
International Journal of Network Security, Vol.21, No.1, PP.145-152, Jan. 2019 (DOI: 10.6633/IJNS.201901 21(1).18) 145

A Provable Secure Short Signature Scheme
Based on Bilinear Pairing over Elliptic Curve

Subhas Chandra Sahana and Bubu Bhuyan
(Corresponding author: Subhas Chandra Sahana)

Department of Information Technology, North-Eastern Hill University

Shillong, Meghalaya, India

(Email: subhas.sahana@gmail.com)

(Received July 31, 2017; revised and accepted Oct. 22, 2017)

Abstract

Currently, short signature is receiving significant atten-
tion since it is particularly useful in communication with
low-bandwidth as the size of the generated signature is
shorter than other conventional signature schemes. In this
paper, a new short signature scheme is proposed based on
bilinear pairing over elliptic curve. The proposed scheme
is efficient as it takes lesser number of cost effective pair-
ing operations than the BLS signature scheme. Moreover,
the proposed scheme does not require any special kind of
hash function such as Map-To-Point hash function. The
efficiency comparison of the proposed scheme with other
similar established short signature schemes is also done.
The security analysis of our scheme is done in the random
oracle model under the hardness assumptions of a mod-
ified k-CAA problem, a variant of the original k-CAA
problem. In this paper, we also provide an implementa-
tion result of the proposed scheme.

Keywords: BLS Signature Scheme; Bilinear Pairing; El-
liptic Curve; Map-To-Point Hash Function; Short Signa-
ture

1 Introduction

Short signature is a variant of digital signature. As the
size of the signature generated by a short signature scheme
is shorter so, it is suitable in low-bandwidth communica-
tion environments. For instance, as said in Bellare and
Neven [5] (2006), wireless devices have a short battery
life. Communicating even one bit of information uses es-
sentially more power than executing one 32-bit instruc-
tion (Barr and Asanovic, 2003). Consequently, dimin-
ishing the number of bits in communication saves power
and increase the battery life. In numerous settings, com-
munication channels are not reliable. So with the short
signature, it reduces the number of bits to be sent over
a communication channel. In addition to this, signature
scheme with shorter signature length has higher prior-
ity in many applications. For example, considering those

applications where signatures are going to be printed on
papers or CDs, the signature size is the principal factor.
Due to its numerous application, many short signature
schemes have been proposed fitted in different cryptosys-
tem. For example, the short signature schemes in [2,14,20]
are Public Key Infrastructure (PKI) based and the short
signature schemes in [10,12,17] are fitted in certificate-less
cryptosystem.

In 2001, the first short signature scheme, called BLS [7]
signature, was proposed by Boneh, Lynn and Shacham.
Since then, short signature has been investigated inten-
sively and many short signature schemes have been pro-
posed [1,19]. The technique behind the achieved a shorter
length signature is the use of bilinear pairing over the el-
liptic curve group. Actually, the elliptic curve group pro-
vides shorter key size with same security level of Diffie-
Hellman (DH) group. The Table 1. shows the NIST’s
recommendation of key size to be used for achieving same
security level of symmetric key cryptosystem. It can be
observed from the table that Elliptic Curve Cryptography
(ECC) has the shorter key size than the RSA with same
level of security.

Table 2 shows the comparison on the number of bits
present in the produced signature of different signature
generation algorithms. From the table it is clear that
to get a security level of λ bits, the BLS, Schnoor,
ECDSA, RSA signature scheme produces a signature of
size 2λ, 3λ, 4λ,O(λ3) bits respectively.

Recently, bilinear paring mainly Weil pairing and Tate
pairing are used as tools to construct variant signa-
ture schemes. There are some cryptographic schemes
which can only be constructed by bilinear pairing, for
example ID-based encryption, non-trivial aggregate sig-
nature, tripartite one round Diffie-Hellman key exchange,
etc. Besides these, some primitives which can be con-
structed using other techniques, but for which pairings
provides improved functionality and makes the crypto-
graphic schemes simple and efficient such as tripartite one
round Diffie-Hellman key exchange, etc. Short signature
can provide a high security level with relatively shorter

International Journal of Network Security, Vol.21, No.1, PP.145-152, Jan. 2019 (DOI: 10.6633/IJNS.201901 21(1).18) 146

Table 1: Recommend key sizes NIST [3]

Symmetric
Key Size
(bits)

RSA and
Diffie-
Hellman
Key Size
(bits)

Elliptic
Curve Key
size (bits)

80 1024 160
112 2048 224
128 3072 256
192 7680 384
256 15360 512

Table 2: Signature size at security level λ = 128bits

Algorithm Signature
size (bits)

λ = 128

RSA [8] O(λ3) 2048
ECDSA [11] 4λ 512
Schnorr [16] 3λ 384
BLS [7] 2λ 256

signature length. The best known shortest signature is
BLS [7] short signature which has half the size of a Dig-
ital Signature Algorithm (DSA) [9] signature but gives a
same security level. The DSA [9] was the best known al-
gorithm to generate a shorter length signature before the
introduction of bilinear pairing. The length of the gener-
ated signature by the DSA [9] over the finite field Fq is
about 2 log q. On the other side, using bilinear pairing as
a tool, the signature length is approximately α log q where
α = log q/log r and r is chosen in such a way that it is
the largest prime divisor of the total number points on an
elliptic curve. The logic behind of using elliptic curve is
to get same level of security of RSA cryptosystem using
lesser number of bits used in underline field on which the
elliptic curve constructed. From the Table 1, it is clear
that if we decide to use NISTs figure, then to achieve 256
bits of security level, we will need to select a elliptic curve
group E(Fq) of size 512 bits. On the other hand, it is
equivalent to a field Fq of size 15360 bits.

The rest of this paper is organized as follows: In Sec-
tion 2, some basic preliminaries behind our work are dis-
cussed. In Section 3, a new short signature scheme in-
spired by Sedat et al. [1] is proposed from bilinear pair-
ing, followed by, security analysis of the proposed scheme
in the random oracle model is done in Section 4. In Sec-
tion 5, an implementation results have been given. The
efficiency analysis of our scheme with most similar estab-
lished signature schemes has been provided in Section 6.
Finally, we conclude our work in Section 7.

2 Preliminaries

In this Section, the basic mathematical background on
which the proposed scheme stans has been discussed.

2.1 Bilinear Pairing

Let G1 be an additive cyclic group generated by P whose
order is a prime q and G2 be a multiplicative cyclic group
of the same order q. A bilinear pairing is a map e :
G1 ×G1 → G2 with the following properties:

• Bilinearity: e(aP, bQ)= e(P,Q)ab for all P,Q ∈ G1

and all a,b ∈ Z∗q .

• Non-Degenerate: There exists P,Q ∈ G1 such that
e(P,Q) 6= 1.

• Computable: There is an efficient algorithm to
compute e(P,Q) , for all P,Q∈ G1.

2.2 Diffie-Hellman Problem

Actually, the cryptographic schemes from bilinear pair-
ing are based on the difficulty of solving certain Diffie-
Hellman problem which is assumed to be a hard problem.

• Decisional Diffie-Hellman Problem (DDHP):
For a, b, c ∈R Z∗q , If P, aP, bP, cP is given, to decide
whether c ≡ ab mod q, is known as Decisional Diffie-
Hellman Problem. The DDHP is not a hard problem
as bilinear pairing can be used to solve this decision
problem in polynomial time.

• Computational Diffie-Hellman Prob-
lem(CDHP):
For a, b ∈R Z∗q , given P, aP, bP , to compute abP is
known as Computational Diffie-Hellman Problem
which is a hard problem.

• Gap Diffie-Hellman (GDH) group:
A group G is called a Gap Diffie-Hellman (GDH)
group if DDHP can be solved in polynomial time but
no probabilistic algorithm can solve CDHP with non-
negligible advantage within polynomial time in G.

• k-CAA Problem: For a inte-
ger k, given P, sP and k pairs{
e1,

1

s+ e1
.P

}
,

{
e2,

1

s+ e2
.P

}
,

{
e3,

1

s+ e3
.P

}
......

{
ek,

1

s+ ek
.P

}
; compute

{
e,

1

s+ e
.P

}
for

some e /∈ {e1, e2, e3.......ek}. It is believed that the
k-CAA problem is a hard problem. The problem
firstly introduced by Mitsunari et al. [13]. However,
the security of our proposed scheme is based on a
modified version of the original k-CAA problem.
We call it as the Modified k-CAA Problem which is
the cubic version of the original k-CAA problem.

• Modified k-CAA Problem: For a
integer k, given P, sP and k pairs{
e1,

(
1

s+ e1

)3

· P

}
,

{
e2,

(
1

s+ e2

)3

· P

}
,{

e3,

(
1

s+ e3

)3

· P

}
· · ·

{
ek,

(
1

s+ ek

)3

· P

}
;

International Journal of Network Security, Vol.21, No.1, PP.145-152, Jan. 2019 (DOI: 10.6633/IJNS.201901 21(1).18) 147

Compute {e,
(

1

s+ e

)3

· P} for some e /∈

{e1, e2, · · · , ek}. The modified k-CAA problem is
not harder than original version of k-CAA prob-
lem [18].

3 The Proposed Short Signature
Scheme

Our proposed scheme has been constructed from symmet-
ric bilinear pairing, which means the two input groups in
pairing operation are same. Let G1 and G2 be cyclic addi-
tive and multiplicative group respectively of prime order
q each. Let P is the generator point of G1 and the bilinear
map is the e : G1 × G1 → G2. Let H be general cryp-
tographic hash function such as MD5, SHA-1. Suppose
that Alice wants to send a signed message to Bob. Like
other signature scheme, the proposed scheme consists of
four steps.

1) System Initialization: In this step all the system pa-
rameters G1, G2, e, q, P,H are setup.

2) Key Generation: A random value x ∈ Z∗q cho-
sen by Alice and computes Ppub1 = x3P, Ppub2 =
3x2P, Ppub3 = 3xP . In this setup, Ppub1Ppub2, Ppub3
are the public keys, x is the secret key.

3) Signing: Given a secret key x and a message m, Alice
computes the signature σ = (H(m) + x)(−3)P .

4) Verification: Using public keys Ppub1, Ppub2, Ppub3, a
message m and a signature σ, Bob verifies the signa-
ture σ by the following equation holds or not.

e(H(m)3P +Ppub1+Ppub2H(m)+Ppub3H(m)2, σ)

= e(P, P)

If the above equation holds, Bob accepts the signature σ
of the message m otherwise bob rejects it.
Correctness:

e(H(m)3P + Ppub1 + Ppub2H(m) + Ppub3H(m)2, σ)

= e((H(m)3 + x3 + 3x2H(m) + 3xH(m)2)P, σ)

= e(P, P)(H(m)+x)−3(H(m)+x)3

= e(P, P)

4 Security Analysis

In this Section, we give the security proof for our proposed
short signature scheme in the random oracle model. The
above short signature is secure against existential forgery
under adaptive chosen message attack in the random ora-
cle model with the assumption that the modified k-CAA
Problem in G1 is hard.

Theorem 1. Let us assume that there is an adaptively
chosen message attacker F (t, qh, qs, ε)-breaks the proposed
scheme where it is assumed that F makes qh queries to the
hashed oracle and qs queries to signature oracle and can
break the proposed scheme with non-negligible probability
ε and time t. Then there exists an algorithm A which,
as a black box, can solve the modified k-CAA with non-
negligible probability

ε
′
≥ 1

qs
.

(
1− 1

qs+ 1

)qs+1

.ε

and time t
′ ≤ t+tserach.qs+C.qh+ts, where tserach is the

time to searching a list , C is the constant time for each
hash request and ts is the running time of the simulator.

We assume that F is well-behaved in the sense that it
always requests the hash of a message m before it requests
a signature for m, and that it always requests a hash of a
messagem for which it outputs as its forgery.It is trivial to
achieve this property by modifying any forger algorithm
F . In addition to this, it is needed that A would be
engaged in a certain amount of book-keeping work. In
particular, it must maintain a list of the messages mi on
which F requests hashed value hi and signatures σi.

Proof. Suppose that A is a given a challenge:
For a integer k, given P, sP and k pairs{
e1,

(
1

s+ e1

)3

.P

}
,

{
e2,

(
1

s+ e2

)3

.P

}
,{

e3,

(
1

s+ e3

)3

· P

}
· · ·

{
ek,

(
1

s+ ek

)3

.P

}
;

Compute {e,
(

1

s+ e

)3

· P} for some e /∈

{e1, e2, · · · , ek}. Now, A and F play the role of
challenger and adversary respectively.

4.1 Construction of A
For Simplicity, A is constructed in a series of games. Each
game is a variant of the previous game. It is worth of men-
tioning that A1, A2, A3 and A4 denotes the adversary for
the Game 1, Game 2, Game 3 and Game 4 respectively.
The A has the power to simulate the behavior of the at-
tacker F . In each game, we will use a probability ξ which
will be optimized later. The symbol βξ denotes the prob-
ability distribution over the set {0,1} where 1 is drawn
from the set with probability ξ and 0 with (1− ξ).

Game 1. In setup, all the system parameters are gener-
ated. The public parameter are published in the pub-
lic. The secret parameter s is kept secret from the A
and from F .The public keys pk are constructed, as
follows.

• Ppub1 = s3P ;

• Ppub2 = 3s2P ;

International Journal of Network Security, Vol.21, No.1, PP.145-152, Jan. 2019 (DOI: 10.6633/IJNS.201901 21(1).18) 148

• Ppub3 = 3sP .

All the above public keys are sent to attacker F . The
values of sP = 3−1Ppub3 is given to the algorithm A.

Then, for each message mi, 1 ≤ i ≤ qh,A1 picks a

random bit si
R←− βξ and set H(mi) = hi. The value

of hi is set to ei where 1 ≤ i ≤ qh and return the
value ei as a response of the has query. When the
Adversary F makes a signature query on a message
mi, then the A searches the ei value in the list and

return

(
1

s+ ei

)−3
.P as a responded signature. Ac-

tually, the list consists of the tuple {mi, ei, σi}, where
the message mi is stored in a list with its hashed

value ei, and its signature σi =

(
1

s+ ei

)−3
.P .

Note that, (mi,pk, hi = ei, σi =

(
1

s+ ei

)−3
P)

is valid Diffie-Hellman tuple as it passes the signa-
ture verification process.

L.H.S. = e(H(mi)
3P + Ppub1 + Ppub2H(mi)

+ Ppub3H(mi)
2, σi)

= e(e3iP + Ppub1 + Ppub2ei

+ Ppub3e
2
i ,

(
1

s+ ei

)−3
.P)

= e(e3i + s3 + 3s2ei+ 3se2i)P, {s+ ei}−3.P)

= e(P, P)(ei+s)
−3(ei+s)

3

= e(P, P)

= R.H.S

Finally, F halts, either conceding he failed or return-
ing a forged signature (m∗;σ∗), where m∗ = mi

∗ for
some i∗ on which F he did not requested a signature.
Suppose F succeeds in forging, A1 outputs success;
otherwise, it outputs ”failure”.
Thus

AdvA1 = Prob.

[
AF1 (modified k-CAA Problem)

= success

]
= Prob.

[
V erify(pk,m∗, σ∗) = V alid

]
= ε

Game 2. A2 acts as does A1, with a little difference. If
F fails, A2 outputs ”failure”; if F succeeds, giving
output a forgery (m∗, σ∗), where i∗ is the index of
m∗, then A2 outputs success, if si

∗ = 1, but failure if
si
∗ = 0. Clearly, F can get no information about any

si
∗, so its behavior cannot depend on their values. As

the value of si
∗ = 1 is chosen from the set {0, 1} with

probability ξ thus we have

AdvA2
= AdvA2

.P r[s∗i = 1] = ξ.ε

Game 3. A3 acts as does A2, with a minor difference. If
F unable to forge signature, A3 also fails. If F able
to forge signature for the message m∗i then A also
claims the success to get a solution to the undertaken
computational problem if s∗i = 1 and F would submit
signature query only for the message mi for which
si = 0.

As no information is supplied about the si to the F ,
each signature query can cause A to declare a failure
with probability (1− ξ). Thus we have

AdvA3
= AdvA2

.P r[sij = 0, j = 1....k] = ξε.(1− ε)k

≥ (1− ε)qsεξ

Game 4. A4 acts like A3 does. However, if A4 succeeds,

outputs σ∗ = (
1

s+ e
)3P as forgery of the message

mi∗ , where e is the hashed value of the massage mi∗ ,
i.e. H(mi∗) = e for which F output a forged signa-
ture σ∗. Clearly, A4 succeeds with precisely the same
probability as A3, so

AdvA4
= AdvA3

= AdvA2
.P r[sij = 0, j = 1, 2, · · · , k]

= ε(1− ε)kξ
≥ (1− ε)qsεξ.

Moreover, A4 only succeeds if s∗i = 1, which means
that hi

∗ = e and σ∗ is the signature of the message
m∗ indexed by i∗, then (mi

∗; pk;σ∗) must be a valid

Diffie-Hellman tuple, so σ∗ =

{
1

s+ e

}3

P , which is

indeed the solution of the modified k-CAA problem.
As per the games, disscussed above the A can solve
the modified k-CAA problem with probability ε

′ ≥
(1− ε)qsεξ.

4.2 Optimization and Conclusion

In this subsection, we want to optimize the parameter ξ
to achieve a maximal probability of success. The function

(1− ξ)qsξε is maximized at ξ =
1

qs+ 1
, where it has the

value

1

qs+ 1
.

(
1− 1

qs+ 1

)qs
.ε =

1

qs
.

(
1− 1

qs+ 1

)qs+1

.ε

So, the modified k-CAA problem can be solved by the

A with probability ε
′ ≥ 1

qs
.

(
1− 1

qs+ 1

)qs+1

.ε

Next, we would estimate the time taken by A to solve
the modified k-CAA problem. A’s running time includes
the running time of F . The additional overhead imposed
by A, is dominated by the need to search the list contain-
ing the tuples {mi, ei, σi} for getting the corresponding

International Journal of Network Security, Vol.21, No.1, PP.145-152, Jan. 2019 (DOI: 10.6633/IJNS.201901 21(1).18) 149

signature, queried by F . Except the searching cost, no
extra computation involved to generate the signature be-
cause the signatures are already given in the problem. We
can assume constant amount time needed for each hash re-
quest from F as the hashed values are already given in the
problem. Let us assume that the time needed for search-
ing the list tsearch. So, the total running time needed to
answer as many as (qs + qh) such requests, is

t
′
≤ t+ tsearch.qs + C.qh + ts,

where C, ts are constant time to serve a hash query and
running time of the simulator respectively.

5 Implementation Result

The proposed scheme has been implemented using Pairing
based cryptography (PBC) library [15]. The explanation
of the result of the proposed scheme is given below.
P = [192986486123713519393909328933523037284784
91004662265196503727693139637922709870433202758965
13457059148073430447824268885706106109906254206093
280693836, 501420448535073578989280727624093969333
85741208012663562069875078736229197761631701102288
66412462023685774069351431940207437204128961514477
050043811715742].

Let x = [1265908932634150451647717716712340277
08815422770] be the secret key.
Ppub1 = [441689870023147090314403447339502824958611
68245371714845567562608664843497742265604064077942
57867578675786195471261396070944205290475705582841
7854661281237608698, 34360822137243754182196882839
97667670494305117850675397880306409364822200407239
96368559693036272553667711608621748740995578549186
17618318334875150086572529] be the first public key.

Ppub2 = [19592480446279217949323193484764934053494
03661038358823669680250914482416056635807620995525
11498174693498774587900294239228651778055439102034
608839661404887, 494932513117050606495199878175923
63599436085377815538669761267040792935628973099520
76315362404051854588737494637770645919286622782851
288494074935292488790] be the second public key.

Ppub3 = [177947893349060111593373570739170119977352
81536961967944958277308829161095598576985932011979
74932404668694060764315425265578143926947470957791
09360055160,73855654342439210919869820314375450311
00042376054573955814295886041128145544221416232106
67884397800716188170054984546984622552622105684703
117970371757588] be the third public key.

The message m is hashed using cryptographic hash
function H and the message digest value H(m) =
4418547219333555354423734373189812993762095987.
Signature of the message is: σ = [4346107938024
46962992888284367076304445172433417427304324796033

14873865704216658622752136882995707071770929985204
2269728915887678507962335880209573733453, 86895239
18563758982056666423922767096191922774023324509608
68772463768039101268313400354970675113261572051882
3046921034904851084360618485324305660338117047].

To verify, the message is hashed using cryptographic hash
function H and generate the hashed message as: H(m) =
441854721793313555354423734373189812993762095987.

Compute the pairing:
e(H(m)3P + Ppub1 + Ppub2H(m) + Ppub3H(m)2, σ) =
[1120539905030284386666594372752990165598444056724
45344618219640847132537270510436302325301680489741
91419592471435523808930098392282225166595052035468
24425, 8026017746651598938313304770558504235314467
20028089621862621602849870011382901646770550520983
49160063385074718510818542219066791183590504166149
112060847591].

Compute the pairing:
e(P,P) = [11205399050302843866665943727529901655984
44056724 45344618219640847132537270510436302325301
680489741 9141959247143552380893009839228222251665
9505203546 824425, 80260177499515989381330477055850
4235314467 2002808962186262160284987001138290164677
0550520983 4916006385074718510818542290667911835905
0416614911 2060847591].

From the above result, we can claim that the signature is
valid.

5.1 Running Time Efficiency Comparison

We compare running time of our proposed scheme
with other three established short signature schemes i.e.
BLS [7], ZSS [19], Sedat [1]. All the schemes have been
implemented using Pairing-Based Cryptography (PBC)
library [15] in C on Linux systems with an Intel Core i3
CPU 2.13GHz and 6.00GB RAM. All schemes are dif-
ferent in the process of user-key-generation, signature-
generation and the signature-verification. So, it is worth
of giving a running time comparison of all the schemes, in
the phases of key generation, signature generation and the
signature verification. The running time and signature
length of all the schemes can be seen in Table 3. The |G1|
denotes the size of an element in the group G1. For easy
understanding, the results which is given in Table 3 have
been represented by bar chart separately. Figure 1, Fig-
ure 2 and Figure 3 illustrate the the running time in the
phases of user-key-generation, signature-generation and
the signature-verification respectively.

International Journal of Network Security, Vol.21, No.1, PP.145-152, Jan. 2019 (DOI: 10.6633/IJNS.201901 21(1).18) 150

BLS [7] ZSS [19] Sedat [1] Proposed

6.4

6.6

6.8

7

7.2

7.4

7.6

Schemes

T
im

e
[M

S
]

Figure 1: User Key Generation

BLS [7] ZSS [19] Sedat [1] Proposed

5.1

5.2

5.3

5.4

5.5

5.6

Schemes

T
im

e
[M

S
]

Figure 2: Signature Gneneration

BLS [7] ZSS [19] Sedat [1] Proposed

8

10

12

14

16

Schemes

T
im

e
[M

S
]

Figure 3: Signature Verification

Table 3: Comparison of the running time

Scheme Keygen
(ms)

Sign
(ms)

Verify
(ms)

Signature
Length

BLS [7] 6.592 5.6 8.680 |G1|
ZSS [19] 6.42 5.5 13.902 |G1|
Sedat [1] 6.418 5.51 16.117 |G1|
Proposed 7.5 5.105 7.549 |G1|

Table 4: Operation notation and description

Notation Description
τpo Execution of a bilinear pairing

operation
τinv Execution of an inversion in Z∗q
τh Execution of a hash function

τp−add Execution of an point addition in
G1

τsqu Execution of a square operation
in Z∗q

τcube Execution of a cube operation in
Z∗q

τsm Execution of scalar multiplica-
tion in G1

τec−add Execution of a elliptic curve
point addition G1

τMTP Execution of Map to point hash
function

6 Efficiency Analysis

Sometimes, relying on the running time is not up to the
mark as it may be heavily affected by several factors such
as the machine may be heavily loaded or lightly loaded
at the execution time of the programs. So, it is worth of
giving theoretical efficiency comparison of our proposed
scheme. The various notations for time complexity of the
operations involved in those schemes are given in the Ta-
ble 4. The efficiency comparison of our proposed scheme
with the scheme BLS [7], ZSS [19] and Sedat et al. [1]
is shown in Table 5. In the proposed scheme, the value
of e(P, P) can be pre-computed. It can be claimed that,
the signature verification process of the proposed scheme
is constructed with only one bilinear pairing operations
but the BLS [7] scheme has two bilinear pairing opera-
tions. In pairing based cryptographic scheme, it is well
known that compare to other operations, pairing oper-
ation is the most time consuming operation. Instead of
many attempts [4] to reduce the cost of pairing operation,
still the pairing operation is very costly.

7 Conclusions

The scheme presented in this paper is based on bilinear
pairing. The main advantage of our proposed scheme is
that it does not require any special kind of hash function

International Journal of Network Security, Vol.21, No.1, PP.145-152, Jan. 2019 (DOI: 10.6633/IJNS.201901 21(1).18) 151

Table 5: Efficiency Comparison

Schemes Key-
Generation

Signing Verification

BLS [7] 1τsm 1τsm +
1τMTP

1τMTP +
2τpo

ZSS [19] 1τsm 1τsm +
1τh+τinv

1τsm +
1τh + 1τpo +
1τp−add

Sedat
Ak-
ley [1]

2τsm +
2τsqu

1τh +
1τinv +
1τsqu +
1τsm

2τsm+1τh+
1τsqu +
1τpo +
2τp−add

Proposed 3τsm +
1τsqu +
1τcube

1τsm +
1τcube +
1τh +
1τinv

3τsm+1τh+
1τcube +
1τsqu +
1τpo +
3τp−add

such as map-to-point hash function. Any general crypto-
graphic hash function such as MD5, SHA-I can be used
for creating the hashed value from a massage. Moreover,
our proposed scheme requires only one pairing operation
where BLS [7] scheme requires two pairing operations in
the process of signature verification.

References

[1] S. Akleylek, B. B. Kirlar, Ö. Sever, Z. Yüce, Short
Signature Scheme from Bilinear Pairings, RTO-MP-
IST-091, 2011.

[2] J. Alperin-Sheriff, “Short signatures with short pub-
lic keys from homomorphic trapdoor functions,” in
IACR International Workshop on Public Key Cryp-
tography, pp. 236–255, 2015.

[3] E. Barker, W. Barker, W. Burr, W. Polk, and
M. Smid, “Recommendation for key management
part 1: General (revision 3),” NIST Special Publi-
cation, vol. 800, no. 57, pp. 1–147, 2012.

[4] P. S. Barreto, B. Lynn, and M. Scott, “On the
selection of pairing-friendly groups,” in Interna-
tional Workshop on Selected Areas in Cryptography
(SAC’03), pp. 17–25, 2003.

[5] M. Bellare and G. Neven, “Multi-signatures in the
plain public-key model and a general forking lemma,”
in Proceedings of the 13th ACM Conference on Com-
puter and Communications Security, pp. 390–399,
2006.

[6] D. Boneh and M. Franklin, “Identity-based encryp-
tion from the weil pairing,” in Advances in Cryptol-
ogy (CRYPTO’01), pp. 213–229, 2001.

[7] D. Boneh, B. Lynn, and H. Shacham, “Short signa-
tures from the weil pairing,” in Advances in Cryptol-
ogy (ASIACRYPT’01), pp. 514–532, 2001.

[8] D. Boneh et al., “Twenty years of attacks on the rsa
cryptosystem,” Notices of the AMS, vol. 46, no. 2,
pp. 203–213, 1999.

[9] Federal Information Processing Standards Publica-
tion, Digital Signature Algorithm (DSA), FIPS 186,
May 19, 1994.

[10] Y. H. Hung, Y. M. Tseng, and S. S. Huang, “A re-
vocable certificateless short signature scheme and its
authentication application,” Informatica, vol. 27, no.
3, pp. 549–572, 2016.

[11] D. Johnson, A. Menezes, and S. Vanstone, “The el-
liptic curve digital signature algorithm (ECDSA),”
International Journal of Information Security, vol. 1,
no. 1, pp. 36–63, 2001.

[12] A. Karati and G. P. Biswas, “Cryptanalysis and im-
provement of a certificateless short signature scheme
using bilinear pairing,” in Proceedings of the In-
ternational Conference on Advances in Information
Communication Technology & Computing, pp. 64–
79, 2016.

[13] S. Mitsunari, R. Sakai, and M. Kasahara, “A new
traitor tracing,” IEICE Transactions on Fundamen-
tals of Electronics, Communications and Computer
Sciences, vol. 85, no. 2, pp. 481–484, 2002.

[14] N. A. Moldovyan, “Short signatures from difficulty
of factorization problem,” International Journal of
Network Security, vol. 8, no. 1, pp. 90–95, 2009.

[15] PBC Library, The Pairing Based Cyptography, Aug.
12, 2018. (https://crypto.stanford.edu/pbc/)

[16] C. P. Schnorr, “Efficient signature generation by
smart cards,” Journal of Cryptology, vol. 4, no. 3,
pp. 161–174, 1991.

[17] J. L. Tsai, “A new efficient certificateless short signa-
ture scheme using bilinear pairings,” IEEE Systems
Journal, vol. 11, no. 4, pp. 2395–2402, 2017.

[18] R. Tso, X. Yi, and X. Huang, “Efficient and
short certificateless signature,” in International
Conference on Cryptology and Network Security
(CANS’08), pp. 64–79, 2008.

[19] F. Zhang, R. Safavi-Naini, and W. Susilo, “An ef-
ficient signature scheme from bilinear pairings and
its applications,” International Workshop on Public
Key Cryptography (PKC’04), pp. 277–290, 2004.

[20] M. Zhang, B. Yang, Y. Zhong, P. Li, and T. Takagi,
“Cryptanalysis and fixed of short signature scheme
without random oracle from bilinear parings,” Inter-
national Journal of Network Security, vol. 12, no. 3,
pp. 130–136, 2011.

Biography

Subhas Chandra Sahana was born at Bankura, India.
He Received the B.Tech (bachelor degree) in Computer
science and Engineering from Jalpaiguri Govt. Engineer-
ing College under West Bengal University of Technology.
He got his M.Tech(IT) degree from Tezpur University ,
Assam and pursuing Ph.D. in North-Eastern Hill Uni-
versity. His research interest includes Cryptography and
Network Security, Algorithm Analysis and Design, Infor-
mation Theory and Coding etc.. Currently he is Assistant
Professor in the department of Information Technology,

International Journal of Network Security, Vol.21, No.1, PP.145-152, Jan. 2019 (DOI: 10.6633/IJNS.201901 21(1).18) 152

North Eastern Hill University, Shillong, Meghalaya, In-
dia.

Dr. Bubu Bhuyan was born in India. He received his
M.Tech (IT) and Ph.D. degree from Tezpur University
and Jadavpur University respectively. His research in-
terest includes Cryptography and Network Security, Al-
gorithm Analysis and Design, Information Theory and
Coding etc.. Currently he is Associate Professor in the de-
partment of Information Technology, North-Eastern Hill
University, Shillong, Meghalaya, India.

