated alerts. Actual alerts can also be mixed with false
alerts. The sheer volume of alerts is likely to become un-
manageable. As a result, it becomes difficult to evaluate
alerts properly and quickly to take appropriate actions,
and hence to respond properly.

1.1 Motivation

It is necessary to enhance the performance of alert cor-
relation and also to minimize the damage from attacks.
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Some techniques for alert correlation have been presented
by Ning et al. [29]. These techniques are two complemen-
tary alert correlation methods based on alert attributes’
similarities, and attack prerequisites and consequences.
In particular, the work is based on the indirect causal
relationships between alerts.

Our work’s aim is to confirm the presence of TCP-
SYN flooding DDoS activity by analyzing causal infor-
mation for alert analysis in the network traffic using
Granger Causality. In varied fields like economics [20],
neuroscience [13] and cardiovascular control [31], Granger
Causality analysis has been used to study data series to
uncover the presence of causal behavior.

1.2 Background

The components of an intrusion detection system cooper-
atively gather and produce a concise summary of events
on the network with respect to security. The IDS also
establishes correlation among the collected alerts. To do
so, it may use an alert correlation procedure. This corre-
lation procedure can be divided into multiple steps where
each step performs a part of the whole task. The perfor-
mance of the correlation process depends upon the serial
execution by these steps. The total time needed can be
derived by adding the number of processed alerts by each
step.

Elshoush and Osman [15] propose a new correlation
framework based on a model that reduces the number of
processed alerts as early as possible by discarding irrele-
vant and false alerts in the first phase. Modified algorithm
for fusing the alerts is also proposed. The intruders’ in-
tentions are grouped into attack scenarios and thus used
to detect future attacks.

Li and Tian [28] propose an alert correlation approach
based on their XSWRL ontology. They focus on how to
develop the intrusion alert correlation system according
to an alert correlation approach. They use a system with
multiple agents and sensors. The sensors collect security
relevant information, and the agents process the infor-
mation. The State Sensor collects information about the
security state and the Local State Agent and Center State
Agent pre-process the security state information and con-
vert it to ontology. The Attack Sensor collects informa-
tion about the attack, and the Local Alert Agent and
Center Alert Agent pre-process the alert information and
convert it to ontology. The Attack Correlator correlates
the attacks and outputs the attack sessions.

Bateni et al. [4] discuss an automated alert correlation
process, in which they use Fuzzy Logic [26] and an Artifi-
cial Immune System (AIS) [22]. This approach discovers
and learns the degree of correlation between two alerts.
This knowledge is used to understand the attack scenar-
ios. Based on its fuzzy rules, the system computes the
correlation probabilities.

Yu and Frincke [45] propose a novel framework called
Hidden Colored Petri-Net for Alert Correlation and Un-
derstanding (HCPN-ACU). According to them, a system

misuser usually follows a sequential procedure to violate
security policies creating a sequence with earlier steps
preparing for the later ones. These steps may result in
alerts. These alerts can be used to discover the attacker’s
action.

Zhu and Ghorbani [46] demonstrate a method using
learning techniques: Multilayer Perceptrons (MLP) [34]
and Support Vector Machines (SVM) [21]. The outputs
of these techniques can be converted to probabilities and
then combined for evaluation of correlation between pre-
vious alerts and current alerts. This suggests a causal
relationship between two alerts, helping in the construct-
ing attack scenarios.

Roschke et al. [33] use prior knowledge about the target
system for an efficient correlation process. They design a
correlation algorithm based on attack graphs (AG). The
existing vulnerabilities and their AGs are used for rep-
resentation of environment information and potential ex-
ploits.

Kang and Mohaisen [24] design a system to reduce the
number of false positive alerts. These false positive alerts
are generated by the existing DDoS mitigation methods
along with true alerts. The authors perform a preliminary
analysis of real DDoS data. They also propose a system
that uses ensemble classifier techniques to work in tandem
with the existing rule-based system to ease the burden on
the mitigation team.

Wang and Chiou [44] develop a system to extract at-
tack strategies using dynamic feature weights. It extracts
attack scenarios from attackers by observing the connec-
tivity and relationships among the receiving alerts.

GhasemiGol and Bafghi [17] develop an intrusion-alert
correlation system based on the the information found in
the raw alerts without using any pre-constructed knowl-
edge. They define the concept of alert partial entropy and
use it to find alert clusters with the same information.
These alert clusters are represented as hyper-alerts, and
a graph of hyper alerts provide a global view of intrusion
alerts.

Raftopoulos and Dimitropoulos [32] introduce an
IDS alert correlator called Extrusion Detection Guard
(EDGe). It detects infected hosts within a monitored
network from IDS alerts. EDGe detects several malwares
that exhibit multi-stage behavior. It can also identify the
family and even variants of certain malware to re-mediate
and prioritize incidents.

1.3 Contribution

We make the following contributions in this paper.

• We introduce TCP-SYN flooding DDoS attack con-
firmation mechanism based on the causal behavior in
the network traffic using Granger causality.

• We establish and validate the proposed method using
benchmark and our own DDoS traffic datasets.
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Figure 2: Example of Granger causality

1.4 Organization

The organization of the paper is as follows. Section 2 in-
troduces Granger Causality and TCP Flooding attacks.
Section 3 presents the framework for detection of TCP-
SYN flooding attacks and experimental results. Finally,
Section 4 provides the concluding remarks and future
scope of the work.

2 Granger Causality and TCP
Flooding

2.1 Granger Causality

Detecting causal behavior among variables is an impor-
tant issue in statistics, although it remains a problem
without a guaranteed solution. Granger causality was
introduced in 1960 for testing causal behavior among
variables and applications of Granger causality in neu-
roscience have recently become popular. According to
Granger, the causality relationship follows two princi-
ples: [19],

1) The cause happens prior to its effect, and

2) Unique information is contained in the cause about
the future values of its effect.

Granger causality can be used to find causal relation
among variables. The concept of Granger causality is
based on the ability to predict. in Figure 2, we see if
a data series X “Granger-Causes” (“G-Causes”) another
data series Y, we can predict that past values of X might
contain information to predict Y, and we can also predict
beyond past values of Y alone. So, using the F-test or
the t-test we can devise a G-Cause test as a hypothesis
test, as shown in Figure 3, to identify whether one time
series can forecast another time series. Suppose that X
and Y are two stationary time series that are statistically

Figure 3: The mathematical picture

dependent on each other. When is it justified to say that
the one series X causes the other series Y? Questions of
this kind are important when planning to devise actions,
implementing new policies, or subjecting patients to a
treatment. Nonetheless, the notion of causality has been
evasive and formal approaches to define causality have
been much debated and criticized.

Granger Causality vs Causality

• Granger Causality measures whether X happens be-
fore Y and helps predict Y.

• X Granger-Causing Y may entail real causality, but
we can’t be sure.

• If X does not Granger-Cause y, we can be more con-
fident about X does not cause Y.

2.2 DDoS attack

DDoS attacks are intended to deny legitimate users access
to network resources. As shown in Figure 4, an attacker
launches the attack through some handlers and zombies
creating a botnet. In a botnet, there may be hundreds or
thousands of compromised sources that generating volu-
minous traffic to flood the victim. It is extremely difficult
to differentiate legitimate traffic from attack traffic. The
sources may be spread across all over the globe [1,3,35,40].
In early days, DDoS attacks were launched in 4 steps:
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Figure 4: DDoS attack scenario

scanning, trade-off, deployment and propagation. Grad-
ually, automation has been introduced into each of these
steps, although the steps are still similar.

1) The attacker collects network configuration informa-
tion using port scanners to identify vulnerabilities in
the network.

2) The attacker exploits identified vulnerabilities to
launch the attacks.

3) If the attack launch is successful, the attacker in-
stalls additional software to manage continuous ac-
cess channels in the network.

4) The attacker tries to clean up any evidence left due
to the previous actions. In this step, daemons that
crashed (during the second step) are restarted, logs
are cleared and modified system software designed
to hide the presence of rogue software from normal
system commands is installed.

2.2.1 TCP SYN Floods

A SYN flood is a form of denial-of-service attack in which
an attacker sends a succession of SYN requests to a tar-
get’s system in an attempt to consume enough server re-
sources to make the system unresponsive to legitimate
traffic. Manipulating the 3-way handshake in a TCP con-
nection, an attacker sends a lot of ordinary SYN segments
to the victim machine to create a TCP flooding attack. A
TCP SYN flood is successful when the victim machine’s
TCP connection queue gets exhausted, thus denying legit-
imate requests. A TCP flooding attack at a medium rate
can also create disturbances in routers. TCP SYN flood-
ing is an asymmetric attack because a weak attacker can
halt a very powerful system. When a lot of users simul-
taneously access a website for the same resource, it can
lead to unavailability of the website temporarily creating
flash traffic [5,6].

Figure 6: Framework for attack confirmation

2.3 Causality in TCP Flooding Traffic

As we have observed already, during a TCP flooding
attack, the number of unknown IP addresses changes
rapidly, and the number of ports used by these IP ad-
dresses is much higher, and they change rapidly. We hy-
pothesize that there is a causal relationship between the
entropies of source-IP variation and port variation. Dur-
ing the attack time frame, the variations in entropy affect
each other. The concept of Granger causality gives us a
way to analyze the pattern of IP address variation entropy
and port number variation entropy when abnormal traffic
is injected in to the network.

3 Framework and Results

We define the problem as follows.

Problem Statement: The objective is to discover
TCP flooding DDoS attacks in network traffic, whether
the attack traffic is low rate or high rate by evaluating
the causality in network traffic using Granger causality.

Datasets and Experimental Setup: We use MAT-
LAB R2016a 64 bit edition for our experiments, and per-
form our experiments on a workstation with a 2.30Ghz
processor, 64 GB RAM and a 64 bit Windows 10 op-
erating system. In our experiments, we consider TCP
traffic from four standard benchmark datasets. The first
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Figure 5: Experimental setup

one is the MIT-DARPA dataset [27] of normal and at-
tack traffic. The second one is CAIDA-2007 DDoS attack
traffic [16]. The MIT–DARPA and CAIDA–2007 datasets
contain both low rate and high rate DDoS traffic traces.
The third dataset is the ISCX-IDS dataset [41]. The last
one is the TU-DDoS dataset for which we use the TU-
CANNON tool for generation of the TCP flooding traffic
using our own environment as shown in Figure 5 [9].

TU–CANNON Tool: Two main programs are exe-
cuted in this traffic generation tool, viz., a server pro-
gram and a client program. Using the server program,
communication is established with the machines (bots)
in the test-bed. This program can be used to generate
different traffic streams having different properties such
as the protocol type (TCP, UDP and ICMP), the attack
pattern (constant rate attack, increasing rate attack and
pulsing attack) and the type of source IP (actual IP of
the machine or randomly generated, valid but spoofed IP
address), the number of threads (where each thread ex-
ecutes one copy of the slave program inside a single bot
machine) and the range of ports of the victim to send
the traffic [3]. As shown in Figure 5, we divide the com-
puters for three separate functions. One computer exe-
cutes the TU–CANNON master program and this com-
puter recruits four other computers as slave, where the
TU–CANNON slave program executes. When the mas-
ter starts, it waits for slaves to connect to it. The last
computer captures the attack traffic. The client program
is used to send the attack traffic as per the command sent

from the master. When the client program starts, it con-
nects to the server whose IP is specified as input to the
client program.

3.1 Procedural Framework and Results

Figure 6 shows the framework of our method as well as the
sequence of steps in our algorithmic procedure. There are
four basic steps, viz., (a) Pre-processing, (b) Aggregation,
(c) Attack strategy analysis, and (d) Attack confirmation.
The execution processes and the results are discussed be-
low.

3.1.1 Pre-processing

To establish the causal behavior in the network traffic,
the arrival time of the packets, the source address and the
destination port need to be considered in our approach.
Source IP values are in IPV4 format. Our procedure isn’t
concerned about the format of the IP addresses, whether
in IPV4 or IPV6 format, as we convert them to decimal.

3.1.2 Aggregation

In aggregation, the main focus is all about gathering simi-
lar alerts together. We can see different definitions of alert
aggregation in the literature. According to some, alerts
are said to be similar to each other if their attributes are
similar except time difference. On the other hand, some
enhance the concept of aggregation as clustering or group-
ing all the alerts having the same root cause. Due to the
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Figure 7: Hurst parameter values for different types of traffic

Table 1: Success rates for different network traf-
fic/datasets

Dataset/Traffic Used Accept/Reject
NULL Hypothesis

Success
rate
(%)

MIT–DARPA Normal
Traffic

Accept 96

ISCX Normal Traffic Accept 97
MIT DARPA Attack
Traffic

Reject 97

CAIDA–2007 High-
rate Attack Traffic

Reject 97

CAIDA–2007 Low-
rate Attack Traffic

Reject 98

ISCX Attack Traffic Reject 95
TUCANNON Gener-
ated

Reject 98

large number of alerts produced by low-level sensors for
a single malicious activity, alert aggregation has proven
to be highly effective in reducing alert volume. Similar
alerts tend to have similar root causes or similar effects
on resources of the Internet. Clustered alerts are suitable
for analysis by administrators and facilitate analysis for
identification of causality or false positive analysis. In our
experiment, we use Hurst parameter-based self-similarity
evaluation of traffic with abnormal patterns [12]. Nor-
mal and abnormal traffic patterns are grouped depending
upon the evaluated Hurst parameter value. In Figure 7,
we can distinctly separate normal and abnormal traffic
based on the Hurst value. Our aim is not only to sep-
arate normal and abnormal traffic, but also to confirm
the presence of TCP flooding attack by analyzing causal
behavior of the abnormal traffic.

Figure 8: Source IP and port entropy variations for nor-
mal traffic

Figure 9: Source IP and port entropy variations for attack
traffic
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Table 2: Execution time for different attack traffic datasets with varying numbers of incoming packets

Datasets
Time (in Sec.)

500 Packets 1000 Packets 2000 Packets
MIT–DARPA Normal 0.080 0.118 0.122
ISCX Normal 0.078 0.115 0.119
MIT DARPA Attack 0.082 0.120 0.125
CAIDA–2017 High–rate Attack 0.080 0.119 0.121
CAIDA–2017 Low–rate Attack 0.079 0.117 0.120
ISCX Attack 0.081 0.118 0.123
TU-CANNON Generated Attack 0.084 0.120 0.122

3.1.3 Attack Strategy Analysis

If a time series is a stationary process, statistical t-test
is performed using the level values of two (or more) vari-
ables. If the variables are non-stationary, then the test is
performed using the first (or higher) differences. Any par-
ticularly lagging value of one of the variables is retained
in the regression if

1) It is significant according to a t-test, and

2) It and the other lagging values of the variable jointly
add explanatory power to the model according to an
F-test.

The null hypothesis of Granger causality is not rejected if
and only if no values of an explanatory variable have been
retained in the regression. We use F-test for evaluation of
Granger causality. Table 1 shows acceptability of the null
hypothesis and also success rate of acceptance or rejection
of null hypothesis for different network traffic datasets.

[F, CV]=Grangercause(X, Y, α, Maxlag): The
various terms in the formula are explained below. From
F-test, we can obtain two output values: F and CV (Crit-
ical Value).

X: Port entropy variation in abnormal traffic group.

Y: Source IP address entropy variation in the abnormal
traffic group. Both entropy values, X and Y follow
Shannon entrop [38].

α: Value of the significance level can be set by the user
(α = 0.05). The significance level, denoted as alpha
(α), is the probability of rejecting the null hypothe-
sis when it is true. For example, a significance level
of 0.05 indicates a 5 percentage risk of concluding
that a difference exists when there is no actual dif-
ference [23].

Maxlag: Maximum lag value among two time series.
Optimum lag length selection is chosen using the
Bayesian Information Criterion [36].

Output: If F > CV, we reject the null hypothesis that
Source IP address entropy does not Granger-Cause
Port entropy variation. Otherwise, we accept the null
hypothesis.

3.1.4 Attack Confirmation

The source IP variation entropy and port variation en-
tropy are shown in Figures 8 and 9, for the attack traffic
generated in our setup and for normal traffic, respectively.
Based on the F-test, we confirm whether the TCP Flood-
ing attack has occurred or not in the network traffic. If
the null hypothesis gets accepted, it confirms the presence
of TCP flooding attack. The success rates of acceptance
or rejection of NULL hypothesis for different datasets has
been tabulated in Table 1. A couple of the datasets con-
tain high-rate and low-rate DDoS traffic traces. In Ta-
ble 2, we show execution times for different attack traffic
datasets with varying numbers of incoming packets.

3.2 Comparison

In the past, several authors have explored alert correla-
tion for network traffic analysis to detect attack scenarios.
However, our approach in this paper differs significantly
from [29], [45], [46], [4], [17], and [44]. In Table 3, we show
a comparison of our method with these methods.

4 Conclusion and Future Direc-
tion

To confirm the occurrence of a TCP flooding DDoS at-
tack, it is essential to analyze the abnormal traffic as
quickly as possible. In network anomaly detection, it is
highly beneficial to achieve false positive and false neg-
ative rates as close to zero as possible. Keeping this in
mind, we develop our approach to confirm the presence of
TCP flooding DDoS attacks based on causal behavior in
network traffic using Granger causality. We demonstrate
that the method performs satisfactorily over benchmark
datasets. The F-test evaluation on traffic datasets con-
firms the attack in the traffic distinctly.

In future, we plan to study the causal behavior in other
flooding DDoS attack types. We also aim to explore the
applicability of our approach in Ad–hoc network.
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Table 3: Comparison with [29], [45], [46], [4], [17], and [44]
Author, Year Aim Approach Dataset(s)

Used
Performance

Ning et
al. [29], 2004

To build attack scenarios Integration of comple-
mentary alert correla-
tion

MIT-
DARPA
2000

Construction of integrated
correlation graph

Yu and
Frincke [45],
2004

To create a model for
attacker behaviors, intru-
sion prerequisites and con-
sequences, security poli-
cies and alerts

Construction of a
framework, using Hid-
den Colored PetriNet
for alert correlation
and understanding

MIT-
DARPA
2000

False alert rate is 93-95 %

Zhu and
Ghor-
bani [46],
2006

To extract attack strate-
gies automatically from a
large volume of intrusion
alerts

Use of Multilayer Per-
ceptron (MLP) and
Support Vector Ma-
chine (SVM)

MIT-
DARPA
2000

Construction of graph rep-
resenting attack strate-
gies, the training results
of MLP and SVM are
0.0002-0.9900 and 0.1252-
0.9926, the correlation
weight in alert correla-
tion matrix (ACM) is in
range from 0.01 to 3533.93
and the forward correla-
tion strength in ACM is in
range from 0 to 0.857

Bateni et
al. [4], 2013

To build automated alert
correlation

Use of Artificial Im-
mune System and
Fuzzy Logic

MIT-
DARPA
2000

For 1000 alert, execution
time is 19 seconds and
for 2000 alerts, execution
time is 76 seconds

GhasemiGol
and Ghaemi-
Bafghi [17],
2014

To build an entropy-based
alert correlation system

Use of prior informa-
tion in raw alerts with-
out using any prede-
fined knowledge

MIT-
DARPA
2000

Reduction ratio of 99.98%

Wang and
Chiou [44],
2016

To build an alert corre-
lation system with auto-
matic extraction of attack
strategies

Use of equality con-
straint sets (ECS) and
storage in the alert cor-
relation matrix (ACM)

MIT-
DARPA
2000

Provides precise attack
scenarios, the value of
alert correlation matrix
(ACM) is in range from 0
to 241.64 and the forward
correlation strength is in
range from 0 to 1

Our Work,
This paper

To discover TCP flooding
DDoS attacks in network
traffic alert

Using Granger causal-
ity to evaluate the
causality in network
traffic

MIT-
DARPA
2000,
CAIDA-2007
(contains
both low-
rate and
high-rate),
ISCX-IDS
dataset and
TU-DDoS
dataset
(using TU-
CANNON)

Success rate is 95-98%.
Execution times are 0.078-
0.084, 0.115-0.120, and
0.119-0.125 seconds for
500, 1000 and 2000 pack-
ets, respectively
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