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Abstract

Single cycle T-functions are cryptographic primitives
which can generate maximum periodic sequences. 2-Adic
complexity of a sequence measures the difficulty of out-
putting a binary sequence using a feedback with carry
shift register. Based on the special properties of single
cycle T-functions, this paper investigates the 2-adic com-
plexity of sequences generated by single cycle T-functions
from the kth coordinate sequence to the state output se-
quence using the primality of Fermat number. It is shown
that the state output sequence of a T-function is far from
high 2-adic complexity.

Keywords: 2-Adic Complexity; Fermat Number; Se-
quence; T-Function

1 Introduction

The security of a stream cipher depends on the unpre-
dictability of the pseudo-random bit sequence. To ver-
ify the pseudo-randomness of a sequence, criterions of
pseudo-random sequence are proposed such as linear com-
plexity, autocorrelation, 2-adic complexity and so on. In
which 2-adic complexity of a sequence is used to measure
how large a feedback with carry shift registers (FCSRs)
is required to output a sequence.

Triangular functions (T-functions) are cryptography
primitives proposed by Klimov and Shamir [7] which are
built with help of fast arithmetic and Boolean operations
wildly available on high-end microprocessors or on dedi-
cated hard ware implementations. All the Boolean opera-
tions and most of the numeric operations in modern pro-
cessors are T-functions, and their compositions are also
T-functions. The main application of a single cycle map-
ping is in the construction of synchronous stream ciphers.
Single cycle T-functions have some advantages as having
0 as its initial state, reaching the maximum length and
having high efficiency in software, and they are suggested
be new primitive of stream cipher, and also in block ci-

pher and Hash functions to be the substitution of Linear
Feedback Shift Register (LFSR).

Sequences generated by single cycle T-function are
studied from the point of cryptographic criterion. The
autocorrelation property of coordinate sequences is stud-
ied by Kolokotronis and Wang [8,14], and the results show
that such sequence is not so pseudorandom as people ex-
pected. Linear complexity of sequences generated by sin-
gle cycle T-function has been discussed in [1, 9, 15–17],
which all show sequences generated by single cycle T-
function have quite high linear complexity. As for 2-
adic complexity of a sequence, Dong [3] studied the k-
error 2-adic complexity of a binary sequence of a period
pn. Anashin [2] present a new criteria for a T-function
to be bijective or transitive. Jang and Jeong et al. [4]
give a characterization of 1-Lipschitz functions on Fq[T ]
in terms of the van der Put expansion and use this re-
sult to give sufficient conditions for measure-preserving
1-Lipschitz function on Fq[T ] in terms of the three well
known bases, Carlitz polynomials, digit derivatives and
digit shifts. Sopin [12] presented the criteria of measure-
preserving(Haar) for pk−Lipschitz maps on the cartesian
power of the ring of p-adic integers, where k is any nat-
ural of zero and p is an arbitrary prime. Sattarov [11]
investigate the behavior of trajectory of a (3, 2)-rational
p-adic dynamical system in complex p-adic field Cp.

This paper investigated the 2-adic complexity of se-
quences generated by single cycle T-function, which refers
the k-th coordinate sequence, the state output sequence
by utilizing the properties of Fermat number.

The paper is organized as follows. Section 2 provides
the basis concept of T-function, feedback with carry shift
register (FCSRs), and some properties needed in our de-
duction. Section 3 analysis the 2-adic complexity of two
types sequences generated by single cycle T-functions.
Concluding remarks are given in Section 4.
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2 Background

2.1 T-functions and Their Generating Se-
quences

Let F2 = {0, 1} be the finite field with two elements and
integer n denote the word size. An n length single word
x = (x0, x1, · · · , xn−1) is the vector in Fn

2 which is the
nth dimensional vector space over F2.

Definition 1. [7] Let x ∈ F2
m×n, y ∈ F2

l×n, and x =

(x0, x1, · · · , xm−1)T , y = (y0, y1, · · · , yl−1)T , where xi =
(xi,0, xi,1, · · · , xi,n−1) ∈ Fn

2 , yi = (yi,0, yi,1, · · · , yi,n−1) ∈
Fn
2 . Let f : Fm×n

2 → F l×n
2 satisfies f(x) = y. If the ith

row of the output y of f only depends on the 0, 1, · · · , ith
row of input x, we call f a T-function. When m = l = 1,
we call f a single word T-function, otherwise a multiword
T-function.

Klimov and Shamir [7] have proved that every primi-
tive operation which include negation, complementation,
addition, subtraction, multiplication, XOR, and, and or,
is a T-function. And an example of single cycle T-
function as xi = x2i−1 ∨ C + xi−1 mod 2n is given, where
xi ∈ Z, 0 5 xi 5 2n and C = . . . 1012 or . . . 1112.

Let T-function f : Fn
2 → Fn

2 be the state transition
function, that is xi = f(xi−1). The sequence {xi}i≥0 is
called the state output sequence of f . If the state se-
quence {xi}i≥0 of f has minimal period N = 2n, f is
called single cycle. Clearly, a single cycle T-function can
produce a sequence with the maximal period sequence for
n-bit words.

The sequence {xi,k}i≥0(0 ≤ k ≤ n) generated by the
kth bit of xi is called the kth coordinate sequence of f .
Following from [8], the kth coordinate has a period of
Nk = 2k+1, and satisfies

xi+2k,k = xi,k ⊕ 1.

This property exposed a disadvantage of T-function that
the effective period of {xi,k}i≥0 is 2k, a method of solving
the problem is proposed in [8].

T-function can also be represented by vectorial Boolean
function such as f(x) = (f0(x), f1(x), · · · , fn−1(x)),
where each fk(x)(0 ≤ k < n) is called the kth coordi-
nate Boolean function which only depends on the first
k bits of x. By the definition of T-function, the output
of the kth coordinate Boolean is just the kth coordinate
sequence of {xi}i≥0.

We want to make some observation about the proper-
ties of the sequences created by single cycle T-functions.

2.2 2-Adic Complexity

Since the security of traditional stream ciphers LFSR
based is called into question, Goresky and Klapper pro-
posed the feedback with carry shift register (FCSR) [5]
which is similar to linear feedback shift register (LFSR)
but with carry from one state to another.

An FCSR is determined by r coefficients q1, q2, · · · , qr
with qi ∈ {0, 1}, i = 1, 2, · · · , r, and an initial
memory integer mr−1 which can be any integer. If
the contents of the register at any given time are
(an−1, an−2, · · · , an−r+1, an−r) where ai ∈ {0, 1}, i =
n − 1, · · · , n − r, and the memory integer is mn−1, then
the operation of the shift register is defined as follows [6]:

A1: Form the integer sum δn =
r∑

k=1

qkan−k +mn−1;

A2: Shift the contents one step to the right, outputting
the rightmost bit an−r;

A3: Place an = δn(mod2) into the leftmost cell of the
shift register;

A4: Replace the memory integer mn−1 with mn = (δn−
an)/2 = bδn/2c.

Lemma 1. [13] Let x be an eventually periodical se-

quence. Then α =
∞∑
i=0

xi2
i is equal to p/q the quotient of

p, q, where q is the connect number of the FCSR gener-
ating x. Moreover, x is strictly periodical if and only if
1 ≤ α ≤ 0.

Lemma 1 shows that every periodical sequence can be
generated by an FCSR.

Let x be an eventually periodical binary sequence. If
q is the connect number of FCSR generating x, then q is
called the connect number of x. The following lemma can
be got for the connect number of a sequence x.

Lemma 2. [13] Let x be generated by an FCSR, and
q be the connect number of x. Then x is an eventually
periodical sequence and there exist an integer p such that

α =
∞∑
i=0

xi2
i = p/q.

Lemma 3. [13] Let x be a strictly periodical sequence,
then the minimum connect number qmin of x satisfies
qmin ≤ 2T − 1.

In this paper, we are interested in whether the bound
is tight.

The same as the linear complexity, the 2-adic com-
plexity of a sequence is intended to measure how large an
FCSR is required to output the sequence.

Definition 2. [13] Let x is a eventually binary sequence,
∞∑
i=0

xi2
i = p/q, where gcd(p, q) = 1. The real number

φ2(x) = log2(Φ(p, q)) is called the 2-adic complexity of x,
where Φ(p, q) = max(|p| , |q|).

Actually, if a binary sequence s is strictly periodic, then
its 2-adic complexity is clearer. The following corollary
can be easily obtained.

Corollary 1. [13] Let x be a strictly periodical binary
sequence with the minimum connect number q. Then the
2-adic complexity of x is φ2(x) = log2q.
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Definition 3. Let x be an FCSR sequence with connect
number q and period T . x is called maximum period FCSR
sequence, or l-sequence, if T = ϕ(q) where ϕ(q) is Euler
function value of q.

If x is a l-sequence with connect number q, then
ordq(2) = ϕ(q) [6], and q = pe for some prime p and
integer e, thereby T = ϕ(q) = pe−1(p− 1).

3 Main Results

3.1 2-Adic Complexity of the kth Coor-
dinate Sequence

In this section, 2-adic complexity of periodic sequences
generated by single cycle T-function are discussed.

Lemma 4. Let f : F2
n → F2

n be single cycle T-function
with state sequence {xi}i≥0. Then the minimum connect
integer qmin of the kth (0 < k < n) coordinate sequence

satisfies qmin ≤ 22
k+1 − 1.

Proof. This result can be proved according to the fact
that the kth coordinate sequence have a period of 2k+1

and Lemma 3.

Theorem 1. Let f : F2
n → F2

n be single cycle T-
function. Denote by sk the kth coordinate output se-
quence. Then the 2-adic complexity φ2(sk) = log2 Fk

when k = 0, 1, 2, 3, 4, where Fk is the kth Fermat Number

22
k

+ 1.

Proof. Denote the elements of sk as xi, i = 0, 1, 2, · · · .
By Lemma 2 and Lemma 4, for the sake of the 2-adic
complexity of the kth coordinate sequence, we need to
discuss

∞∑
i=0

xi2
i =

T−1∑
i=0

xi2
i

1− 2T

= −

2k+1−1∑
i=0

xi2
i

22k+1 − 1

= −

2k+1−1∑
i=0

xi2
i

(22k − 1)(22k + 1)
(1)

From the property of Single cycle T-function, the numer-
ator can be expressed as

2k+1−1∑
i=0

xi2
i =

2k−1∑
i=1

[xi,k · 2i + xi+2k,k · 2i+2k ]

=

2k−1∑
i=1

[xi,k · 2i + (xi,k ⊕ 1) · 2i+2k ] (2)

Since {xi, xi⊕1} = {0, 1}, the above sum means choosing
a number from every column in the following numbers

and then adding them together:

1 2 4 . . . 2i . . . 22
k−1

22
k

2 · 22k 4 · 22k . . . 2i · 22k . . . 22
k−1 · 22k

Denote that S = {i|xi+2k,k = 1, 0 ≤ i ≤ 2k − 1}
with cardinality m. So S also can be {i1, i2, · · · , im},
and xi,k = 0, i ∈ S. Then the sum in Equation(2) will be:

2k−1∑
i=1

[xi,k · 2i + (xi,k ⊕ 1) · 2i+2k ]

=

2k−1∑
i=1

(1 · 2i) +

2k−1∑
i=1,i∈S

xi,k · (2i+2k − 2i)]

= (22
k

− 1) + (22
k

− 1)(2i1 + 2i2 + . . .+ 2im)

= (22
k

− 1)(1 + 2i1 + 2i2 + . . .+ 2im).

So the right fraction term in Equation (1) will be

(22
k − 1)(1 + 2i1 + 2i2 + . . .+ 2im)

(22k − 1)(22k + 1)

=
1 + 2i1 + 2i2 + . . .+ 2im

22k + 1
(3)

Denote the kth Fermat number as Fk. For the case
of 2-adic complexity of the kth coordinate sequence, the
question becomes whether the kth Fermat number is a
composite number.

From [10], the first five Fermat number F0 = 3, F1 =
5, F2 = 17, F3 = 257 and F4 = 65537 are indeed prime.

As far as the numerator, since 1 + 2i1 + 2i2 + · · · +
2im < 22

k

+ 1, we can deduce that the 2-adic complexity
of the kth coordinate sequence for all the single cycle T-
function is log2 Fk when k = 0, 1, 2, 3, 4, and they are
log2 3, log2 5, log2 17, log2 257, log2 65537.

Theorem 2. Let f : F2
n → F2

n be single cycle T-
function, sk be the kth coordinate output sequence of f ,
T = 2k+1 be the period of sk, and q be the minimum con-
nect integer. Then, φ2(sk) < T ≤ ϕ(q) < 2T − 2 for
k = 0, 1, 2, 3, 4, where ϕ is the Euler function.

Proof. Firstly, by Theorem 1,

φ2(sk) = log2(22
k

+ 1)

< log2 22
k

· 22
k

= log2 22
k+1

= 2k+1

= T.

Since ϕ(q) = 22
k

and T = 2k+1, we have T ≤ ϕ(q), where
the equation is established if and only if k = 0, 1. When

k = 0, 1, 2, 3, 4, q = 22
k

+ 1 is prime, ϕ(q) = q− 1, and by
Lemma 3, q < 2T − 1, we have ϕ(q) < 2T − 2.
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Thus, the kth coordinate sequence is an l-sequence
when k = 0, 1.

As for 5 ≤ k ≤ 23, it has been proved that Fk is
composite [10], and also, for k ≥ 2, the factors of Fk are
of the form m2k+2 + 1. There still no new Fermat prime
number was found.

Theorem 3. Let f : F2
n → F2

n be single cycle T-
function, sk be the kth coordinate output sequence of f ,
and Fk = p1p2 · · · pt, where k ≥ 5 and pi, i = 1, 2, · · · , t is
prime. Then,

1) If the bottom half of sk is just the binary number of
some pi, then the 2-adic complexity of sk is log2

Fk

pi
;

2) If the bottom half of sk has factors
{pj1 , pj2 , · · · , pju} ⊂ {p1, p2, · · · , pt}, then the
2-adic complexity of sk is log2

Fk

pj1
pj2
···pju

.

Proof. If k ≥ 5, and Fk has a prime factorization
Fk = p1p2 · · · pt, then the 2-adic complexity depends
on the factorization of the numerator in Equation (3).
Since the bottom half of sequence sk is just the expo-
nential sequence of the numerator in Equation (3), and
Equation (3) will become 1

Fk/pi
. And it will become

1
Fk/pj1pj2 ···pju

when the bottom half of sk has factors

{pj1 , pj2 , · · · , pju} ⊂ {p1, p2, · · · , pt}.

Theorem 4. Let f : F2
n → F2

n be single cycle T-
function, sk be the kth (k ∈ Z, 5 ≤ k ≤ 13) coor-
dinate output sequence of f , T = 2k+1 be the period
of sk, and q be the minimum connect integer. Then,
φ2(sk) < T < ϕ(q) < 2T −2, where ϕ(q) is Euler function
value of q.

Proof. We just need to verify that T < φ(q) for (k ∈
Z, 5 ≤ k ≤ 13). We need to check the factorization of Fk

for (k ∈ Z, 5 ≤ k ≤ 13). Since

F5 = 641× 6700417

F6 = 274177× 67280421310721

F7 = 59649589127497217× 5704689200685129054721

F8 = 1238926361552897× 9346163971535797776916

3558199606896584051237541638188580280321

F9 = 2424833× 7455602825647884208337395736

200454918783366342657× 74164006262753

08015247871419019374740599407810975190239

05582131614441575950470008092818711693940

737

F10 = 45592577× 6487031809× 465977578522001

8543264560743076778192897× P252

F11 = 319489× 974849× 167988556341760475137

×3560841906445833920513× P564

F12 = 114689× 26017793× 63766529× 190274191361

×1256132134125569× 5686306475353569551

69033410940867804839360742060818433

×C1133

F13 = 710954639361× 2663848877152141313

×3603109844542291969

×319546020820551643220672513

×C2391.

Every minimum connect number is equal to one or a
sum of the factors, compare them with T = 2k+1 we can
verify the inequality.

Actually, when 14 ≤ k ≤ 23, we have known that Fk

is a composite number while the factors is unknown, we
have the conjecture that the above inequality still holds.

From Theorem 1 and Theorem 3, we know that 2-adic
complexity of the kth coordinate sequence is far out of
reach the maximum value.

3.2 2-Adic Complexity of the State Out-
put Sequence

Theorem 5. Let f : F2
n → F2

n be sin-
gle cycle T-function with state sequence S =
x0,0, x0,1, · · · , xi,j , · · · , xn−1,2n−1, i = 0, 1, · · · , n − 1,
j = 0, 1, · · · , 2n − 1 which has a period of n · 2n. Then st
has the maximum 2-adic complexity log22n·2

n−1+1.

Proof. For the state output sequence, check the following
fraction:

∞∑
i=0

xi2
i =

T−1∑
i=0

xi2
i

1− 2T
=

n−1∑
i=0

2n−1∑
j=0

xi,j2
j+i·2n

1− 2T

n− 1 . . . 2 1 0
0 x0,n−1 . . . x0,2 x0,1 x0,0
1 x1,n−1 . . . x1,2 x1,1 x1,0
...
2n − 1 x2n−1,n−1 . . . x2n−1,2 x2n−1,1 x2n−1,0

If xi,j = 1, the first half of the sum in numerator be-
comes

n−1∑
i=0

2n−1−1∑
j=0

1 · 2j+i·2n = 2n·2
n−1

− 1

Denote the location of nonzero in the last bottom half
of S by t1, t2, · · · , tu, then the last half of the sum in
numerator is

(2n·2
n−1

− 1)(2t1 + 2t2 + · · ·+ 2tt)

So the whole sum in numerator is

(2n·2
n−1

− 1)(1 + 2t1 + 2t2 + · · ·+ 2tt)

and Equation 3.2 will be

1 + 2t1 + 2t2 + · · ·+ 2tt

1 + 2n·2n−1

So st has the maximum 2-adic complexity log22n·2
n−1+1.
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We can verify when n = 2, 2n·2
n−1+1 is prime, and

when n = 3, 4, 5, 2n·2
n−1+1 is composite number. When

n is more lager, we can have the following corollary:

Corollary 2. Both the kth coordinate sequence and the
state output sequence of single cycle T-function have max-
imum 2-adic complexity as log2 (2T/2 + 1), where T is the
period of the sequence.

Corollary 3. Let f(x) : Fn
2 → Fn

2 be a single cycle T-
function. Then the maximum 2-adic complexity of its kth
coordinate sequence and state output sequence have ap-
proximate value T/2 where T is the period of the sequence.

Proof. This result can be deduced by log22n·2
n−1+1 ≈

log2 2n·2
n−1

= T/2.

Compare to the m-sequence [13], the single cycle T-
function sequence can have the same well properties when
we choose the coordinate sequence.

Corollary 4. Let s be the state output sequence of a sin-
gle cycle T-function f with period T , 2-adic complexity
φ2(s), minimum connect number q. Then ϕ(q) < 2T − 2,
and

φ2(sk) < T < ϕ(q) < 2T − 2

holds when f is defined in F2, F
2
2 , F

4
2 , F

5
2 , F

6
2 , F

7
2 , F

8
2 ,

F 16
2 , F 32

2 .

Proof. Since the connect number ϕ(q) ≤ q−1 for all prime
or composite number q, we have ϕ(q) < q − 1 < 2T − 2.
By Corollary T3, φ2(sk) ≤ T/2, so φ2(sk) < T . For
f : F2

n → F2
n where n = 1, 2, 4, 5, 6, 7, 8, 16, 32, we can

verify that the minimum vale of ϕ(q) is less than n · 2n,
so φ2(sk) < T < ϕ(q) < 2T − 2.

4 Conclusions

Since it is suggested that a single cycle T-function can
be the substitution of linear feedback shift register for
its long cycle and nonlinearity structure. Comparison
between m-sequence and sequences generated by single
cycle T-function become and interesting problem. Tian
Tian shows 2-adic complexity of the m-sequence attains
the maximum in [13]. And in [15], it is shown that the
sequences generated by single cycle T function have high
linear complexity. In this paper, 2-adic complexity of the
kth coordinate sequence, the state output sequence gen-
erated by a single cycle T-function is studied. It is shown
that these two sequences are not as pseudo-random as
m-sequence in the respect of 2-adic complexity.
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